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We let sin, cos : R → R be defined in the usual geometric way, extended to all of R. We will assume the
following facts about these functions:

(a) sin and cos are continuous on R;

(b) | sin(x)|, | cos(x)| ≤ 1 for all x ∈ R;

(c)

∣∣∣∣ sin(x)

x

∣∣∣∣ ≤ 1 for all x ∈ R \ {0};

(d) cos(x)− cos(y) = −2 sin
(
x+y
2

)
sin
(
x−y
2

)
for all x, y ∈ R;

(e) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) for all x, y ∈ R.

These can be derived by considering, for example, the power series representations:

sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 and cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n.

The main goal of these notes is to prove the following theorem:

Theorem (Karl Weierstrass, 1872). Let a ∈ (0, 1) and let b be an odd integer such that ab > 1 + 3π
2 . Then the

series

f(x) =

∞∑
n=0

an cos(bnπx)

converges uniformly on R and defines a continuous but nowhere differentiable function.

The function appearing in the above theorem is called the Weierstrass function. Before we prove the theorem,
we require the following lemma:

Lemma (The Weierstrass M-test). Let (E, d) be a metric space, and for each n ∈ N let fn : E → R be a
function. Suppose that for each n ∈ N, there exists Mn > 0 such that

|f(x)| ≤Mn ∀x ∈ E.

If the series

∞∑
n=1

Mn converges, then the series

∞∑
n=1

fn converges uniformly on E

Proof. Let ε > 0. The Cauchy criterion for the convergence of a series implies there exists N ∈ N such that for
all n,m ≥ N with n < m we have

|Mn+1 +Mn+2 + · · ·+Mm| = Mn+1 +Mn+2 + · · ·+Mm < ε.

Consequently, for all n,m ≥ N with n < m we have for all x ∈ E∣∣∣∣∣
m∑
i=1

fi(x)−
n∑
i=1

fi(x)

∣∣∣∣∣ = |fn+1(x) + · · ·+ fm(x)| ≤ |fn+1(x)|+ · · ·+ |fm(x)| ≤Mn+1 + · · ·+Mm < ε.

That is, the sequence of partial sums (
∑n
i=1 fi)n∈N satisfies the Cauchy criterion for functions. So by a propo-

sition from lecture we know that these partial sums converge uniformly to the series
∑∞
n=1 fn.
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Proof of Theorem. Since |an cos(bnπx)| ≤ an for all x ∈ R and
∑∞
n=0 a

n converges, the series converges uni-
formly by the Weierstrass M-test. Moreover, since the partial sums are continuous (as finite sums of continuous
functions), their uniform limit f is also continuous.

To see that f is nowhere differentiable, we will show for each x0 ∈ R that

lim
x→x0

f(x)− f(x0)

x− x0

does not exist. In particular, we’ll show that as x approaches x0 from above and below, the respective difference
quotients oscillate wildly between larger and larger positive and negative values.

Fix x0 ∈ R. For each m ∈ N, let αm ∈ Z be such that

bmx0 − αm ∈
(
−1

2
,

1

2

]
.

Define

xm := bmx0 − αm ym :=
αm − 1

bm
zm :=

αm + 1

bm
.

Observe that

ym − x0 = −1 + xm
bm

< 0 <
1− xm
bm

= zm − x0.

Thus ym < x0 < zm,

lim
m→∞

|ym − x0| = lim
m→∞

x0 − ym = lim
m→∞

1 + xm
bm

= 0,

and

lim
m→∞

|zm − x0| = lim
m→∞

zm − x0 = lim
m→∞

1− xm
bm

= 0.

That is, (ym)m∈N and (zm)m∈N are (meticulously constructed) sequences converging to x0, but from above and
below x0, respectively. We will examine the difference quotients for f proceeding along x = ym, m ∈ N, and
x = zm, m ∈ N. First,

f(ym)− f(x0)

ym − x0
=

∑∞
n=0 a

n cos(bnπym)−
∑∞
n=0 a

n cos(bnπx0)

ym − x0

=

∞∑
n=0

an
cos(bnπym)− cos(bnπx0)

ym − x0

=

m−1∑
n=0

(ab)n
cos(bnπym)− cos(bnπx0)

bn(ym − x0)
+

∞∑
n=0

an+m
cos(bn+mπym)− cos(bn+mπx0)

ym − x0
.

We denote the two sums in the last expression by S1 and S2, respectively. Roughly speaking, we will show that
S1 is small while S2 is big. Using property (d), we have

S1 =

m−1∑
n=0

(ab)n
−2

bn(ym − x0)
sin

(
bnπ(ym + x0)

2

)
sin

(
bnπ(ym − x0)

2

)

=

m−1∑
n=0

−π(ab)n sin

(
bnπ(ym + x0)

2

) sin
(
bnπ(ym−x0)

2

)
πbn(ym−x0)

2

.

Using the triangle inequality and properties (b) and (c) we have

|S1| ≤
m−1∑
n=0

π(ab)n1 · 1 = π
(ab)m − 1

ab− 1
< π

(ab)m

ab− 1
.

Thus, there exists ε1 ∈ (−1, 1) such that S1 = ε1
π(ab)m

ab− 1
.
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Next, we handle S2. First, recall that ym = αm−1
bm , that αm is an integer, and that b is an odd integer. Thus

cos
(
bn+mπym

)
= cos (bnπ(αm − 1)) = (−1)b

n(αm−1) = (−1)αm−1 = −(−1)αm .

Also, recall that xm = bmx0 − αm so that using property (e) we have

cos
(
bn+mπx0

)
= cos (bnπ(xm + αm))

= cos(bnπxm) cos(bnπαm)− sin(bnπxm) sin(bnπαm)

= (−1)b
nαm cos(bnπxm)− 0

= (−1)αm cos(bnπxm).

Using these computations, we have

S2 =

∞∑
n=0

an+m
−(−1)αm − (−1)αm cos(bnπxm)

ym − x0

=

∞∑
n=0

an+m(−1)(−1)αm
1 + cos(bnπxm)

− 1+xm

bm

= (ab)m(−1)αm

∞∑
n=0

an
1 + cos(bnπxm)

1 + xm
.

Recall that xm ∈
(
− 1

2 ,
1
2

]
so the terms in the sum in the last expression are non-negative. Consequently,

∞∑
n=0

an
1 + cos(bnπxm)

1 + xm
≥ 1 + cos(πxm)

1 + xm
≥ 1

1 + 1
2

=
2

3
.

So there exists η1 ≥ 1 such that S2 = (ab)m(−1)αmη1
2
3 .

Putting our computations for S1 and S2 together yields

f(ym)− f(x0)

ym − x0
= S1 + S2 = ε1

π(ab)m

ab− 1
+ (ab)m(−1)αmη1

2

3

= (−1)αm(ab)mη1

(
2

3
+ (−1)αm

ε1
η1

π

ab− 1

)
Recall our assumption that ab > 1 + 3π

2 , which is equivalent to π
ab−1 <

2
3 . Using |ε1| < 1 and η ≥ 1, we have

2

3
+ (−1)αm

ε1
η1

π

ab− 1
>

2

3
− π

ab− 1
> 0.

Consequently, the sign of f(ym)−f(x0)
ym−x0

is completely determined by (−1)αm and∣∣∣∣f(ym)− f(x0)

ym − x0

∣∣∣∣ > (ab)m
(

2

3
− π

ab− 1

)
Thus, not only does the difference quotient alternate signs rapidly, but its magnitude tends to +∞ as m→∞.

Since lim
m→∞

ym = x0, this is enough to show that lim
x→x0

f(ym)− f(x0)

ym − x0
does not exist. We will show something

slightly stronger: the same behavior also occurs along (zm)m∈N.
Using the same breakdown as before, we can write

f(zm)− f(x0)

zm − x0
= S′1 + S′2,

and the same argument yields S′1 = ε2
π(ab)m

ab−1 for some ε2 ∈ (−1, 1). Using zm − x0 = 1−xm

bm we have

S′2 =

∞∑
n=0

an+m
−(−1)αm − (−1)αm cos(bnπxm)

1−xm

bm

= −(ab)m(−1)αm

∞∑
n=0

an
1 + cos(bnπxm)

1− xm
.
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Since xm ∈
(
− 1

2 ,
1
2

]
, the terms in the sum in the last expression are non-negative. Consequently,

∞∑
n=0

an
1 + cos(bnπxm)

1− xm
≥ 1 + cos(πxm)

1− xm
>

1

1−
(
− 1

2

) =
2

3
.

So there exists η2 ≥ 1 such that S′2 = −(ab)m(−1)αmη2
2
3 . Then

f(zm)− f(x0)

zm − x0
= S′1 + S′2 = ε2

π(ab)m

ab− 1
− (−1)αm(ab)mη2

2

3

= −(−1)αm(ab)mη2

(
2

3
− (−1)αm

ε2
η2

π

ab− 1

)
.

Just as before we have
2

3
− (−1)αm

ε2
η2

π

ab− 1
>

2

3
− π

ab− 1
> 0,

so that the sign of f(zm)−f(x0)
zm−x0

has sign completely determined by −(−1)αm . Also,∣∣∣∣f(zm)− f(x0)

zm − x0

∣∣∣∣ > (ab)m
(

2

3
− π

ab− 1

)
m→∞−→ +∞

So the same behavior occurs to the right of x0.∑
The graph of the Weierstrass function∑

The rough shape of the graph is determined by the n = 0 term in the series: cos(πx). The higher-order terms
create the smaller oscillations. With b carefully chosen as in the theorem, the graph becomes so jagged that
there is no reasonable choice for a tangent line at any point; that is, the function is nowhere differentiable.
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