Concentration of Covariance Matrices for for Distributions with $2+\epsilon$ moments

Nikhil Srivastava (Berkeley) Roman Vershynin (Michigan)

Covariance Matrices

Covariance Estimation Goal: Estimate Σ given i.i.d. X_1, \ldots, X_q Want: $(1 - \epsilon)\Sigma \preceq \frac{1}{q} \sum_{i < q} X_i X_i^T \preceq (1 + \epsilon)\Sigma$

Question: How many samples $q = q(n, \epsilon)$ do we need?

Applications

- Volume Computation [Kannan-Lovasz-Simonovits'95]
- Low Rank Approx [Rudelson-Vershynin'07]
- Graph Sparsification [Spielman-S '08]
- Sparse Approximation/Compressed Sensing
- Matrix Completion [Candes-Recht '09]

. . .

Like nonasymptotic Bai-Yin for matrices with independent rows.

Question: How many samples $q = q(n, \epsilon)$ do we need?

Isotropic Position

Want:
$$(1 - \epsilon)\Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_i X_i^T \preceq (1 + \epsilon)\Sigma$$

Sufficient to handle $\sum = I$ isotropic position. $\mathbf{E}\langle u,X\rangle^2 = 1 \quad \forall u \qquad \mathbf{E}\|X\|^2 = n$

Isotropic Position

Want:
$$(1 - \epsilon)\Sigma \preceq \frac{1}{q} \sum_{i \leq q} X_i X_i^T \preceq (1 + \epsilon)\Sigma$$

Sufficient to handle $\Sigma = I$ isotropic position. $\mathbf{E}\langle u, X \rangle^2 = 1 \quad \forall u \qquad \mathbf{E} \|X\|^2 = n$ Reduction: $X_i' = \Sigma^{-1/2} X_i$ and $(1-\epsilon)I \leq \frac{1}{a} \sum_{i < q} X'_i X'^T_i \leq (1+\epsilon)I$

Isotropic PositionWant:
$$\left\| \frac{1}{q} \sum_{i \leq q} X_i X_i^T - I \right\|_2 \leq \epsilon$$

Sufficient to handle $\sum = I$ isotropic position. $\mathbf{E}\langle u, X \rangle^2 = 1 \quad \forall u \qquad \mathbf{E} \|X\|^2 = n$

Given
$$\mathbf{E}XX^T = I$$
 how large is **q**?

[KLS,B,...Rudelson'99]

Isotropic random
$$X \in \mathbf{R}^n$$
 with $||X||_2 \le O(\sqrt{n})$
If $q = \Omega(n \log n/\epsilon^2)$
Then $\left\| \frac{1}{q} \sum_{i \le q} X_i X_i^T - I \right\|_2 \le \epsilon$ whp.

[Rudelson'99]

Isotropic random $X \in \mathbf{R}^n$ with $||X||_2 \le O(\sqrt{n})$ If $q = \Omega(n \log n/\epsilon^2)$ Then $\left\| \frac{1}{q} \sum_{i \le q} X_i X_i^T - I \right\|_2 \le \epsilon$ whp.

Tight example: $X = \sqrt{n}e_i$ w. prob. 1/n $\mathbf{E}XX^T = (1/n) \sum_{i \le n} ne_i e_i^T = I$ $\Sigma_q(i,i) = \text{num. of balls in bin } i$

[Rudelson'99]

Isotropic random $X \in \mathbf{R}^n$ with $||X||_2 \le O(\sqrt{n})$ If $q = \Omega(n \log n) \epsilon^2$) Then $\left\| \frac{1}{q} \sum_{i \le q} X_i X_i^T - I \right\|_2 \le \epsilon$ whp.

Tight example: $X = \sqrt{n}e_i$ w. prob. 1/n $\mathbf{E}XX^T = (1/n) \sum_{i \le n} ne_i e_i^T = I$

 $\Sigma_q(i,i) = \text{num. of balls in bin } i \neq$

A Good Example

Standard Gaussian vector:

 $X \sim \mathcal{N}(0, I)$

For any fixed direction

$$u \in S^{n-1}$$
 $\langle u, X \rangle \sim \mathcal{N}(0, 1)$

A Good Example

Standard Gaussian vector:

 $X \sim \mathcal{N}(0, I)$

For any fixed direction

$$u \in S^{n-1}$$
 $\langle u, X \rangle \sim \mathcal{N}(0, 1)$

So for independent X₁, ... X_a

$$u^T \Sigma_q u = \frac{1}{q} \sum_{i \le q} \langle u, X_i \rangle^2 \sim \chi^2(q)$$

A Good Example

Standard Gaussian vector:

 $X \sim \mathcal{N}(0, I)$

For any fixed direction

$$u \in S^{n-1}$$
 $\langle u, X \rangle \sim \mathcal{N}(0, 1)$

So for independent X₁, ... X_q

$$u^{T} \Sigma_{q} u = \frac{1}{q} \sum_{i \leq q} \langle u, X_{i} \rangle^{2} \sim \chi^{2}(q)$$
$$\mathbf{P}(|\frac{1}{q} \sum_{i \leq q} \langle u, X_{i} \rangle^{2} - 1| > \epsilon) \leq \exp(-q\epsilon^{2})$$
$$\text{Take } q \gg n/\epsilon^{2}, \text{ union bound.}$$

More generally **sub-exponential X**:

$$\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X \rangle| > t) \le C \exp(-t)$$

[ALPT'09/ALLPT'11] $q = O(n/\epsilon^2)$ whp, provided $\|X\|_2 \leq O(\sqrt{n})$

$$\forall u \in S^{n-1}: \quad \mathbf{P}(|\langle u, X \rangle| > t) \le Ct^{-p})$$

[Vershynin'11]
$$q = O(n(\log \log n)^2)$$

for **p>4** and $||X||_2 \le O(\sqrt{n})$

[Mendelson-Paouris'12] $q = O(n/\epsilon^2)$ for **p>8** and something like $||X||_2 \le O(\sqrt{n})$

[S-Vershynin'12] Suppose isotropic X satisfies: 1D $\forall u \in S^{n-1}$: $\mathbf{P}(|\langle u, X \rangle| > t) \leq C/t^{2+\eta}$ kD $\forall \Pi$ $\mathbf{P}(||\Pi X||_2 > t) \leq C/t^{2+\eta}, \quad t > C\sqrt{\mathrm{rank}(\Pi)}$ Then $\mathbf{E} \left\| \frac{1}{q} \sum_{i \leq q} X_i X_i^T - I \right\|_2 \leq \epsilon$ for $q = O(n/\epsilon^{2+\frac{2}{\eta}})$

Includes: log-concave X by [Paouris '07] $\mathbf{P}(||X|| > t) \le \exp(-t), \quad t > C\sqrt{n}.$

[S-Vershynin'12] Suppose isotropic X satisfies: 1D $\forall u \in S^{n-1}$: $\mathbf{P}(|\langle u, X \rangle| > t) \leq C/t^{2+\eta}$ kD $\forall \Pi$ $\mathbf{P}(||\Pi X||_2 > t) \leq C/t^{2+\eta}, \quad t > C\sqrt{\mathrm{rank}(\Pi)}$ Then $\mathbf{E} \left\| \frac{1}{q} \sum_{i \leq q} X_i X_i^T - I \right\|_2 \leq \epsilon$ for $q = O(n/\epsilon^{2+\frac{2}{\eta}})$

Includes: log-concave X by [Paouris '07] product X with bdd $4 + \eta$ moments cf. [Latala'05]

[S-Vershynin'12] Suppose isotropic X satisfies: 1D $\forall u \in S^{n-1}$: $\mathbf{P}(|\langle u, X \rangle| > t) \leq C/t^{2+\eta}$ kD $\forall \Pi$ $\mathbf{P}(||\Pi X||_2 > t) \leq C/t^{2+\eta}, \quad t > C\sqrt{\mathrm{rank}(\Pi)}$ Then $\mathbf{E} \left\| \frac{1}{q} \sum_{i \leq q} X_i X_i^T - I \right\|_2 \leq \epsilon$ for $q = O(n/\epsilon^{2+\frac{2}{\eta}})$

Lower edge is easier: Only require 1D for $\mathbf{E}\lambda_{min}(\Sigma_q) \ge 1 - \epsilon.$

Sketch of the proof

 $A_{k} = \sum_{i < k} X_{i} X_{i}^{T} = A_{k-1} + X_{k} X_{k}^{T}$

 $A_0 = 0$

$$A_1 = X_1 X_1^T$$

 $A_2 = X_1 X_1^T + X_2 X_2^T$

Basic Picture $A_{k} = \sum_{i \leq k} X_{i} X_{i}^{T} = A_{k-1} + X_{k} X_{k}^{T}$ $\stackrel{\lambda_{min}}{\longrightarrow} \qquad \lambda_{max}$

 $A_3 = X_1 X_1^T + X_2 X_2^T + X_3 X_3^T$

Basic Picture $A_{k} = \sum_{i \leq k} X_{i} X_{i}^{T} = A_{k-1} + X_{k} X_{k}^{T}$ $\xrightarrow{\lambda_{min}} \qquad \lambda_{max}$

Basic Picture $A_{k} = \sum_{i \leq k} X_{i} X_{i}^{T} = A_{k-1} + X_{k} X_{k}^{T}$ $\lambda_{min} \qquad \lambda_{max}$

 $A_q = X_1 X_1^T + X_2 X_2^T \dots X_q X_q^T$

 $A_q = X_1 X_1^T + X_2 X_2^T \dots X_q X_q^T$

$$s_{max} := \max\{z : \Phi_A(z) = \psi\}$$

Inverse Stieltjes Transform Lemma

$$s_{min} := \min\{z : |\Phi_A(z)| = \psi\} \xrightarrow{\Phi_A(z) = \operatorname{Tr}(zI - A)^{-1}} |\Phi_A(z)|$$

$$s_{max} := \max\{z : \Phi_A(z) = \psi\} \xrightarrow{s_{min}} \xrightarrow{s_{max}} \xrightarrow{s_{max}}$$

Main Lemma.

 $A \succeq 0, X$ regular isotropic random vector. For all $\epsilon > 0$ there is $\psi = \psi(\epsilon)$ with

$$\mathbf{E}s_{max}(A + XX^T) \le s_{max}(A) + 1 + \epsilon$$
$$\mathbf{E}s_{min}(A + XX^T) \ge s_{min}(A) + 1 - \epsilon.$$

Proof of the Main Lemma

 $A \succeq 0, X$ regular isotropic random vector. For all $\epsilon > 0$ there is $\psi = \psi(\epsilon)$ with $\mathbf{E}s_{max}(A + XX^T) \leq s_{max}(A) + 1 + \epsilon$ $\mathbf{E}s_{min}(A + XX^T) \geq s_{min}(A) + 1 - \epsilon.$

Need to solve inverse problem:

$$\mathbf{E}_X\{\max \ z: \mathrm{Tr}(zI - A - XX^T)^{-1} = \psi\}$$

Origin of kD

Origin of kD
Want
$$\mathbf{E}\delta(X) = O(1)$$

$$\mathbf{E}\delta(X) \ge \mathbf{E}(||\Pi X||_2^2 - k)_+$$

$$= \int_0^\infty \mathbf{P}(||\Pi X||_2^2 \ge k + t)dt$$

Need
$$\mathbf{P}(\|\Pi X\|^2 > k+t) \le C/t^{1+\eta}$$
.

Origin of ^{1D}

A has 1 eigenvalue at distance 1

Origin of ^{1D}

A has 1 eigenvalue at distance 1

 $\delta(X) = \langle u_{min}, X \rangle^2$, want $\geq 1 - \epsilon$ wcp.

Main Lemma

$$s_{min} := \min\{z : |\Phi_A(z)| = \psi\} \xrightarrow{\Phi_A(z) = \operatorname{Tr}(zI - A)^{-1}} |\Phi_A(z)|$$

$$s_{max} := \max\{z : \Phi_A(z) = \psi\} \xrightarrow{S_{min}} \xrightarrow{S_{max}} |\Phi_A(z)| = \psi$$

Main Lemma.

 $A \succeq 0, X$ regular isotropic random vector. For all $\epsilon > 0$ there is $\psi = \psi(\epsilon)$ with

$$\mathbf{E}s_{max}(A + XX^T) \le s_{max}(A) + 1 + \epsilon$$
$$\mathbf{E}s_{min}(A + XX^T) \ge s_{min}(A) + 1 - \epsilon.$$

Some Technical Details

Proof of the Main Lemma

 $A \succeq 0, X$ regular isotropic random vector. For all $\epsilon > 0$ there is $\psi = \psi(\epsilon)$ with $\mathbf{E}s_{max}(A + XX^T) \leq s_{max}(A) + 1 + \epsilon$ $\mathbf{E}s_{min}(A + XX^T) \geq s_{min}(A) + 1 - \epsilon.$

For fixed **A**, **X**, how do we certify $s_{max}(A + XX^{T}) \leq s_{max}(A) + \delta$?

Upper Edge Shifts

Let $s_{max}(A) = s$. $s_{max}(A + XX^T) \le s + \delta$ $\iff \Phi_{A+XX^T}(s+\delta) \le \psi$

Upper Edge Shifts Let $s_{max}(A) = s$. $s_{max}(A + XX^T) \le s + \delta$ $\iff \Phi_{A+XX^T}(s+\delta) \le \psi$ $\iff \Phi_{A+XX^T}(s+\delta) \le \Phi_A(s)$

Upper Edge Shifts Let $s_{max}(A) = s$. $s_{max}(A + XX^T) \leq s + \delta$ $\iff \Phi_{A+XX^T}(s+\delta) \le \psi$ $\iff \Phi_{A+XX^T}(s+\delta) \le \Phi_A(s)$ $\Leftrightarrow \operatorname{Tr}(s+\delta-A-XX^T)^{-1} \le \operatorname{Tr}(s-A)^{-1}$

Upper Edge Shifts
Let
$$s_{max}(A) = s$$
.
 $s_{max}(A + XX^T) \le s + \delta$
 $\iff \Phi_{A+XX^T}(s+\delta) \le \psi$
 $\iff \Phi_{A+XX^T}(s+\delta) \le \Phi_A(s)$
 $\iff \operatorname{Tr}(s+\delta - A - XX^T)^{-1} \le \operatorname{Tr}(s-A)^{-1}$

Sherman Morrisson Formula $(A - XX^T)^{-1} = A^{-1} + \frac{A^{-1}XX^TA^{-1}}{1 - X^TA^{-1}X}.$

Upper Edge Shifts
Let
$$s_{max}(A) = s$$
.
 $s_{max}(A + XX^T) \le s + \delta$
 $\iff \Phi_{A+XX^T}(s+\delta) \le \psi$
 $\iff \Phi_{A+XX^T}(s+\delta) \le \Phi_A(s)$
 $\iff \frac{X^T(s+\delta-A)^{-2}X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}} + X^T(s+\delta-A)^{-1}X \le 1.$

Upper Edge Shifts
Let
$$s_{max}(A) = s$$
.
 $s_{max}(A + XX^T) \le s + \delta$
 $\iff \Phi_{A+XX^T}(s+\delta) \le \psi$
 $\iff \Phi_{A+XX^T}(s+\delta) \le \Phi_A(s)$
 $\iff \frac{X^T(s+\delta-A)^{-2}X}{\delta \operatorname{Tr}(s+\delta-A)^{-2}} + X^T(s+\delta-A)^{-1}X \le 1$.
Quadratic form in **X**, $Q(\delta, X)$
decreasing in δ

"Heuristic" bound on $\mathbf{E}\delta(X)$ $s_{max}(A + XX^T) \leq s_{max}(A) + \delta$

 $\frac{X^T (s+\delta - A)^{-2} X}{\delta \operatorname{Tr}(s+\delta - A)^{-2}} + X^T (s+\delta - A)^{-1} X \le 1.$

"Heuristic" bound on $\mathbf{E}\delta(X)$

$\mathbf{E}s_{max}(A + XX^T) \le s_{max}(A) + \delta$

 $\mathbf{E}\frac{X^T(s+\delta-A)^{-2}X}{\delta \mathrm{Tr}(s+\delta-A)^{-2}} + \mathbf{E}X^T(s+\delta-A)^{-1}X \le 1.$

"Heuristic" bound on $\mathbf{E}\delta(X)$ $\mathbf{E}s_{max}(A + XX^T) \le s_{max}(A) + \delta$ $\frac{(s+\delta-A)^{-2} \bullet \mathbf{E} X X^T}{\delta \mathrm{Tr}(s+\delta-A)^{-2}} + (s+\delta-A)^{-1} \bullet \mathbf{E} X X^T \le 1.$

"Heuristic" bound on $\mathbf{E}\delta(X)$ $\mathbf{E}s_{max}(A + XX^T) \le s_{max}(A) + \delta$ $\frac{\operatorname{Tr}(s+\delta-A)^{-2}}{\delta\operatorname{Tr}(s+\delta-A)^{-2}} + \operatorname{Tr}(s+\delta-A)^{-1} \le 1.$

"Heuristic" bound on $\mathbf{E}\delta(X)$ $\mathbf{E}s_{max}(A + XX^{T}) \leq s_{max}(A) + \delta$ $\frac{1}{\delta} + \operatorname{Tr}(s + \delta - A)^{-1} \le 1.$ **Sensitivity Bound**

"Heuristic" bound on $\mathbf{E}\delta(X)$ $\mathbf{E}s_{max}(A + XX^T) \leq s_{max}(A) + \delta$

 $\frac{1}{\delta} + \operatorname{Tr}(s - A)^{-1} \le 1.$

"Heuristic" bound on $\mathbf{E}\delta(X)$

$\mathbf{E}s_{max}(A + XX^T) \le s_{max}(A) + \delta$

Nonsense?

Need to bound $\mathbf{E}_X \delta(X)$ for δ satisfying

$$Q(\delta, X) = \frac{X^T (s + \delta - A)^{-2} X}{\delta \operatorname{Tr}(s + \delta - A)^{-2}} + X^T (s + \delta - A)^{-1} X \le 1.$$

Insufficient to bound "in expectation"

Nonsense?

Need to bound $\mathbf{E}_X \delta(X)$ for δ satisfying

$$Q(\delta, X) = \frac{X^T (s + \delta - A)^{-2} X}{\delta \operatorname{Tr}(s + \delta - A)^{-2}} + X^T (s + \delta - A)^{-1} X \le 1.$$

If **X** is Gaussian: $Q(\delta, X) \approx \mathbf{E}Q(\delta, X)$ whp. so Heuristic calculation is accurate.

Nonsense?

Need to bound $\mathbf{E}_X \delta(X)$ for δ satisfying

$$Q(\delta, X) = \frac{X^T (s + \delta - A)^{-2} X}{\delta \operatorname{Tr}(s + \delta - A)^{-2}} + X^T (s + \delta - A)^{-1} X \le 1.$$

If **X** is Gaussian: $Q(\delta, X) \approx \mathbf{E}Q(\delta, X)$ whp.

so Heuristic calculation is accurate.

Turns out 1D + kD is enough.

Open Questions

More delicate results? (fluctuations of top eigenvalue,...)

Preserving higher marginals [Rudelson-Guedon'07, Vershynin'10]

Extension to higher rank matrices