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Applications

• Volume Computation [Kannan-Lovasz-Simonovits’95]

• Low Rank Approx [Rudelson-Vershynin’07]

• Graph Sparsification [Spielman-S ‘08]

• Sparse Approximation/Compressed Sensing

• Matrix Completion [Candes-Recht ‘09]

…

Like nonasymptotic Bai-Yin for matrices with 
independent rows.



Covariance Estimation

Goal: Estimate        given i.i.d.

Want:

Question: How many samples

do we need?



Isotropic Position

Sufficient to handle                   isotropic position.

Want:



Isotropic Position

Sufficient to handle                   isotropic position.

Reduction:                                             and

Want:



Isotropic Position

Sufficient to handle                   isotropic position.

Want:

Given how large is q? 



[KLS,B,…Rudelson’99]

Isotropic random with 

If

Then whp.



[Rudelson’99]

Isotropic random with 

If

Then whp.

Tight example:



[Rudelson’99]

Isotropic random with 

If

Then whp.

Tight example:



Standard Gaussian vector:

For any fixed direction

A Good Example



Standard Gaussian vector:

For any fixed direction

So for independent X1, … Xq

A Good Example



Standard Gaussian vector:

For any fixed direction

So for independent X1, … Xq

A Good Example



More generally sub-exponential X:

[ALPT’09/ALLPT’11]                              whp, 
provided

Convex Bodies [KLS’95]



Heavier Tails

[Vershynin’11]

for p>4  and 

[Mendelson-Paouris’12]

for p>8 and something like 
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Heavier Tails

[S-Vershynin’12] Suppose isotropic X satisfies:

Then for

Includes: log-concave X by [Paouris ‘07]

product X with bdd moments

cf. [Latala’05]
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[S-Vershynin’12] Suppose isotropic X satisfies:

Then for

Lower edge is easier: Only require           for

1D

kD

1D



Sketch of the proof



Basic Picture



Basic Picture



Basic Picture



Basic Picture



Basic Picture

Interlacing



Basic Picture



Basic Picture



Basic Picture



…..

Basic Picture



…..

Basic Picture



…..

Basic Picture

Goal



…..

Basic Picture

Goal



…..

Basic Picture

Goal



…..

Basic Picture

Goal



…..

Basic Picture

False

Goal



Softening the Edges



Softening the Edges



Softening the Edges

1



Softening the Edges



Softening the Edges

100



Softening the Edges

1/2



Softening the Edges



Softening the Edges
Well-behaved + easy to 

manipulate



Softening the Edges



Inverse Stieltjes Transform Lemma

Main Lemma.
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Need to solve inverse problem:

Proof of the Main Lemma
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Some Technical Details



Proof of the Main Lemma

For fixed A, X, how do we certify 

?
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Nonsense?

Need to bound

If X is Gaussian: 

so Heuristic calculation is accurate.

Turns out + is enough.1D kD
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Open Questions

More delicate results? (fluctuations of top 
eigenvalue,…)

Preserving higher marginals

[Rudelson-Guedon’07, Vershynin’10]

Extension to higher rank matrices


