The Weierstrass Function

Brent Nelson

We let $\sin , \cos : \mathbb{R} \rightarrow \mathbb{R}$ be defined in the usual geometric way, extended to all of \mathbb{R}. We will assume the following facts about these functions:
(a) sin and cos are continuous on \mathbb{R};
(b) $|\sin (x)|,|\cos (x)| \leq 1$ for all $x \in \mathbb{R}$;
(c) $\left|\frac{\sin (x)}{x}\right| \leq 1$ for all $x \in \mathbb{R} \backslash\{0\} ;$
(d) $\cos (x)-\cos (y)=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$ for all $x, y \in \mathbb{R}$;
(e) $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ for all $x, y \in \mathbb{R}$.

These can be derived by considering, for example, the power series representations:

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad \text { and } \quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

The main goal of these notes is to prove the following theorem:
Theorem (Karl Weierstrass, 1872). Let $a \in(0,1)$ and let b be an odd integer such that $a b>1+\frac{3 \pi}{2}$. Then the series

$$
f(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right)
$$

converges uniformly on \mathbb{R} and defines a continuous but nowhere differentiable function.
The function appearing in the above theorem is called the Weierstrass function. Before we prove the theorem, we require the following lemma:

Lemma (The Weierstrass M-test). Let (E, d) be a metric space, and for each $n \in \mathbb{N}$ let $f_{n}: E \rightarrow \mathbb{R}$ be a function. Suppose that for each $n \in \mathbb{N}$, there exists $M_{n}>0$ such that

$$
|f(x)| \leq M_{n} \quad \forall x \in E
$$

If the series $\sum_{n=1}^{\infty} M_{n}$ converges, then the series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on E
Proof. Let $\epsilon>0$. The Cauchy criterion for the convergence of a series implies there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$ with $n<m$ we have

$$
\left|M_{n+1}+M_{n+2}+\cdots+M_{m}\right|=M_{n+1}+M_{n+2}+\cdots+M_{m}<\epsilon
$$

Consequently, for all $n, m \geq N$ with $n<m$ we have for all $x \in E$

$$
\left|\sum_{i=1}^{m} f_{i}(x)-\sum_{i=1}^{n} f_{i}(x)\right|=\left|f_{n+1}(x)+\cdots+f_{m}(x)\right| \leq\left|f_{n+1}(x)\right|+\cdots+\left|f_{m}(x)\right| \leq M_{n+1}+\cdots+M_{m}<\epsilon
$$

That is, the sequence of partial sums $\left(\sum_{i=1}^{n} f_{i}\right)_{n \in \mathbb{N}}$ satisfies the Cauchy criterion for functions. So by a proposition from lecture we know that these partial sums converge uniformly to the series $\sum_{n=1}^{\infty} f_{n}$.

Proof of Theorem. Since $\left|a^{n} \cos \left(b^{n} \pi x\right)\right| \leq a^{n}$ for all $x \in \mathbb{R}$ and $\sum_{n=0}^{\infty} a^{n}$ converges, the series converges uniformly by the Weierstrass M-test. Moreover, since the partial sums are continuous (as finite sums of continuous functions), their uniform limit f is also continuous.

To see that f is nowhere differentiable, we will show for each $x_{0} \in \mathbb{R}$ that

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

does not exist. In particular, we'll show that as x approaches x_{0} from above and below, the respective difference quotients oscillate wildly between larger and larger positive and negative values.

Fix $x_{0} \in \mathbb{R}$. For each $m \in \mathbb{N}$, let $\alpha_{m} \in \mathbb{Z}$ be such that

$$
b^{m} x_{0}-\alpha_{m} \in\left(-\frac{1}{2}, \frac{1}{2}\right]
$$

Define

$$
x_{m}:=b^{m} x_{0}-\alpha_{m} \quad y_{m}:=\frac{\alpha_{m}-1}{b^{m}} \quad z_{m}:=\frac{\alpha_{m}+1}{b^{m}} .
$$

Observe that

$$
y_{m}-x_{0}=-\frac{1+x_{m}}{b^{m}}<0<\frac{1-x_{m}}{b^{m}}=z_{m}-x_{0}
$$

Thus $y_{m}<x_{0}<z_{m}$,

$$
\lim _{m \rightarrow \infty}\left|y_{m}-x_{0}\right|=\lim _{m \rightarrow \infty} x_{0}-y_{m}=\lim _{m \rightarrow \infty} \frac{1+x_{m}}{b^{m}}=0
$$

and

$$
\lim _{m \rightarrow \infty}\left|z_{m}-x_{0}\right|=\lim _{m \rightarrow \infty} z_{m}-x_{0}=\lim _{m \rightarrow \infty} \frac{1-x_{m}}{b^{m}}=0
$$

That is, $\left(y_{m}\right)_{m \in \mathbb{N}}$ and $\left(z_{m}\right)_{m \in \mathbb{N}}$ are (meticulously constructed) sequences converging to x_{0}, but from above and below x_{0}, respectively. We will examine the difference quotients for f proceeding along $x=y_{m}, m \in \mathbb{N}$, and $x=z_{m}, m \in \mathbb{N}$. First,

$$
\begin{aligned}
\frac{f\left(y_{m}\right)-f\left(x_{0}\right)}{y_{m}-x_{0}} & =\frac{\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi y_{m}\right)-\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x_{0}\right)}{y_{m}-x_{0}} \\
& =\sum_{n=0}^{\infty} a^{n} \frac{\cos \left(b^{n} \pi y_{m}\right)-\cos \left(b^{n} \pi x_{0}\right)}{y_{m}-x_{0}} \\
& =\sum_{n=0}^{m-1}(a b)^{n} \frac{\cos \left(b^{n} \pi y_{m}\right)-\cos \left(b^{n} \pi x_{0}\right)}{b^{n}\left(y_{m}-x_{0}\right)}+\sum_{n=0}^{\infty} a^{n+m} \frac{\cos \left(b^{n+m} \pi y_{m}\right)-\cos \left(b^{n+m} \pi x_{0}\right)}{y_{m}-x_{0}}
\end{aligned}
$$

We denote the two sums in the last expression by S_{1} and S_{2}, respectively. Roughly speaking, we will show that S_{1} is small while S_{2} is big. Using property (d), we have

$$
\begin{aligned}
S_{1} & =\sum_{n=0}^{m-1}(a b)^{n} \frac{-2}{b^{n}\left(y_{m}-x_{0}\right)} \sin \left(\frac{b^{n} \pi\left(y_{m}+x_{0}\right)}{2}\right) \sin \left(\frac{b^{n} \pi\left(y_{m}-x_{0}\right)}{2}\right) \\
& =\sum_{n=0}^{m-1}-\pi(a b)^{n} \sin \left(\frac{b^{n} \pi\left(y_{m}+x_{0}\right)}{2}\right) \frac{\sin \left(\frac{b^{n} \pi\left(y_{m}-x_{0}\right)}{2}\right)}{\frac{\pi b^{n}\left(y_{m}-x_{0}\right)}{2}}
\end{aligned}
$$

Using the triangle inequality and properties (b) and (c) we have

$$
\left|S_{1}\right| \leq \sum_{n=0}^{m-1} \pi(a b)^{n} 1 \cdot 1=\pi \frac{(a b)^{m}-1}{a b-1}<\pi \frac{(a b)^{m}}{a b-1}
$$

Thus, there exists $\epsilon_{1} \in(-1,1)$ such that $S_{1}=\epsilon_{1} \frac{\pi(a b)^{m}}{a b-1}$.

Next, we handle S_{2}. First, recall that $y_{m}=\frac{\alpha_{m}-1}{b^{m}}$, that α_{m} is an integer, and that b is an odd integer. Thus

$$
\cos \left(b^{n+m} \pi y_{m}\right)=\cos \left(b^{n} \pi\left(\alpha_{m}-1\right)\right)=(-1)^{b^{n}\left(\alpha_{m}-1\right)}=(-1)^{\alpha_{m}-1}=-(-1)^{\alpha_{m}}
$$

Also, recall that $x_{m}=b^{m} x_{0}-\alpha_{m}$ so that using property (e) we have

$$
\begin{aligned}
\cos \left(b^{n+m} \pi x_{0}\right) & =\cos \left(b^{n} \pi\left(x_{m}+\alpha_{m}\right)\right) \\
& =\cos \left(b^{n} \pi x_{m}\right) \cos \left(b^{n} \pi \alpha_{m}\right)-\sin \left(b^{n} \pi x_{m}\right) \sin \left(b^{n} \pi \alpha_{m}\right) \\
& =(-1)^{b^{n} \alpha_{m}} \cos \left(b^{n} \pi x_{m}\right)-0 \\
& =(-1)^{\alpha_{m}} \cos \left(b^{n} \pi x_{m}\right)
\end{aligned}
$$

Using these computations, we have

$$
\begin{aligned}
S_{2} & =\sum_{n=0}^{\infty} a^{n+m} \frac{-(-1)^{\alpha_{m}}-(-1)^{\alpha_{m}} \cos \left(b^{n} \pi x_{m}\right)}{y_{m}-x_{0}} \\
& =\sum_{n=0}^{\infty} a^{n+m}(-1)(-1)^{\alpha_{m}} \frac{1+\cos \left(b^{n} \pi x_{m}\right)}{-\frac{1+x_{m}}{b^{m}}} \\
& =(a b)^{m}(-1)^{\alpha_{m}} \sum_{n=0}^{\infty} a^{n} \frac{1+\cos \left(b^{n} \pi x_{m}\right)}{1+x_{m}}
\end{aligned}
$$

Recall that $x_{m} \in\left(-\frac{1}{2}, \frac{1}{2}\right]$ so the terms in the sum in the last expression are non-negative. Consequently,

$$
\sum_{n=0}^{\infty} a^{n} \frac{1+\cos \left(b^{n} \pi x_{m}\right)}{1+x_{m}} \geq \frac{1+\cos \left(\pi x_{m}\right)}{1+x_{m}} \geq \frac{1}{1+\frac{1}{2}}=\frac{2}{3}
$$

So there exists $\eta_{1} \geq 1$ such that $S_{2}=(a b)^{m}(-1)^{\alpha_{m}} \eta_{1} \frac{2}{3}$.
Putting our computations for S_{1} and S_{2} together yields

$$
\begin{aligned}
\frac{f\left(y_{m}\right)-f\left(x_{0}\right)}{y_{m}-x_{0}}=S_{1}+S_{2} & =\epsilon_{1} \frac{\pi(a b)^{m}}{a b-1}+(a b)^{m}(-1)^{\alpha_{m}} \eta_{1} \frac{2}{3} \\
& =(-1)^{\alpha_{m}}(a b)^{m} \eta_{1}\left(\frac{2}{3}+(-1)^{\alpha_{m}} \frac{\epsilon_{1}}{\eta_{1}} \frac{\pi}{a b-1}\right)
\end{aligned}
$$

Recall our assumption that $a b>1+\frac{3 \pi}{2}$, which is equivalent to $\frac{\pi}{a b-1}<\frac{2}{3}$. Using $\left|\epsilon_{1}\right|<1$ and $\eta \geq 1$, we have

$$
\frac{2}{3}+(-1)^{\alpha_{m}} \frac{\epsilon_{1}}{\eta_{1}} \frac{\pi}{a b-1}>\frac{2}{3}-\frac{\pi}{a b-1}>0
$$

Consequently, the sign of $\frac{f\left(y_{m}\right)-f\left(x_{0}\right)}{y_{m}-x_{0}}$ is completely determined by $(-1)^{\alpha_{m}}$ and

$$
\left|\frac{f\left(y_{m}\right)-f\left(x_{0}\right)}{y_{m}-x_{0}}\right|>(a b)^{m}\left(\frac{2}{3}-\frac{\pi}{a b-1}\right)
$$

Thus, not only does the difference quotient alternate signs rapidly, but its magnitude tends to $+\infty$ as $m \rightarrow \infty$. Since $\lim _{m \rightarrow \infty} y_{m}=x_{0}$, this is enough to show that $\lim _{x \rightarrow x_{0}} \frac{f\left(y_{m}\right)-f\left(x_{0}\right)}{y_{m}-x_{0}}$ does not exist. We will show something slightly stronger: the same behavior also occurs along $\left(z_{m}\right)_{m \in \mathbb{N}}$.

Using the same breakdown as before, we can write

$$
\frac{f\left(z_{m}\right)-f\left(x_{0}\right)}{z_{m}-x_{0}}=S_{1}^{\prime}+S_{2}^{\prime}
$$

and the same argument yields $S_{1}^{\prime}=\epsilon_{2} \frac{\pi(a b)^{m}}{a b-1}$ for some $\epsilon_{2} \in(-1,1)$. Using $z_{m}-x_{0}=\frac{1-x_{m}}{b^{m}}$ we have

$$
\begin{aligned}
S_{2}^{\prime} & =\sum_{n=0}^{\infty} a^{n+m} \frac{-(-1)^{\alpha_{m}}-(-1)^{\alpha_{m}} \cos \left(b^{n} \pi x_{m}\right)}{\frac{1-x_{m}}{b^{m}}} \\
& =-(a b)^{m}(-1)^{\alpha_{m}} \sum_{n=0}^{\infty} a^{n} \frac{1+\cos \left(b^{n} \pi x_{m}\right)}{1-x_{m}}
\end{aligned}
$$

Since $x_{m} \in\left(-\frac{1}{2}, \frac{1}{2}\right]$, the terms in the sum in the last expression are non-negative. Consequently,

$$
\sum_{n=0}^{\infty} a^{n} \frac{1+\cos \left(b^{n} \pi x_{m}\right)}{1-x_{m}} \geq \frac{1+\cos \left(\pi x_{m}\right)}{1-x_{m}}>\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{2}{3}
$$

So there exists $\eta_{2} \geq 1$ such that $S_{2}^{\prime}=-(a b)^{m}(-1)^{\alpha_{m}} \eta_{2} \frac{2}{3}$. Then

$$
\begin{aligned}
\frac{f\left(z_{m}\right)-f\left(x_{0}\right)}{z_{m}-x_{0}}=S_{1}^{\prime}+S_{2}^{\prime} & =\epsilon_{2} \frac{\pi(a b)^{m}}{a b-1}-(-1)^{\alpha_{m}}(a b)^{m} \eta_{2} \frac{2}{3} \\
& =-(-1)^{\alpha_{m}}(a b)^{m} \eta_{2}\left(\frac{2}{3}-(-1)^{\alpha_{m}} \frac{\epsilon_{2}}{\eta_{2}} \frac{\pi}{a b-1}\right)
\end{aligned}
$$

Just as before we have

$$
\frac{2}{3}-(-1)^{\alpha_{m}} \frac{\epsilon_{2}}{\eta_{2}} \frac{\pi}{a b-1}>\frac{2}{3}-\frac{\pi}{a b-1}>0
$$

so that the sign of $\frac{f\left(z_{m}\right)-f\left(x_{0}\right)}{z_{m}-x_{0}}$ has sign completely determined by $-(-1)^{\alpha_{m}}$. Also,

$$
\left|\frac{f\left(z_{m}\right)-f\left(x_{0}\right)}{z_{m}-x_{0}}\right|>(a b)^{m}\left(\frac{2}{3}-\frac{\pi}{a b-1}\right) \xrightarrow{m \rightarrow \infty}+\infty
$$

So the same behavior occurs to the right of x_{0}.

The graph of the Weierstrass function

The rough shape of the graph is determined by the $n=0$ term in the series: $\cos (\pi x)$. The higher-order terms create the smaller oscillations. With b carefully chosen as in the theorem, the graph becomes so jagged that there is no reasonable choice for a tangent line at any point; that is, the function is nowhere differentiable.

