Exercises:
1. For the following subsets, determine (without proof) their interiors, closures, and boundaries
 (a) $S = [0, 1]$ in \mathbb{R} with the usual metric.
 (b) $S = (0, 1)$ in \mathbb{R} with the usual metric.
 (c) $S = \mathbb{Z}$ in \mathbb{R} with the usual metric.
 (d) $S = \mathbb{Q}$ in \mathbb{R} with the usual metric.
 (e) $S = \mathbb{R}$ in \mathbb{R} with the usual metric.
 (f) $S = [0, 1) \times [0, 1)$ in \mathbb{R}^2 with the 2-dimensional Euclidean metric.

2. Let $S \subset E$.
 (a) Show that S^o is the union of all open subsets $U \subset S$.
 (b) Show that S^o is open.
 (c) Show that ∂S is closed.

3. Let $T \subset S \subset E$.
 (a) Show that $\overline{T} \subset \overline{S}$.
 (b) Show that $T^o \subset S^o$.

4. Let $S \subset E$.
 (a) Show that S is open if and only if $S = S^o$.
 (b) Show that S is closed if and only if $S = \overline{S}$.

5. Let $S \subset E$.
 (a) Show that $\overline{S} = ((S^c)^c)^c$.
 (b) Show that $S^o = \left(\overline{(S^c)}\right)^c$.
 (c) Show that $\partial S = \overline{S} \cap \overline{S^c}$.
 (d) Show $\partial S = \partial (S^c)$.

6. Let $S \subset E$.
 (a) Show $\overline{S} = \{x \in E: B(x, r) \cap S \neq \emptyset \ \forall r > 0\}$.
 (b) Show $\partial S = \{x \in E: B(x, r) \cap S \neq \emptyset \text{ and } B(x, r) \cap S^c \neq \emptyset \ \forall r > 0\}$.

7. For $S \subset E$ show that the following are equivalent:
 (i) S is dense in E.
 (ii) $(S^c)^o = \emptyset$.
 (iii) $\overline{S} = E$.

8. For $S \subset E$, show that E is the disjoint union of S^o, ∂S, and $(S^c)^o$.

9. Let $S \subset E$.
 (a) Show that S is closed if and only if $\partial S \subset S$.
 (b) Show that S is open if and only if $\partial S \cap S = \emptyset$.

10. Let $A, B \subset E$.
 (a) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
11. Let $S \subset E$ be a connected set. Suppose $T \subset E$ satisfies $S \subset T \subset \overline{S}$. Show that T is also connected.

Solutions:

1. (a) $S^o = (0, 1)$, $\overline{S} = [0, 1]$, and $\partial S = \{0, 1\}$.

(b) $S^o = (0, 1)$, $\overline{S} = [0, 1]$, and $\partial S = \{0, 1\}$.

(c) $S^o = \emptyset$, $\overline{S} = \mathbb{Z}$, and $\partial S = \mathbb{Z}$.

(d) $S^o = \emptyset$, $\overline{S} = \mathbb{R}$, and $\partial S = \mathbb{R}$.

(e) $S^o = \mathbb{R}$, $\overline{S} = \mathbb{R}$, and $\partial S = \emptyset$.

(f) $S^o = (0, 1) \times (0, 1)$, $\overline{S} = [0, 1] \times [0, 1]$, and $\partial S = \{(x, y) \in \mathbb{R}^2 : \text{either } x \in \{0, 1\} \text{ or } y \in \{0, 1\} \}$. (or both)

2. (a) Denote by T the union of all open subsets of S. Let $x \in S^o$. Since x is an interior point, there exists $r > 0$ such that $B(x, r) \subset S$, but then $B(x, r)$ is an open subset of S. Hence $x \in T$, and since $x \in S^o$ was arbitrary we have $S^o \subset T$. Conversely, if $x \in T$ then $x \in U$ for some open subset $U \subset S$. Since U is open, there exists $r > 0$ such that $B(x, r) \subset U \subset S$; that is, x is an interior point of S and therefore $x \in S^o$. Since $x \in T$ was arbitrary, we have $T \subset S^o$, which yields $T = S^o$.

(b) By part (a), S^o is a union of open sets and is therefore open.

(c) We have $\partial S = \overline{S} \setminus S^o = \overline{S} \cap (S^o)^c$. We know \overline{S} is closed, and by part (b) $(S^o)^c$ is closed as the complement of an open set. Thus ∂S is closed as an intersection of closed sets.

3. (a) Since $T \subset S \subset \overline{S}$, we have that \overline{S} is a closed set containing T. Thus $\overline{T} \subset \overline{S}$.

(b) If $x \in T^o$, then there exists $r > 0$ such that $B(x, r) \subset T \subset S$. Hence x is also an interior point of S and so $x \in S^o$. Consequently $T^o \subset S^o$.

4. (a) \Rightarrow: If S is open, then $U = S$ is an open subset of S. Hence $S \subset S^o$. The reverse inclusion always holds, so we have $S = S^o$.

\Leftarrow: By Exercise 3.(b), $S = S^o$ is open.

(b) \Rightarrow: If S is closed, then S is a closed set containing S. Hence $\overline{S} \subset S$. The reverse inclusion always holds, so we have $S = \overline{S}$.

\Leftarrow: $S = \overline{S}$ is closed as the intersection of closed sets.

5. (a) Denote $T := ((S^o)^c)^c$. We first note that $(S^c)^o$ is open and is contained in S^c. Consequently, its complement, T, is a closed set containing S. Hence $\overline{T} \subset T$. On the other hand, if V is a closed set containing S, then we have that V^c is an open subset of S^c. Hence $V^c \subset (S^c)^o$, which implies $V \supset T$. Since V was an arbitrary closed set containing S, we have $T \subset \overline{S}$, and therefore $T = \overline{S}$.

(b) Denote $T = S^c$. Then using part (a) we have

$$\left(\overline{(S^o)}\right)^c = (T)^c = (((T^c)^c)^c)^c = (T^c)^o = S^o.$$ (or both)

(c) By definition we have

$$\partial S = \overline{S} \setminus S^o = \overline{S} \cap (S^o)^c.$$ (or both)
(d) From part (c), we have \(\partial S = \overline{S} \cap \overline{S^c} = \overline{S^c} \cap \overline{S} = \partial (S^c) \). \(\square \)

6. (a) Denote

\[
T = \{ x \in E : B(x, r) \cap S \neq \emptyset \forall r > 0 \}.
\]

Observe that \(x \in T^c \) iff \(\exists r > 0 \) such that \(B(x, r) \cap S = \emptyset \) iff \(x \in (S^c)^o \) iff (by Exercise 5.(a)) \(x \in \overline{S^c} \). Thus \(T^c = \overline{S^c} \) which implies \(T = \overline{S} \). \(\square \)

(b) By part (a),

\[
\{ x \in E : B(x, r) \cap S \neq \emptyset \text{ and } B(x, r) \cap S^c \neq \emptyset \forall r > 0 \} = \overline{S} \cap \overline{S^c},
\]

and this latter set equals \(\partial S \) by Exercise 5.(c). \(\square \)

7. [(i) \(\Rightarrow \) (ii)] Assume \(S \) is dense in \(E \). Then for every \(x \in E \) and every \(r > 0 \) we have \(B(x, r) \cap S \neq \emptyset \). In particular, this is true for \(x \in S^c \) and means that \(B(x, r) \not\subset S^c \) for any \(r > 0 \). Hence \(S^c \) has no interior points which means \((S^c)^o = \emptyset \).

[(ii) \(\Rightarrow \) (iii)] Assume \((S^c)^o = \emptyset \). Then by Exercise 5.(a) we have \(\overline{S} = (\emptyset)^c = E \).

[(iii) \(\Rightarrow \) (i)] Assume \(\overline{S} = E \). Let \(x \in E = \overline{S} \). Then by Exercise 6.(a), \(B(x, r) \cap S \neq \emptyset \) for all \(r > 0 \). Since this holds for all \(x \in E \), we have that \(S \) is dense. \(\square \)

8. We know \(E \) is the disjoint union of \(\overline{S} \) and \(\overline{S^c} \). By definition of the boundary we see that \(\overline{S} \) is the disjoint union of \(S^o \) and \(\partial S \), and by Exercise 5.(a) we see that \(\overline{S^c} = (S^c)^o \). \(\square \)

9. (a) If \(S \) is closed then \(S = \overline{S} \) by Exercise 4.(b), but then \(\partial S \subset \overline{S} = S \). Conversely, if \(\partial S \subset S \) then \(\overline{S} = \partial S \cup S^o \subset S \subset \overline{S} \). Thus \(S = \overline{S} \), which implies \(S \) is closed. \(\square \)

(b) If \(S \) is open then \(S = S^o \) by Exercise 4.(a), and hence \(\partial S \cap S = \partial S \cap S^o = \emptyset \). Conversely, if \(\partial S \cap S = \emptyset \), then \(S \subset \partial S \cup (S^c)^o \) by Exercise 8. Since \((S^c)^o \subset S^c \), we know that \(S \subset S^o \) and the reverse inclusion always holds. Thus \(S = S^o \) which implies \(S \) is open by Exercise 4.(a). \(\square \)

10. (a) Note that \(\overline{A} \cup \overline{B} \) is closed as the finite union of closed sets, and it contains \(A \cup B \). Hence \(\overline{A} \cup \overline{B} \subset \overline{A \cup B} \). On the other hand, if \(V \) is a closed set containing \(A \cup B \), then it is also a closed set containing \(A \). Hence \(\overline{A} \subset V \). Similarly, \(\overline{B} \subset V \), which means \(\overline{A} \cup \overline{B} \subset V \). Since \(V \) was an arbitrary closed set containing \(A \cup B \), we have \(\overline{A} \cup \overline{B} \subset \overline{A \cup B} \), which gives equality. \(\square \)

(b) We can prove this directly in a similar fashion to part (a), or we can appeal to part (a) along with Exercise 5.(b):

\[
(A \cap B)^o = (\overline{(A \cap B)})^c = (\overline{A^c \cup B^c})^c = (\overline{A^c} \cup \overline{B^c})^c = (A^c)^c \cap (B^c)^c = A^o \cap B^o.
\]

\(\square \)

(c) Consider \(A = [0, 1) \) and \(B = [1, 2] \). Then \(A \cap B = \emptyset \), which is closed so \(\overline{A \cap B} = \emptyset \). However, \(\overline{A} = [0, 1] \) and \(\overline{B} = [1, 2] \) so that \(\overline{A \cap B} = \{1\} \neq \emptyset \).

Also, \(A \cup B = [0, 2] \) which has \((A \cup B)^o = (0, 2) \), while \(A^o = (0, 1) \) and \(B^o = (1, 2) \) so that \(A^o \cup B^o = (0, 1) \cup (1, 2) \neq (0, 2) \).

11. Suppose \(T = A \cup B \) for disjoint non-empty subsets \(A, B \subset T \) which are open relative to \(T \). Since \(S \subset T \), we have \(S = [A \cap S] \cup [B \cap S] \), and \(A \cap S \) and \(B \cap S \) are open relative to \(S \). As \(S \) is connected, we know either \(A \cap S \) or \(B \cap S \) is empty. Without loss of generality, assume \(B \cap S = \emptyset \) and hence \(A \cap S = S \). This means \(S \subset A \), and consequently \(A^c \subset S^c \). Thus

\[
B \subset A^c \cap T \subset S^c.
\]

On the other hand, \(B \subset T \subset \overline{S} \). Combining these two inclusions yields \(B \subset \overline{S} \subset S^c \). Since \(\overline{S} \subset S \subset \partial S \), we have \(B \subset \partial S \). Now, since \(B \) is open relative to \(T \), for each \(x \in B \) there exists \(r > 0 \) such that \(B(x, r) \cap T \subset B \). On the other hand, by Exercise 6.(b), \(x \in B \subset \partial S \) means this ball must intersect \(S \) and hence \(A \), a contradiction. Thus \(T \) is connected. \(\square \)