Concentration of Covariance Matrices for for Distributions with $2+\epsilon$ moments

Nikhil Srivastava (Berkeley)
Roman Vershynin (Michigan)

Covariance Matrices

Random Vector $X \in \mathbf{R}^{n}$
Covariance Matrix

$$
\Sigma=\mathbf{E} X X^{T}
$$

Variances $u^{T} \Sigma u=\mathbf{E}\langle u, X\rangle^{2} \quad u \in S^{n-1}$

Covariance Estimation

Goal: Estimate Σ given i.i.d. X_{1}, \ldots, X_{q}
Want: $(1-\epsilon) \Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T} \preceq(1+\epsilon) \Sigma$

Covariance Estimation

Goal: Estimate Σ given i.i.d. X_{1}, \ldots, X_{q}
Want: $(1-\epsilon) \Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T} \preceq(1+\epsilon) \Sigma$

Question: How many samples $q=q(n, \epsilon)$ do we need?

Applications

- Volume Computation [Kannan-Lovasz-Simonovits'95]
- Low Rank Approx [Rudelson-Vershynin’07]
- Graph Sparsification [Spielman-S ‘08]
- Sparse Approximation/Compressed Sensing
- Matrix Completion [Candes-Recht ‘09]

Like nonasymptotic Bai-Yin for matrices with independent rows.

Covariance Estimation

Goal: Estimate Σ given i.i.d. X_{1}, \ldots, X_{q}
Want: $(1-\epsilon) \Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T} \preceq(1+\epsilon) \Sigma$

Question: How many samples $q=q(n, \epsilon)$ do we need?

Isotropic Position

Want: $(1-\epsilon) \Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T} \preceq(1+\epsilon) \Sigma$
Sufficient to handle $\sum=I$ isotropic position.

$$
\mathbf{E}\langle u, X\rangle^{2}=1 \quad \forall u \quad \mathbf{E}\|X\|^{2}=n
$$

Isotropic Position

Want: $(1-\epsilon) \Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T} \preceq(1+\epsilon) \Sigma$
Sufficient to handle $\sum=I$ isotropic position.

$$
\mathbf{E}\langle u, X\rangle^{2}=1 \quad \forall u \quad \mathbf{E}\|X\|^{2}=n
$$

Reduction: $X_{i}^{\prime}=\Sigma^{-1 / 2} X_{i}$ and

$$
(1-\epsilon) I \preceq \frac{1}{q} \sum_{i \leq q} X_{i}^{\prime} X_{i}^{\prime T} \preceq(1+\epsilon) I
$$

Isotropic Position

Want: $\quad\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon$
Sufficient to handle $\sum=I$ isotropic position.

$$
\mathbf{E}\langle u, X\rangle^{2}=1 \quad \forall u \quad \mathbf{E}\|X\|^{2}=n
$$

Given $\mathbf{E} X X^{T}=I$ how large is \mathbf{q} ?

[KLS,B,...Rudelson'99]

Isotropic random $X \in \mathbf{R}^{n}$ with $\|X\|_{2} \leq O(\sqrt{n})$ If $q=\Omega\left(n \log n / \epsilon^{2}\right)$
Then

$$
\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon \text { whop. }
$$

[Rudelson’99]

Isotropic random $X \in \mathbf{R}^{n}$ with $\|X\|_{2} \leq O(\sqrt{n})$ If $q=\Omega\left(n \log n / \epsilon^{2}\right)$
Then

$$
\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon \text { whp. }
$$

Tight example:
$X=\sqrt{n} e_{i} \quad$ w. prob. $1 / n$
$\mathbf{E} X X^{T}=(1 / n) \sum_{i \leq n} n e_{i} e_{i}^{T}=I$
$\Sigma_{q}(i, i)=$ num. of balls in bin i

[Rudelson’99]

Isotropic random $X \in \mathbf{R}^{n}$ with $\|X\|_{2} \leq O(\sqrt{n})$ If $\left.q=\Omega(n \log n) \epsilon^{2}\right)$
Then

$$
\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon \text { whop. }
$$

Tight example:
$X=\sqrt{n} e_{i} \quad$ w. prob. $1 / n$
$\mathbf{E} X X^{T}=(1 / n) \sum_{i \leq n} n e_{i} e_{i}^{T}=I$
$\Sigma_{q}(i, i)=$ num. of balls in bin i

A Good Example

Standard Gaussian vector:

$$
X \sim \mathcal{N}(0, I)
$$

For any fixed direction

$$
u \in S^{n-1} \quad\langle u, X\rangle \sim \mathcal{N}(0,1)
$$

A Good Example

Standard Gaussian vector:

$$
X \sim \mathcal{N}(0, I)
$$

For any fixed direction

$$
u \in S^{n-1} \quad\langle u, X\rangle \sim \mathcal{N}(0,1)
$$

So for independent $\mathbf{X}_{1}, \ldots \mathbf{X}_{\mathbf{q}}$

$$
u^{T} \Sigma_{q} u=\frac{1}{q} \sum_{i \leq q}\left\langle u, X_{i}\right\rangle^{2} \sim \chi^{2}(q)
$$

A Good Example

Standard Gaussian vector:

$$
X \sim \mathcal{N}(0, I)
$$

For any fixed direction

$$
u \in S^{n-1} \quad\langle u, X\rangle \sim \mathcal{N}(0,1)
$$

So for independent $\mathbf{X}_{1}, \ldots \mathbf{X}_{\mathbf{q}}$

$$
\begin{aligned}
& u^{T} \Sigma_{q} u=\frac{1}{q} \sum_{i \leq q}\left\langle u, X_{i}\right\rangle^{2} \sim \chi^{2}(q) \\
& \mathbf{P}\left(\left|\frac{1}{q} \sum_{i \leq q}\left\langle u, X_{i}\right\rangle^{2}-1\right|>\epsilon\right) \leq \exp \left(-q \epsilon^{2}\right)
\end{aligned}
$$

Take $q \gg n / \epsilon^{2}$, union bound.

Convex Bodies [KLS'95]

More generally sub-exponential \mathbf{X} :

$$
\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C \exp (-t)
$$

[ALPT'09/ALLPT'11] $q=O\left(n / \epsilon^{2}\right)$ whp, provided $\|X\|_{2} \leq O(\sqrt{n})$

Heavier Tails

$$
\left.\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C t^{-p}\right)
$$

[Vershynin'11] $q=O\left(n(\log \log n)^{2}\right)$ for $\mathrm{p}>4$ and $\|X\|_{2} \leq O(\sqrt{n})$
[Mendelson-Paouris'12] $\quad q=O\left(n / \epsilon^{2}\right)$ for $\mathbf{p}>8$ and something like $\|X\|_{2} \leq O(\sqrt{n})$

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:

$$
1 \mathrm{D} \forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C / t^{2+\eta}
$$

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:

$$
1 \begin{gathered}
1 \mathrm{D}) \forall u \in S^{n-1}: \\
\\
\operatorname{cf.} \mathbf{E}\langle u, X\rangle^{2}=1
\end{gathered}
$$

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:
10 $\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C / t^{2+\eta}$

$$
\text { cf. } \mathbf{E}\|\Pi X\|^{2}=\operatorname{rank}(\Pi)
$$

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:
$1 \mathrm{D} \forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C / t^{2+\eta}$ $\mathrm{kD} \forall \Pi \quad \mathbf{P}\left(\|\Pi X\|_{2}>t\right) \leq C / t^{2+\eta}, \quad t>C \sqrt{\operatorname{rank}(\Pi)}$ Then $\mathbf{E}\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon$ for $q=O\left(n / \epsilon^{2+\frac{2}{\eta}}\right)$

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:
10 $\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C / t^{2+\eta}$
$\mathrm{kD} \forall \Pi \quad \mathbf{P}\left(\|\Pi X\|_{2}>t\right) \leq C / t^{2+\eta}, \quad t>C \sqrt{\operatorname{rank}(\Pi)}$
Then $\mathrm{E}\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon$ for $q=O\left(n / \epsilon^{2+\frac{2}{\eta}}\right)$
Includes: log-concave \mathbf{X} by [Paouris '07]

$$
\mathbf{P}(\|X\|>t) \leq \exp (-t), \quad t>C \sqrt{n} .
$$

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:
$1 \mathrm{D} \forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C / t^{2+\eta}$
kD $\forall \Pi \quad \mathbf{P}\left(\|\Pi X\|_{2}>t\right) \leq C / t^{2+\eta}, \quad t>C \sqrt{\operatorname{rank}(\Pi)}$
Then $\mathbf{E}\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon$ for $q=O\left(n / \epsilon^{2+\frac{2}{\eta}}\right)$
Includes: log-concave \mathbf{X} by [Paouris ‘07] product \mathbf{X} with bdd $4+\eta$ moments cf. [Latala’05]

Heavier Tails

[S-Vershynin'12] Suppose isotropic \mathbf{X} satisfies:
10 $\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X\rangle|>t) \leq C / t^{2+\eta}$ $\mathrm{kD} \forall \Pi \quad \mathbf{P}\left(\|\Pi X\|_{2}>t\right) \leq C / t^{2+\eta}, \quad t>C \sqrt{\operatorname{rank}(\Pi)}$ Then $\mathbf{E}\left\|\frac{1}{q} \sum_{i \leq q} X_{i} X_{i}^{T}-I\right\|_{2} \leq \epsilon$ for $q=O\left(n / \epsilon^{2+\frac{2}{\eta}}\right)$

Lower edge is easier: Only require 1D for

$$
\mathbf{E} \lambda_{\min }\left(\Sigma_{q}\right) \geq 1-\epsilon
$$

Sketch of the proof

Basic Picture

$$
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T}
$$

$A_{0}=0$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
& \quad \lambda_{\min } \quad \lambda_{\max } \\
& A_{1}=X_{1} X_{1}^{T}
\end{aligned}
$$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
& \lambda_{\min } \quad \lambda_{\max } \\
& A_{2}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T}
\end{aligned}
$$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
& \lambda_{\min }^{\lambda_{\max }} \\
& A_{3}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}
\end{aligned}
$$

Basic Picture

$$
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T}
$$

$$
\lambda_{\min } \quad \lambda_{\max }
$$

Interlacing

Basic Picture

$$
\begin{gathered}
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
\quad \lambda_{\min } \\
\lambda_{\max }
\end{gathered}
$$

Basic Picture

$$
\begin{gathered}
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
\lambda_{\min } \\
\lambda_{\max } \\
\mathbf{0 - 0 - 0 - 0 - 0}
\end{gathered}
$$

Basic Picture

$$
\begin{gathered}
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
\lambda_{\min } \\
\lambda_{\max } \\
\hline \mathbf{0}-\mathbf{0}-\mathbf{0} \\
\hline
\end{gathered}
$$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
& \lambda_{\text {min }} \quad \lambda_{\text {max }}
\end{aligned}
$$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
& \lambda_{\text {min }} \quad \lambda_{\text {max }} \\
& \longrightarrow \quad e^{0}-00-0.0- \\
& A_{q}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T} \ldots X_{q} X_{q}^{T}
\end{aligned}
$$

Basic Picture

$$
\begin{gathered}
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
\underbrace{\lambda_{\max }}_{\text {min }} \begin{array}{r}
(1-\epsilon) q \leq \mathbf{E} \lambda \leq(1+\epsilon) q \\
A_{q}
\end{array}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T} \ldots X_{q} X_{q}^{T}
\end{gathered}
$$

Basic Picture

$$
\begin{gathered}
A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
\underbrace{(1-\epsilon) q \leq \mathbf{E} \lambda \leq(1+\epsilon) q}_{\left(\begin{array}{c}
\lambda_{\min } \\
\lambda_{\max }
\end{array}\right.} \\
A_{q}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T} \ldots X_{q} X_{q}^{T} \\
\mathbf{E T r}\left(A_{k}\right)=\operatorname{Tr}\left(A_{k-1}\right)+\operatorname{Tr}\left(\mathbf{E} X_{k} X_{k}^{T}\right) \\
=\operatorname{Tr}\left(A_{k-1}\right)+n
\end{gathered}
$$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T} \\
& \lambda_{\text {min }} \quad \lambda_{\text {max }}
\end{aligned}
$$

$$
\begin{aligned}
& A_{q}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T} \ldots X_{q} X_{q}^{T}
\end{aligned}
$$

$\mathbf{E} \lambda_{\text {avg }}\left(A_{k}\right)=\lambda_{\text {avg }}\left(A_{k-1}\right)+1$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T}
\end{aligned}
$$

$$
A_{q}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T} \ldots X_{q} X_{q}^{T}
$$

$\mathbf{E} \lambda_{\max }\left(A_{k}\right) \leq \lambda_{\max }\left(A_{k-1}\right)+O(1) ?$
$\mathbf{E} \lambda_{\operatorname{avg}}\left(A_{k}\right)-\operatorname{lavg}(1+k-1) । \perp$

Basic Picture

$$
\begin{aligned}
& A_{k}=\sum_{i \leq k} X_{i} X_{i}^{T}=A_{k-1}+X_{k} X_{k}^{T}
\end{aligned}
$$

$$
A_{q}=X_{1} X_{1}^{T}+X_{2} X_{2}^{T} \ldots X_{q} X_{q}^{T}
$$

$\mathbf{E} \lambda_{\max }\left(A_{k}\right) \leq \lambda_{\max }\left(A_{k-1}\right)+O(1) ?$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}=\sum_{i} \frac{1}{z-\lambda_{i}}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}=\sum_{i} \frac{1}{z-\lambda_{i}}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}=\sum_{i} \frac{1}{z-\lambda_{i}}
$$

$$
\begin{gathered}
\lambda_{\text {min }} \\
\lambda_{\max }=\max \left\{z: \Phi_{A}(z)=\infty\right\} \\
s_{\max }:=\max \left\{z: \Phi_{A}(z)=1\right\}
\end{gathered}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}=\sum_{i} \frac{1}{z-\lambda_{i}}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}=\sum_{i} \frac{1}{z-\lambda_{i}}
$$

$$
\begin{gathered}
\lambda_{\text {min }} \\
\lambda_{\max }=\max \left\{z: \Phi_{A}(z)=\infty\right\} \\
s_{\max }:=\max \left\{z: \Phi_{A}(z)=\psi 4\right)
\end{gathered}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}=\sum_{i} \frac{1}{z-\lambda_{i}}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}
$$

$$
s_{\max }:=\max \left\{z: \Phi_{A}(z)=\psi\right\}
$$

Well-behaved + easy to manipulate

g the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}
$$

$$
s_{\max }:=\max \left\{z: \Phi_{A}(z)=\psi\right\}
$$

Softening the Edges

$$
\Phi_{A}(z)=\operatorname{Tr}(z I-A)^{-1}
$$

$$
s_{\max }:=\max \left\{z: \Phi_{A}(z)=\psi\right\}
$$

Inverse Stieltjes Transform Lemma

$$
s_{\min }:=\min \left\{z:\left|\Phi_{A}(z)\right|=\psi\right\}, \Phi_{A}(z)=\operatorname{Tr}(z I]^{A)^{-1}}
$$

Main Lemma.

$A \succeq 0, X$ regular isotropic random vector.
For all $\epsilon>0$ there is $\psi=\psi(\epsilon)$ with

$$
\begin{aligned}
& \mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+1+\epsilon \\
& \mathbf{E} s_{\min }\left(A+X X^{T}\right) \geq s_{\min }(A)+1-\epsilon
\end{aligned}
$$

Initial Positions

The Sensitivity Tradeoff

The Sensitivity Tradeoff

The Sensitivity Tradeoff

The Sensitivity Tradeoff

$$
A_{k}=A_{k-1}+X_{k} X_{k}^{T}
$$

$$
\begin{aligned}
& \mathbf{E} s_{\text {min }}\left(A_{k}\right) \geq-n / \psi+k(1-\epsilon) \\
& \mathbf{E} s_{\max }\left(A_{k}\right) \leq n / \psi+k(1+\epsilon) .
\end{aligned}
$$

The Sensitivity Tradeoff

$$
A_{k}=A_{k-1}+X_{k} X_{k}^{T}
$$

$$
\begin{aligned}
& \mathbf{E} s_{\text {min }}\left(A_{k}\right) \geq-n / \psi+k(1-\epsilon) \\
& \mathbf{E} s_{\max }\left(A_{k}\right) \leq n / \psi+k(1+\epsilon) .
\end{aligned}
$$

The Sensitivity Tradeoff

After \mathbf{k} steps

$$
\begin{aligned}
& \mathbf{E} s_{\min }\left(A_{k}\right) \geq-n / \psi+k(1-\epsilon) \\
& \mathbf{E} s_{\max }\left(A_{k}\right) \leq n / \psi+k(1+\epsilon)
\end{aligned}
$$

The Sensitivity Tradeoff

$$
\begin{aligned}
& \underbrace{}_{A_{q}=X_{1} \cdot \overbrace{\operatorname{Set}}^{\operatorname{Set}} q>\frac{n}{\psi \epsilon}=c(\epsilon) n .} \\
& \text { After q steps } \\
& \mathbf{E} s_{\min }\left(A_{k}\right) \geq-n / \psi+q(1-\epsilon) \\
& \mathbf{E} s_{\max }\left(A_{k}\right) \leq n / \psi+q(1+\epsilon) \text {. }
\end{aligned}
$$

The Sensitivity Tradeoff

Proof of the Main Lemma

$A \succeq 0, X$ regular isotropic random vector.
For all $\epsilon>0$ there is $\psi=\psi(\epsilon)$ with

$$
\begin{aligned}
& \mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+1+\epsilon \\
& \mathbf{E} s_{\min }\left(A+X X^{T}\right) \geq s_{\text {min }}(A)+1-\epsilon .
\end{aligned}
$$

Need to solve inverse problem:
$\mathbf{E}_{X}\left\{\max \quad z: \operatorname{Tr}\left(z I-A-X X^{T}\right)^{-1}=\psi\right\}$

Origin of kD

A special case: A has \mathbf{k} eigenvalues at distance \mathbf{k}

Origin of kD

A special case: \mathbf{A} has \mathbf{k} eigenvalues at distance \mathbf{k}

Origin of kD

A special case: \mathbf{A} has \mathbf{k} eigenvalues at distance \mathbf{k}

Origin of kD

A special case: \mathbf{A} has \mathbf{k} eigenvalues at distance \mathbf{k}

Origin of kD

A special case: \mathbf{A} has \mathbf{k} eigenvalues at distance \mathbf{k}

Origin of kD

$$
\mathbf{E} \delta(X) \geq \mathbf{E}\left(\|\Pi X\|_{2}^{2}-k\right)_{+}
$$

Origin of kD

$$
\begin{aligned}
\mathbf{E} \delta(X) & \geq \mathbf{E}\left(\|\Pi X\|_{2}^{2}-k\right)_{+} \\
& =\int_{0}^{\infty} \mathbf{P}\left(\|\Pi X\|^{2} \geq k+t\right) d t
\end{aligned}
$$

Origin of ND

Want $\mathbf{E} \delta(X)=O(1)$
$\mathbf{E} \delta(X) \geq \mathbf{E}\left(\|\Pi X\|_{2}^{2}-k\right)_{+}$

$$
=\int_{0}^{\infty} \mathbf{P}\left(\|\Pi X\|^{2} \geq k+t\right) d t
$$

Origin of ND

Want $\mathbf{E} \delta(X)=O(1)$
$\mathbf{E} \delta(X) \geq \mathbf{E}\left(\|\Pi X\|_{2}^{2}-k\right)_{+}$

$$
=\int_{0}^{\infty} \mathbf{P}\left(\|\Pi X\|^{2} \geq k+t\right) d t
$$

Need $\mathbf{P}\left(\|\Pi X\|^{2}>k+t\right) \leq C / t^{1+\eta}$.

Origin of kD

$$
\mathbf{E} \delta(X) \geq \mathbf{E}\left(\|\Pi X\|_{2}^{2}-k\right)_{+}
$$

$$
=\int_{0}^{\infty} \mathbf{P}\left(\|\Pi X\|^{2} \geq k+t\right) d t
$$

Need $\mathbf{P}(\|\Pi X\|>t) \leq C / t^{2+\eta}, t>k$.

Origin of 1 D

A has 1 eigenvalue at distance 1

Origin of 1D

A has 1 eigenvalue at distance 1

Origin of 1D

A has 1 eigenvalue at distance 1

Origin of 1D

A has 1 eigenvalue at distance 1

Origin of 1D

A has 1 eigenvalue at distance 1

Main Lemma

$$
s_{\min }:=\min \left\{z:\left|\Phi_{A}(z)\right|=\psi\right\}, \Phi_{A}(z)=\operatorname{Tr}\left(z I \mid \Phi^{A)^{-1}} s_{s_{\max }}:=\max \left\{z: \Phi_{A}(z)=\psi\right\},\right.
$$

Main Lemma.

$A \succeq 0, X$ regular isotropic random vector.
For all $\epsilon>0$ there is $\psi=\psi(\epsilon)$ with

$$
\begin{aligned}
& \mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+1+\epsilon \\
& \mathbf{E} s_{\min }\left(A+X X^{T}\right) \geq s_{\min }(A)+1-\epsilon .
\end{aligned}
$$

Some Technical Details

Proof of the Main Lemma

$A \succeq 0, X$ regular isotropic random vector.
For all $\epsilon>0$ there is $\psi=\psi(\epsilon)$ with

$$
\begin{aligned}
& \mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+1+\epsilon \\
& \mathbf{E} s_{\min }\left(A+X X^{T}\right) \geq s_{\min }(A)+1-\epsilon .
\end{aligned}
$$

For fixed \mathbf{A}, \mathbf{X}, how do we certify

$$
s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta ?
$$

Upper Edge Shifts

$$
\begin{aligned}
& \text { Let } s_{\max }(A)=s \\
& s_{\max }\left(A+X X^{T}\right) \leq s+\delta \\
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \psi
\end{aligned}
$$

Upper Edge Shifts

Let $s_{\max }(A)=s$. $s_{\text {max }}\left(A+X X^{T}\right) \leq s+\delta$
$\Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \psi$
$\Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \Phi_{A}(s)$

Upper Edge Shifts

Let $s_{\max }(A)=s$. $s_{\text {max }}\left(A+X X^{T}\right) \leq s+\delta$
$\Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \psi$
$\Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \Phi_{A}(s)$

$$
\Longleftrightarrow \operatorname{Tr}\left(s+\delta-A-X X^{T}\right)^{-1} \leq \operatorname{Tr}(s-A)^{-1}
$$

Upper Edge Shifts

Let $s_{\max }(A)=s$.
$s_{\text {max }}\left(A+X X^{T}\right) \leq s+\delta$

$$
\begin{aligned}
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \psi \\
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \Phi_{A}(s)
\end{aligned}
$$

$$
\Longleftrightarrow \operatorname{Tr}\left(s+\delta-A-X X^{T}\right)^{-1} \leq \operatorname{Tr}(s-A)^{-1}
$$

Sherman Morrisson Formula

$$
\left(A-X X^{T}\right)^{-1}=A^{-1}+\frac{A^{-1} X X^{T} A^{-1}}{1-X^{T} A^{-1} X}
$$

Upper Edge Shifts

Let $s_{\max }(A)=s$. $s_{\max }\left(A+X X^{T}\right) \leq s+\delta$

$$
\begin{aligned}
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \psi \\
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \Phi_{A}(s) \\
& \Longleftrightarrow \frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1 .
\end{aligned}
$$

Upper Edge Shifts

Let $s_{\max }(A)=s$.
$s_{\max }\left(A+X X^{T}\right) \leq s+\delta$

$$
\begin{aligned}
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \psi \\
& \Longleftrightarrow \Phi_{A+X X^{T}}(s+\delta) \leq \Phi_{A}(s)
\end{aligned}
$$

$$
\frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1
$$

Quadratic form in $\mathbf{X}, \quad Q(\delta, X)$ decreasing in δ

$$
\delta(X):=\min \{\delta: Q(\delta, X) \leq 1\}
$$

Need to bound

$$
\mathbf{E}_{X} s_{\max }\left(A+X X^{T}\right)=s_{\max }(A)+\mathbf{E}_{X} \delta(X)
$$

$$
s_{\max }\left(A+X X^{T}\right) \leq s+\delta
$$

$$
\Longleftrightarrow \frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1
$$

Quadratic form in $\mathbf{X}, \quad Q(\delta, X)$ decreasing in δ

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\mathbf{E} \frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+\mathbf{E} X^{T}(s+\delta-A)^{-1} X \leq 1
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\frac{(s+\delta-A)^{-2} \bullet \mathbf{E} X X^{T}}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+(s+\delta-A)^{-1} \bullet \mathbf{E} X X^{T} \leq 1
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\frac{(s+\delta-A)^{-2} \bullet \mathbf{E} X X^{T}}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+(s+\delta-A)^{-1} \bullet \mathbf{E} X X^{T} \leq 1
$$

$$
\mathbf{E} X X^{T}=I
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\frac{\operatorname{Tr}(s+\delta-A)^{-2}}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+\operatorname{Tr}(s+\delta-A)^{-1} \leq 1
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\frac{1}{\delta}+\operatorname{Tr}(s+\delta-A)^{-1} \leq 1
$$

Sensitivity Bound

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\frac{1}{\delta}+\operatorname{Tr}(s-A)^{-1} \leq 1
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta$

$$
\frac{1}{\delta}+\psi \leq 1
$$

"Heuristic" bound on $\mathbf{E} \delta(X)$

$$
\mathbf{E} s_{\max }\left(A+X X^{T}\right) \leq s_{\max }(A)+\delta
$$

$$
\begin{gathered}
\frac{1}{\delta}+\psi \leq 1 \\
\psi \leq \frac{\delta-1}{\delta} \approx \epsilon, \quad \delta=1+\epsilon
\end{gathered}
$$

The Sensitivity Tradeoff

$$
\begin{aligned}
& A_{q}=X_{1} \cdot \operatorname{Set} q>\frac{n}{\psi \epsilon}=c(\epsilon) n . \\
& \quad \text { After } \mathbf{q} \text { steps } \\
& \begin{array}{l}
\mathbf{E} s_{\min }\left(A_{k}\right) \leq-n / \psi+q(1-\epsilon) \\
\mathbf{E} s_{\max }\left(A_{k}\right) \geq n / \psi+q(1+\epsilon) .
\end{array}
\end{aligned}
$$

The Sensitivity Tradeoff

$$
\begin{aligned}
& A_{q}=X_{1} . \operatorname{Set} q>\frac{n}{\psi \epsilon}=n / \epsilon^{2} . \\
& \left.\begin{array}{l}
\text { After } \mathbf{q} \text { steps } \\
\begin{array}{l}
\mathrm{E} s_{\min }\left(A_{k}\right) \leq-n / \psi+q(1-\epsilon) \\
\mathbf{E} s_{\max }\left(A_{k}\right) \geq n / \psi+q(1+\epsilon) .
\end{array}
\end{array}\right) .
\end{aligned}
$$

Nonsense?

Need to bound $\quad \mathbf{E}_{X} \delta(X)$ for δ satisfying

$$
Q(\delta, X)=\frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1
$$

Insufficient to bound "in expectation"

Nonsense?

Need to bound $\quad \mathbf{E}_{X} \delta(X)$ for δ satisfying

$$
Q(\delta, X)=\frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1
$$

If \mathbf{X} is Gaussian: $Q(\delta, X) \approx \mathbf{E} Q(\delta, X)$ whp. so Heuristic calculation is accurate.

Nonsense?

Need to bound $\quad \mathbf{E}_{X} \delta(X)$ for δ satisfying

$$
Q(\delta, X)=\frac{X^{T}(s+\delta-A)^{-2} X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}}+X^{T}(s+\delta-A)^{-1} X \leq 1 .
$$

If \mathbf{X} is Gaussian: $Q(\delta, X) \approx \mathbf{E} Q(\delta, X)$ whp. so Heuristic calculation is accurate.

Turns out $1 \mathrm{D}+\mathrm{kD}$ is enough.

End of the Proof

$$
A_{k}=A_{k-1}+X_{k} X_{k}^{T}
$$

$$
\begin{aligned}
& \mathbf{E} s_{\text {min }}\left(A_{k}\right) \leq-n / \psi+k(1-\epsilon) \\
& \mathbf{E} s_{\max }\left(A_{k}\right) \geq n / \psi+k(1+\epsilon) .
\end{aligned}
$$

End of the Proof

$$
A_{k}=A_{k-1}+X_{k} X_{k}^{T}
$$

$$
\begin{aligned}
& \mathbf{E s}_{\text {min }}\left(A_{k}\right) \leq-n / \psi+k(1-\epsilon) \\
& \mathbf{E} s_{\max }\left(A_{k}\right) \geq n / \psi+k(1+\epsilon) .
\end{aligned}
$$

End of the Proof

After \mathbf{q} steps

$$
\begin{aligned}
& \mathbf{E} s_{\text {min }}\left(A_{k}\right) \leq-n / \psi+q(1-\epsilon) \\
& \mathbf{E} s_{\text {max }}\left(A_{k}\right) \geq n / \psi+q(1+\epsilon) .
\end{aligned}
$$

End of the Proof

$$
\begin{aligned}
& A_{q}=X_{1} \cdot \text { Set } q>\frac{n}{\psi \epsilon}=c(\epsilon) n . \\
& \quad \text { After } \mathbf{q} \text { steps } \\
& \begin{array}{l}
\text { E } s_{\min }\left(A_{k}\right) \leq-n / \psi+q(1-\epsilon) \\
\mathbf{E} s_{\max }\left(A_{k}\right) \geq n / \psi+q(1+\epsilon) .
\end{array}
\end{aligned}
$$

End of the Proof

Open Questions

More delicate results? (fluctuations of top eigenvalue,...)

Preserving higher marginals
[Rudelson-Guedon'07, Vershynin'10]

Extension to higher rank matrices

