# On Operator-Valued Bi-Free Distributions 

Paul Skoufranis

TAMU

March 22, 2016

## Bi-Free with Amalgamation

- Let $B$ be a unital algebra.
- Let $\mathcal{X}$ be a $B$ - $B$-bimodule that may be decomposed as $\mathcal{X}=B \oplus \mathcal{X}^{\perp}$.
- The projection map $p: \mathcal{X} \rightarrow B$ is given by $p(b \oplus \eta)=b$.
- Thus $p\left(b \cdot \xi \cdot b^{\prime}\right)=b p(\xi) b^{\prime}$.
- For $b \in B$, define $L_{b}, R_{b} \in \mathcal{L}(\mathcal{X})$ by $L_{b}(\xi)=b \cdot \xi$ and $R_{b}(\xi)=\xi \cdot b$.
- Define $E: \mathcal{L}(\mathcal{X}) \rightarrow B$ by $E(T)=p\left(T\left(1_{B} \oplus 0\right)\right)$.
- $E\left(L_{b} R_{b^{\prime}} T\right)=p\left(L_{b} R_{b^{\prime}}(E(T) \oplus \eta)\right)=p\left(b E(T) b^{\prime} \oplus \eta^{\prime}\right)=b E(T) b^{\prime}$.
- $E\left(T L_{b}\right)=p(T(b \oplus 0))=E\left(T R_{b}\right)$.


## $B$ - $B$-Non-Commutative Probability Space

$E\left(L_{b} R_{b^{\prime}} T\right)=b E(T) b^{\prime}$ and $E\left(T L_{b}\right)=E\left(T R_{b}\right)$.

## Definition

A $B$ - $B$-non-commutative probability space is a triple $(\mathcal{A}, E, \varepsilon)$ where $\mathcal{A}$ is a unital algebra over $\mathbb{C}, \varepsilon: B \otimes B^{\mathrm{op}} \rightarrow \mathcal{A}$ is a unital homomorphism such that $\left.\varepsilon\right|_{B \otimes I}$ and $\left.\varepsilon\right|_{I \otimes B^{\circ p}}$ are injective, and $E: \mathcal{A} \rightarrow B$ is a linear map such that

$$
E\left(\varepsilon\left(b_{1} \otimes b_{2}\right) T\right)=b_{1} E(T) b_{2} \quad \text { and } \quad E\left(T \varepsilon\left(b \otimes 1_{B}\right)\right)=E\left(T \varepsilon\left(1_{B} \otimes b\right)\right)
$$

Denote $L_{b}=\varepsilon\left(b \otimes 1_{B}\right)$ and $R_{b}=\varepsilon\left(1_{B} \otimes b\right)$.
Every $B$ - $B$-non-commutative probability space can be embedded into $\mathcal{L}(\mathcal{X})$ for some $B$ - $B$-bimodule $\mathcal{X}$.

## $B$-NCPS via $B$ - $B$-NCPS

## Definition

Let $(\mathcal{A}, E, \varepsilon)$ be a $B$ - $B$-ncps. The unital subalgebras of $\mathcal{A}$ defined by

$$
\begin{aligned}
& \mathcal{A}_{\ell}:=\left\{Z \in \mathcal{A} \mid Z R_{b}=R_{b} Z \text { for all } b \in B\right\} \text { and } \\
& \mathcal{A}_{r}:=\left\{Z \in \mathcal{A} \mid Z L_{b}=L_{b} Z \text { for all } b \in B\right\}
\end{aligned}
$$

are called the left and right algebras of $\mathcal{A}$ respectively. A pair of algebras $\left(A_{1}, A_{2}\right)$ is said to be a pair of $B$-faces if

$$
\left\{L_{b}\right\}_{b \in B} \subseteq A_{1} \subseteq \mathcal{A}_{\ell} \quad \text { and } \quad\left\{R_{b}\right\}_{b \in B^{\mathrm{op}}} \subseteq A_{2} \subseteq \mathcal{A}_{r}
$$

Note $\left(\mathcal{A}_{\ell}, E\right)$ is a $B$-ncps where $\left\{L_{b}\right\}_{b \in B}$ is the copy of $B$. Indeed for $T \in \mathcal{A}_{\ell}$ and $b_{1}, b_{2} \in B$,

$$
E\left(L_{b_{1}} T L_{b_{2}}\right)=E\left(L_{b_{1}} T R_{b_{2}}\right)=E\left(L_{b_{1}} R_{b_{2}} T\right)=b_{1} E(T) b_{2}
$$

Similarly $\left(\mathcal{A}_{r}, E\right)$ is as $B^{\text {op }}$-ncps where $\left\{R_{b}\right\}_{b \in B^{\text {op }}}$ is the copy of $B^{\text {op }}$.

## Bi-Free Independence with Amalgamation

## Definition

Let $\left(\mathcal{A}, E_{\mathcal{A}}, \varepsilon\right)$ be a $B$ - $B$-ncps. Pairs of $B$-faces $\left(A_{\ell, 1}, A_{r, 1}\right)$ and $\left(A_{\ell, 2}, A_{r, 2}\right)$ of $\mathcal{A}$ are said to be bi-freely independent with amalgamation over $B$ if there exist $B$ - $B$-bimodules $\mathcal{X}_{k}$ and unital $B$-homomorphisms $\alpha_{k}: A_{\ell, k} \rightarrow \mathcal{L}\left(\mathcal{X}_{k}\right)_{\ell}$ and $\beta_{k}: A_{r, k} \rightarrow \mathcal{L}\left(\mathcal{X}_{k}\right)_{r}$ such that the following diagram commutes:

$$
A_{\ell, 1} * A_{r, 1} * A_{\ell, 2} * A_{r, 2} \stackrel{i}{\mathcal{A} \xrightarrow{E_{\mathcal{A}}} B}
$$

$$
\begin{aligned}
& \alpha_{1} * \beta_{1} * \alpha_{2} * \beta_{2} \left\lvert\, \begin{array}{|l}
\mathcal{L}\left(\mathcal{X}_{1} * \mathcal{X}_{2}\right) \\
\mathcal{L}\left(\mathcal{X}_{1}\right)_{\ell} * \mathcal{L}\left(\mathcal{X}_{1}\right)_{r} * \mathcal{L}\left(\mathcal{X}_{2}\right)_{\ell} * \mathcal{L}\left(\mathcal{X}_{2}\right)_{r} \xrightarrow{\lambda_{1} * \rho_{1} * \lambda_{2} * \rho_{2}} \xrightarrow{\longrightarrow}\left(\mathcal{X}_{1} * \mathcal{X}_{2}\right)
\end{array}\right.
\end{aligned}
$$

## Operator-Valued Bi-Freeness and Mixed Cumulants

## Theorem (Charlesworth, Nelson, Skoufranis; 2015)

Let $(\mathcal{A}, E, \varepsilon)$ be a $B-B$-ncps and let $\left\{\left(A_{\ell, k}, A_{r, k}\right)\right\}_{k \in K}$ be pairs of $B$-faces. Then the following are equivalent:

- $\left\{\left(A_{\ell, k}, A_{r, k}\right)\right\}_{k \in K}$ are bi-free over $B$.
- For all $\chi:\{1, \ldots, n\} \rightarrow\{\ell, r\}, \epsilon:\{1, \ldots, n\} \rightarrow K$, and

$$
Z_{m} \in A_{\chi(m), \epsilon(m)}
$$

$$
E\left(Z_{1} \cdots Z_{m}\right)=\sum_{\pi \in B N C(\chi)}\left[\sum_{\substack{\sigma \in B N C(\chi) \\ \pi \leq \sigma \leq \epsilon}} \mu_{B N C}(\pi, \sigma)\right] \mathcal{E}_{\pi}\left(Z_{1}, \ldots, Z_{m}\right)
$$

- For all $\chi:\{1, \ldots, n\} \rightarrow\{\ell, r\}, \epsilon:\{1, \ldots, n\} \rightarrow K$ non-constant, and $Z_{m} \in A_{\chi(m), \epsilon(m)}$,

$$
\kappa_{\chi}\left(Z_{1}, \ldots, Z_{n}\right)=0
$$

## Bi-Multiplicative Functions

$\kappa$ and $\mathcal{E}$ are special functions where $\mathcal{E}_{1_{\chi}}\left(Z_{1}, \ldots, Z_{n}\right)=E\left(Z_{1} \cdots Z_{n}\right)$.
Given $(\mathcal{A}, E, \varepsilon)$, a bi-multiplicative function $\Phi$ is a map

$$
\Phi: \bigcup_{n \geq 1} \bigcup_{\chi:\{1, \ldots, n\} \rightarrow\{\ell, r\}} B N C(\chi) \times \mathcal{A}_{\chi(1)} \times \cdots \times \mathcal{A}_{\chi(n)} \rightarrow B
$$

whose properties are described as follows:

## Property 1 of Bi-Multiplicative Functions

$$
\Phi_{1_{\chi}}\left(Z_{1} L_{b_{1}}, Z_{2} R_{b_{2}}, Z_{3} L_{b_{3}}, Z_{4}\right)
$$



## Property 1 of Bi-Multiplicative Functions

$$
\Phi_{1_{\chi}}\left(Z_{1} L_{b_{1}}, Z_{2} R_{b_{2}}, Z_{3} L_{b_{3}}, Z_{4}\right)=\Phi_{1_{\chi}}\left(Z_{1}, Z_{2}, L_{b_{1}} Z_{3}, R_{b_{2}} Z_{4} R_{b_{3}}\right)
$$




## Property 2 of Bi-Multiplicative Functions

$$
\Phi_{1_{\chi}}\left(L_{b_{1}} Z_{1}, Z_{2}, R_{b_{2}} Z_{3}, Z_{4}\right)=b_{1} \Phi_{1_{\chi}}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right) b_{2}
$$



## Property 3 of Bi-Multiplicative Functions

$$
\Phi_{\pi}\left(Z_{1}, \ldots, Z_{8}\right)=\Phi_{1_{\chi_{1}}}\left(Z_{1}, Z_{3}, Z_{4}\right) \Phi_{1_{\chi_{2}}}\left(Z_{5}, Z_{7}, Z_{8}\right) \Phi_{1_{\chi_{3}}}\left(Z_{2}, Z_{6}\right)
$$



## Property 4 of Bi-Multiplicative Functions

$$
\Phi_{\pi}\left(Z_{1}, \ldots, Z_{10}\right)
$$



## Property 4 of Bi-Multiplicative Functions

$$
\left.\Phi_{\pi}\left(z_{1}, \ldots, z_{10}\right)=\Phi_{1_{x_{1}}}\left(z_{1}, z_{3}, L_{\Phi_{1_{1_{2}}}\left(z_{4}, z_{5}\right)} z_{6}, R_{\Phi_{1_{x_{3}}}\left(z_{2}, z_{8}\right)} z_{9} R_{\Phi_{1_{x_{4}}}\left(z, z_{1}\right)}\right)\right)
$$




## Amalgamating Over Matrices

- Let $(\mathcal{A}, \varphi)$ be a non-commutative probability space.
- $\mathcal{M}_{N}(\mathcal{A})$ is naturally a $\mathcal{M}_{N}(\mathbb{C})$-ncps where the expectation map $\varphi_{N}: \mathcal{M}_{N}(\mathcal{A}) \rightarrow \mathcal{M}_{N}(\mathbb{C})$ is defined via

$$
\varphi_{N}\left(\left[A_{i, j}\right]\right)=\left[\varphi\left(A_{i, j}\right)\right]
$$

- If $A_{1}, A_{2}$ are unital subalgebras of $\mathcal{A}$ that are free with respect to $\varphi$, then $\mathcal{M}_{N}\left(A_{1}\right)$ and $\mathcal{M}_{N}\left(A_{2}\right)$ are free with amalgamation over $\mathcal{M}_{N}(\mathbb{C})$ with respect to $\varphi_{N}$.
- Is there a bi-free analogue of this result?
- Is $\mathcal{M}_{N}(\mathcal{A})$ a $\mathcal{M}_{N}(\mathbb{C})-\mathcal{M}_{N}(\mathbb{C})$-ncps?


## $B$-B-NCPS Associated to $\mathcal{A}$

Let $(\mathcal{A}, \varphi)$ be a non-commutative probability space and let $B$ be a unital algebra. Then $\mathcal{A} \otimes B$ is a $B$ - $B$-bi-module where

$$
L_{b}\left(a \otimes b^{\prime}\right)=a \otimes b b^{\prime}, \quad \text { and } \quad R_{b}\left(a \otimes b^{\prime}\right)=a \otimes b^{\prime} b
$$

If $p: \mathcal{A} \otimes B \rightarrow B$ is defined by

$$
p(a \otimes b)=\varphi(a) b
$$

then $\mathcal{L}(\mathcal{A} \otimes B)$ is a $B$ - $B$-ncps with

$$
E(Z)=p\left(Z\left(1_{\mathcal{A}} \otimes 1_{B}\right)\right)
$$

If $X, Y \in \mathcal{A}$, defined $L(X \otimes b) \in \mathcal{L}(\mathcal{A} \otimes B)_{\ell}$ and $R(Y \otimes b) \in \mathcal{L}(\mathcal{A} \otimes B)_{r}$ via

$$
L(X \otimes b)\left(a \otimes b^{\prime}\right)=X a \otimes b b^{\prime} \quad \text { and } \quad R(Y \otimes b)\left(a \otimes b^{\prime}\right)=Y a \otimes b^{\prime} b
$$

## Bi-Freeness Preserved Under Tensoring

## Theorem (Skoufranis; 2015)

Let $(\mathcal{A}, \varphi)$ be a non-commutative probability space and let $\left\{\left(A_{\ell, k}, A_{r, k}\right)\right\}_{k \in K}$ be bi-free pairs of faces with respect to $\varphi$. If $B$ is a unital algebra, then $\left\{\left(L\left(A_{\ell, k} \otimes B\right), R\left(A_{r, k} \otimes B\right)\right)\right\}_{k \in K}$ are bi-free over $B$ with respect to $E$ as described above.

## Proof Sketch.

If $\chi:\{1, \ldots, n\} \rightarrow\{\ell, r\}, Z_{m}=L\left(X_{m} \otimes b_{m}\right)$ if $\chi(m)=\ell$, and $Z_{m}=R\left(X_{m} \otimes b_{m}\right)$ if $\chi(m)=r$, then

$$
E\left(Z_{1} \cdots Z_{n}\right)=\varphi\left(X_{1} \cdots X_{n}\right) \otimes b_{s_{\chi}(1)} \cdots b_{s_{\chi}(n)}
$$

Also

$$
\mathcal{E}_{\pi}\left(Z_{1} \cdots Z_{n}\right)=\varphi_{\pi}\left(X_{1}, \ldots, X_{n}\right) \otimes b_{s_{\chi}(1)} \cdots b_{s_{\chi}(n)}
$$

## Bi-Matrix Models - Creation/Annihilation on a Fock Space

## Theorem (Skoufranis; 2015)

Given an index set $K$, an $N \in \mathbb{N}$, and an orthonormal set of vectors $\left\{h_{i, j}^{k} \mid i, j \in\{1, \ldots, N\}, k \in K\right\} \subseteq \mathcal{H}$, let
$L_{k}(N):=\frac{1}{\sqrt{N}} \sum_{i, j=1}^{N} L\left(I\left(h_{i, j}^{k}\right) \otimes E_{i, j}\right), \quad L_{k}^{*}(N):=\frac{1}{\sqrt{N}} \sum_{i, j=1}^{N} L\left(I\left(h_{j, i}^{k}\right)^{*} \otimes E_{i, j}\right)$
$R_{k}(N):=\frac{1}{\sqrt{N}} \sum_{i, j=1}^{N} R\left(r\left(h_{i, j}^{k}\right) \otimes E_{i, j}\right), \quad R_{k}^{*}(N):=\frac{1}{\sqrt{N}} \sum_{i, j=1}^{N} R\left(r\left(h_{j, i}^{k}\right)^{*} \otimes E_{i, j}\right)$.
If $E: \mathcal{L}\left(\mathcal{L}(\mathcal{F}(\mathcal{H})) \otimes \mathcal{M}_{N}(\mathbb{C})\right) \rightarrow \mathcal{M}_{N}(\mathbb{C})$ is the expectation, the joint distribution of $\left\{L_{k}(N), L_{k}^{*}(N), R_{k}(N), R_{k}^{*}(N)\right\}_{k \in K}$ with respect to $\frac{1}{N} \operatorname{Tr} \circ E$ is equal the joint distribution of $\left\{I\left(h^{k}\right), I^{*}\left(h^{k}\right), r\left(h^{k}\right), r^{*}\left(h^{k}\right)\right\}_{k \in K}$ with respect to $\varphi$ where $\left\{h^{k}\right\}_{k \in K} \subseteq \mathcal{H}$ is an orthonormal set.

## Bi-Matrix Models - $q$-Deformed Fock Space

- Moreover $\left(L\left(I_{\mathcal{F}(\mathcal{H})} \otimes \mathcal{M}_{N}(\mathbb{C})\right), R\left(I_{\mathcal{F}(\mathcal{H})} \otimes \mathcal{M}_{N}(\mathbb{C})\right)\right)$ and $\left\{\left(L_{k}(N), L_{k}^{*}(N)\right),\left(R_{k}(N), R_{k}^{*}(N)\right)\right\}_{k \in K}$ are bi-free.
- Considering the $q$-deformed Fock space, the joint distribution of the $q$-deformed versions
$\left\{\left(L_{k}(N), L_{k}^{*}(N), L_{k}^{t}(N), L_{k}^{*, t}(N)\right),\left(R_{k}(N), R_{k}^{*}(N), R_{k}^{t}(N), R_{k}^{*, t}(N)\right)\right\}_{k \in K}$ with respect to $\frac{1}{N} \operatorname{Tr} \circ E$ asymptotically equals the joint distribution of

$$
\left\{\left(I\left(h^{k}\right), I^{*}\left(h^{k}\right), I\left(h_{0}^{k}\right), I^{*}\left(h_{0}^{k}\right)\right),\left(r\left(h^{k}\right), r^{*}\left(h^{k}\right), r\left(h_{0}^{k}\right), r^{*}\left(h_{0}^{k}\right)\right)\right\}_{k \in K}
$$

with respect to $\varphi$ where $\left\{h^{k}, h_{0}^{k}\right\}_{k \in K} \subseteq \mathcal{H}$ is an orthonormal set, and are asymptotically bi-free from

$$
\left(L\left(I_{\mathcal{F}_{q}(\mathcal{H})} \otimes \mathcal{M}_{N}(\mathbb{C})\right), R\left(I_{\mathcal{F}_{q}(\mathcal{H})} \otimes \mathcal{M}_{N}(\mathbb{C})\right)\right)
$$

## Amalgamating over a Smaller Subalgebra

- Suppose $(\mathcal{A}, E, \varepsilon)$ is a $B$ - $B$-ncps. Let $D$ be a unital subalgebra of $\mathcal{B}$, and let $F: B \rightarrow D$ be such that $F\left(1_{B}\right)=1_{D}$ and $F\left(d_{1} b d_{2}\right)=d_{1} F(b) d_{2}$ for all $d_{1}, d_{2} \in D$ and $b \in B$.
- Note $\left(\mathcal{A}, F \circ E,\left.\varepsilon\right|_{D \otimes D^{\circ p}}\right)$ is a $D$ - $D$-ncps since

$$
\begin{aligned}
& F\left(E\left(L_{d} R_{d^{\prime}} Z\right)\right)=F\left(d E(Z) d^{\prime}\right)=d F(E(Z)) d^{\prime} \\
& F\left(E\left(Z L_{d}\right)\right)=F\left(E\left(Z R_{d}\right)\right)
\end{aligned}
$$

for all $d, d^{\prime} \in D$ and $Z \in \mathcal{A}$. Note $\mathcal{A}_{\ell, B} \subseteq \mathcal{A}_{\ell, D}$ and $\mathcal{A}_{r, B} \subseteq \mathcal{A}_{r, D}$.

- How do the $B$-valued and $D$-valued distributions interact?
- How can one described said distributions?


## Operator-Valued Bi-Free Distributions

Suppose $\left\{Z_{i}\right\}_{i \in I} \subseteq \mathcal{A}_{\ell}$ and $\left\{Z_{j}\right\}_{j \in J} \subseteq \mathcal{A}_{\text {r }}$. Suppose we wanted to describe all $B$-valued moments involving $Z_{i_{1}}, Z_{j_{1}}, Z_{i_{2}}$, and $Z_{j_{2}}$ each occurring once in that order.


## Operator-Valued Bi-Free Distributions

Suppose $\left\{Z_{i}\right\}_{i \in I} \subseteq \mathcal{A}_{\ell}$ and $\left\{Z_{j}\right\}_{j \in J} \subseteq \mathcal{A}_{\text {r }}$. Suppose we wanted to describe all $B$-valued moments involving $Z_{i_{1}}, Z_{j_{1}}, Z_{i_{2}}$, and $Z_{j_{2}}$ each occurring once in that order.


## Operator-Valued Bi-Free Distributions

Suppose $\left\{Z_{i}\right\}_{i \in I} \subseteq \mathcal{A}_{\ell}$ and $\left\{Z_{j}\right\}_{j \in J} \subseteq \mathcal{A}_{r}$. Let $Z=\left\{Z_{i}\right\}_{i \in I} \sqcup\left\{Z_{j}\right\}_{j \in J}$. For $n \geq 1, \omega:\{1, \ldots, n\} \rightarrow I \sqcup J$, and $b_{1}, \ldots, b_{n-1} \in B$, let
$\mu_{Z, \omega}^{B}\left(b_{1}, \ldots, b_{n-1}\right)=\quad$ Expectation of $Z_{\omega(1)}, \ldots, Z_{\omega(n)}$ in that order with $b_{1}, \ldots, b_{n-1}$ in-between gaps with respect to the $\chi$-ordering.
$\kappa_{Z, \omega}^{B}\left(b_{1}, \ldots, b_{n-1}\right)=\quad$ Cumulant of $Z_{\omega(1)}, \ldots, Z_{\omega(n)}$ in that order with $b_{1}, \ldots, b_{n-1}$ in-between gaps with respect to the $\chi$-ordering.

Similarly, we can define $\mu_{Z, \omega}^{D}\left(d_{1}, \ldots, d_{n-1}\right)$ and $\kappa_{Z, \omega}^{D}\left(d_{1}, \ldots, d_{n-1}\right)$.

## $D$-Valued Cumulants from $B$-Valued Cumulants

## Theorem (Skoufranis; 2015)

If

$$
\kappa_{Z, \omega}^{B}\left(d_{1}, \ldots, d_{n-1}\right) \in D
$$

for all $n \geq 1, \omega:\{1, \ldots, n\} \rightarrow I \sqcup J$, and $d_{1}, \ldots, d_{n-1} \in D$, then

$$
\kappa_{Z, \omega}^{D}\left(d_{1}, \ldots, d_{n-1}\right)=\kappa_{Z, \omega}^{B}\left(d_{1}, \ldots, d_{n-1}\right)
$$

for all $n \geq 1, \omega:\{1, \ldots, n\} \rightarrow I \sqcup J$, and $d_{1}, \ldots, d_{n-1} \in D$.

## Bi-Free from $B$ over $D$

## Theorem (Skoufranis; 2015)

Assume that $F: B \rightarrow D$ satisfies the following faithfulness condition:

- if $b_{1} \in B$ and $F\left(b_{2} b_{1}\right)=0$ for all $b_{2} \in B$, then $b_{1}=0$.

Then $\left(\operatorname{alg}\left(\varepsilon\left(D \otimes 1_{D}\right),\left\{Z_{i}\right\}_{i \in I}\right), \operatorname{alg}\left(\varepsilon\left(1_{D} \otimes D^{\mathrm{op}}\right),\left\{Z_{j}\right\}_{j \in J}\right)\right)$ is bi-free from $\left(\varepsilon\left(B \otimes 1_{B}\right), \varepsilon\left(1_{B} \otimes B^{\mathrm{op}}\right)\right)$ with amalgamation over $D$ if and only if

$$
\begin{equation*}
\kappa_{Z, \omega}^{B}\left(b_{1}, \ldots, b_{n-1}\right)=F\left(\kappa_{Z, \omega}^{B}\left(F\left(b_{1}\right), \ldots, F\left(b_{n-1}\right)\right)\right) \tag{1}
\end{equation*}
$$

for all $n \geq 1, \omega:\{1, \ldots, n\} \rightarrow I \sqcup J$, and $b_{1}, \ldots, b_{n-1} \in B$. Alternatively, equation (1) is equivalent to

$$
\begin{equation*}
\kappa_{Z, \omega}^{B}\left(b_{1}, \ldots, b_{n-1}\right)=\kappa_{Z, \omega}^{D}\left(F\left(b_{1}\right), \ldots, F\left(b_{n-1}\right)\right) . \tag{2}
\end{equation*}
$$

This is a bi-free analogue of a result of Nica, Shlyakhtenko, and Speicher.

## Bi-R-Cyclic Families

## Definition

Let $I$ and $J$ be disjoint index sets and let

$$
\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in I} \cup\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in J} \subseteq \mathcal{M}_{N}(\mathcal{A})
$$

The pair

$$
\left(\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in I},\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in J}\right)
$$

is said to be $R$-cyclic if for every $n \geq 1, \omega:\{1, \ldots, n\} \rightarrow I \sqcup J$, and $1 \leq i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n} \leq d$,

$$
\kappa_{\chi \omega}^{\mathbb{C}}\left(Z_{\omega(1) ; i_{1}, j_{1}}, Z_{\omega(2) ; i_{2}, j_{2}}, \ldots, Z_{\omega(n) ; i_{n}, j_{n}}\right)=0
$$

whenever at least one of

$$
j_{s_{\chi}(1)}=i_{s_{\chi}(2)}, j_{s_{\chi}(2)}=i_{s_{\chi}(3)}, \ldots, j_{s_{\chi}(n-1)}=i_{s_{\chi(n)}}, j_{s_{\chi}(n)}=i_{s_{\chi}(1)}
$$

fail.

## Bi-R-Cyclic Families and Bi-Free over the Diagonal

## Theorem (Skoufranis; 2015)

Let $(\mathcal{A}, \varphi)$ be a non-commutative probability space and let

$$
\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in I} \cup\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in J} \subseteq \mathcal{M}_{N}(\mathcal{A})
$$

Then the following are equivalent:

- $\left(\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in I},\left\{\left[Z_{k ; i, j}\right]\right\}_{k \in J}\right)$ is $R$-cyclic.
- $\left(\left\{L\left(\left[Z_{k ; i, j}\right]\right)\right\}_{k \in I},\left\{R\left(\left[Z_{k ; i, j}\right]\right)\right\}_{k \in J}\right)$ is bi-free from $\left(L\left(\mathcal{M}_{N}(\mathbb{C})\right), R\left(\mathcal{M}_{N}(\mathbb{C})^{\mathrm{op}}\right)\right)$ with amalgamation over $\mathcal{D}_{N}$ with respect to $F \circ E_{N}$.
- This is a bi-free analogue of a result of Nica, Shlyakhtenko, and Speicher.
- One of the first non-trivial, concretely constructed examples of bi-freeness with amalgamation.


## Bi-Free Partial $R$-Transform - Operator-Valued

If $(\mathcal{A}, E, \varepsilon)$ is a Banach $B$ - $B$-ncps, $b, d \in B, X \in \mathcal{A}_{\ell}$, and $Y \in \mathcal{A}_{r}$, let

$$
\begin{aligned}
M_{X}^{\ell}(b) & =1+\sum_{n \geq 1} E\left(\left(L_{b} X\right)^{n}\right) \\
M_{Y}^{r}(d) & =1+\sum_{n \geq 1} E\left(\left(R_{d} Y\right)^{n}\right) \\
C_{X}^{\ell}(b) & =1+\sum_{n \geq 1} \kappa_{\chi_{n, 0}}^{B}\left(L_{b} X, \ldots, L_{b} X\right) \\
C_{Y}^{r}(d) & =1+\sum_{n \geq 1} \kappa_{\chi 0, n}^{B}\left(R_{d} Y, \ldots, R_{d} Y\right)
\end{aligned}
$$

## Bi-Free Partial $R$-Transform - Operator-Valued

If $(\mathcal{A}, E, \varepsilon)$ is a Banach $B$ - $B$-ncps, $b, d, d \in B, X \in \mathcal{A}_{\ell}$, and $Y \in \mathcal{A}_{r}$, let

$$
\begin{aligned}
M_{X, Y}(b, \phi, d) & :=\sum_{n, m \geq 0} E\left(\left(L_{b} X\right)^{n}\left(R_{d} Y\right)^{m} R_{d}\right) \text { and } \\
C_{X, Y}(b, \phi, d) & :=\infty+\sum_{n \geq 1} \kappa_{\chi_{n, 0}}^{B}(\underbrace{L_{b} X, \ldots, L_{b} X}_{n-1 \text { entries }}, L_{b} X L_{d}) \\
& +\sum_{\substack{m \geq 1 \\
n \geq 0}} \kappa_{\chi_{n, m}}(\underbrace{L_{b} X, \ldots, L_{b} X}_{n \text { entries }}, \underbrace{R_{d} Y, \ldots, R_{d} Y}_{m-1 \text { entries }}, R_{d} Y R_{d}) .
\end{aligned}
$$

## Theorem (Skoufranis; 2015)

With the above notation,

$$
\begin{aligned}
& M_{X}^{\ell}(b) M_{X, Y}(b, d, d)+M_{X, Y}(b, d, d) M_{Y}^{r}(d) \\
& =M_{X}^{\ell}(b) d M_{Y}^{r}(d)+C_{X, Y}\left(M_{X}^{\ell}(b) b, M_{X, Y}(b, d, d), d M_{Y}^{r}(d)\right)
\end{aligned}
$$

## Operator-Valued Free S-Transform

If $E(X)$ and $E(Y)$ are invertible, let

$$
\begin{aligned}
\Psi_{\ell, X}(b) & =M_{X}^{\ell}(b)-1=\sum_{n \geq 1} E\left(\left(L_{b} X\right)^{n}\right) \\
\Psi_{r, Y}(d) & =M_{Y}^{r}(d)-1=\sum_{n \geq 1} E\left(\left(R_{d} Y\right)^{n}\right) \\
\Phi_{\ell, X}(b) & =C_{X}^{\ell}(b)-1=\sum_{n \geq 1} \kappa_{\chi_{n, 0}}^{B}\left(L_{b} X, \ldots, L_{b} X\right) \\
\Phi_{r, Y}(d) & =C_{Y}^{r}(d)-1=\sum_{n \geq 1} \kappa_{\chi 0, n}^{B}\left(R_{d} Y, \ldots, R_{d} Y\right) \\
S_{X}^{\ell}(b) & =b^{-1}(b+1) \Psi_{\ell, X}^{\langle-1\rangle}(b)=b^{-1} \Phi_{\ell, X}^{\langle-1\rangle}(b) \\
S_{Y}^{r}(d) & =\Phi_{r, Y}^{\langle-1\rangle}(d)(d+1) d^{-1}=\Phi_{r, Y}^{\langle-1\rangle}(d) d^{-1}
\end{aligned}
$$

## Operator-Valued Free S-Transform

## Theorem (Dykema; 2006)

Let $(\mathcal{A}, E, \varepsilon)$ be a Banach $B$-B-non-commutative probability space, let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be bi-free over $B$. Assume that $E\left(X_{k}\right)$ and $E\left(Y_{k}\right)$ are invertible. Then

$$
\begin{aligned}
& S_{X_{1} X_{2}}^{\ell}(b)=S_{X_{2}}^{\ell}(b) S_{X_{1}}^{\ell}\left(S_{X_{2}}^{\ell}(b)^{-1} b S_{X_{2}}(b)\right) \text { and } \\
& S_{Y_{1} Y_{2}}^{r}(d)=S_{Y_{1}}^{r}\left(S_{Y_{2}}^{r}(d) d S_{Y_{2}}(d)^{-1}\right) S_{Y_{2}}^{r}(d)
\end{aligned}
$$

each on a neighbourhood of zero.

## Operator-Valued Bi-Free S-Transform

Let

$$
\begin{aligned}
& K_{X, Y}(b, d, d)=\sum_{n, m \geq 1} \kappa_{\chi_{n, m}}^{B}(\underbrace{L_{b} X, \ldots, L_{b} X}_{n \text { entries }}, \underbrace{R_{d} Y, \ldots, R_{d} Y}_{m-1 \text { entries }}, R_{d} Y R_{d}) \\
& \Upsilon_{X, Y}(b, d, d)=K_{X, Y}\left(b S_{X}^{\ell}(b), d, S_{Y}^{r}(d) d\right) .
\end{aligned}
$$

## Definition (Skoufranis; 2015)

The operator-valued bi-free partial S-transform of $(X, Y)$, denoted $S_{X, Y}(b, d, d)$, is the analytic function

$$
d+b^{-1} \Upsilon_{X, Y}(b, d, d)+\Upsilon_{X, Y}(b, d, d) d^{-1}+b^{-1} \Upsilon_{X, Y}(b, d, d) d^{-1}
$$

for any bounded collection of $d b$ provided $b$ and $d$ sufficiently small.

## Operator-Valued Bi-Free S-Transform Formula

## Theorem (Skoufranis; 2015)

If $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are bi-free over a unital algebra $B$, then

$$
S_{X_{1} X_{2}, Y_{1} Y_{2}}(b, d, d)
$$

equals

$$
Z_{\ell} S_{X_{1}, Y_{1}}\left(Z_{\ell}^{-1} b Z_{\ell}, Z_{\ell}^{-1} S_{X_{2}, Y_{2}}(b, d, d) Z_{r}^{-1}, Z_{r} d Z_{r}^{-1}\right) Z_{r}
$$

where $Z_{\ell}=S_{X_{2}}^{\ell}(b)$ and $Z_{r}=S_{Y_{2}}^{r}(d)$.

## Thanks for Listening!

