FREE PROBABILITY OF TYPE B AND ASYMPTOTICS OF FINITE-RANK PERTURBATIONS OF RANDOM MATRICES

Dima Shlyakhtenko, UCLA

Free Probability and Large N Limit, V

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Many *B*'s around:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲目 ● ●

bi-free probability (Voiculescu's talk)

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)

・ロト ・ 日 ・ モー・ モー・ うへぐ

B-valued bi-free (Skoufranis's talk)

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- B-valued bi-free (Skoufranis's talk)
- type B free probability (this talk)

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- B-valued bi-free (Skoufranis's talk)
- type B free probability (this talk)

Wigner's Semicircle Law

Let A(N) be an $N \times N$ random matrix so that

$$\{\mathsf{Re}(A_{ij}),\mathsf{Im}(A_{ij}):1\leq i< j\leq N\}\cup\{A_{kk}:1\leq k\leq N\}$$

are iid real Gaussians of variance $N^{-1/2}(1 + \delta_{ij})$. Let $\lambda_1^A(N) \leq \cdots \leq \lambda_N^A(N)$ be the eigenvalues of A(N), and let

$$\mu_N^A = \frac{1}{N} \sum_j \delta_{\lambda_j^A(N)}.$$

Voiculescu's Asymptotic Freeness

A(N) as before, B(N) diagonal matrix with eigenvalues $\lambda_1^B(N) \leq \cdots \leq \lambda_N^B(N)$. Assume that

$$\mu_{N}^{B} = \frac{1}{N} \sum_{j} \delta_{\lambda_{j}^{B}(N)} \to \mu^{B}.$$

Then A(N) and B(N) are asymptotically freely independent. In particular,

$$\mu_N^{A+B} \to \mu^A \boxplus \mu^B.$$

ション ふゆ くち くち くち くち

Voiculescu's Asymptotic Freeness

A(N) as before, B(N) diagonal matrix with eigenvalues $\lambda_1^B(N) \leq \cdots \leq \lambda_N^B(N)$. Assume that

$$\mu_N^B = \frac{1}{N} \sum_j \delta_{\lambda_j^B(N)} \to \mu^B.$$

Then A(N) and B(N) are asymptotically freely independent. In particular,

$$\mu_N^{A+B} \to \mu^A \boxplus \mu^B.$$

Example: $B = 3P_N$ with P_N a projection of rank N/2.

To compute $\eta = \mu^A \boxplus \mu^B$ define $G_{\nu} = \int \frac{1}{z-t} d\nu(t)$. Then there exist analytic functions $\omega_A, \omega_B : \mathbb{C}^+ \to \mathbb{C}^+$ uniquely determined by

•
$$G_{\mu^A}(\omega_A(z)) = G_{\mu^B}(\omega_B(z)) = G_{\eta}(z)$$

$$\blacktriangleright \ \omega_A(z) + \omega_B(z) = z + 1/G_\eta(z)$$

►
$$\lim_{y\uparrow\infty} \omega_A(iy)/(iy) = \lim_{y\to\infty} \omega'_A(iy) = 1$$
 and same for ω_B .

ション ふゆ くち くち くち くち

To compute $\eta = \mu^A \boxplus \mu^B$ define $G_{\nu} = \int \frac{1}{z-t} d\nu(t)$. Then there exist analytic functions $\omega_A, \omega_B : \mathbb{C}^+ \to \mathbb{C}^+$ uniquely determined by

•
$$G_{\mu^A}(\omega_A(z)) = G_{\mu^B}(\omega_B(z)) = G_{\eta}(z)$$

• $\omega_A(z) + \omega_B(z) = z + 1/G_{\eta}(z)$
• $\lim_{y\uparrow\infty} \omega_A(iy)/(iy) = \lim_{y\to\infty} \omega'_A(iy) = 1$ and same for ω_B .
Put $F_{\nu}(z) = 1/G_{\nu}(z)$. Then $R_{\nu}(z) = F_{\nu}^{-1}(z) + z$ so that
 $R_{\mu^A}(z) + R_{\mu^B}(z) = R_{\mu^A \boxplus \mu^B}(z)$ becomes

$$F_{\mu^{A}}^{-1}(z) + F_{\mu^{B}}^{-1}(z) = z + F_{\mu^{A}\boxplus\mu^{B}}^{-1}(z).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

To compute $\eta = \mu^A \boxplus \mu^B$ define $G_{\nu} = \int \frac{1}{z-t} d\nu(t)$. Then there exist analytic functions $\omega_A, \omega_B : \mathbb{C}^+ \to \mathbb{C}^+$ uniquely determined by

•
$$G_{\mu^{A}}(\omega_{A}(z)) = G_{\mu^{B}}(\omega_{B}(z)) = G_{\eta}(z)$$

 $\Leftrightarrow F_{\mu^{A}}(\omega_{A}(z)) = F_{\mu^{B}}(\omega_{B}(z)) = F_{\eta}(z)$
• $\omega_{A}(z) + \omega_{B}(z) = z + 1/G_{\eta}(z)$

• $\lim_{y\uparrow\infty} \omega_A(iy)/(iy) = \lim_{y\to\infty} \omega'_A(iy) = 1$ and same for ω_B . Put $F_{\nu}(z) = 1/G_{\nu}(z)$. Then $R_{\nu}(z) = F_{\nu}^{-1}(z) + z$ so that $R_{\mu^A}(z) + R_{\mu^B}(z) = R_{\mu^A \boxplus \mu^B}(z)$ becomes

$$\begin{split} \mathcal{F}_{\mu^{A}}^{-1}(z) + \mathcal{F}_{\mu^{B}}^{-1}(z) &= z + \mathcal{F}_{\mu^{A}\boxplus\mu^{B}}^{-1}(z).\\ \omega_{A} &= \mathcal{F}_{\mu^{A}}^{-1} \circ \mathcal{F}_{\mu^{A}\boxplus\mu^{B}} \qquad \omega_{B} = \mathcal{F}_{\mu^{B}}^{-1} \circ \mathcal{F}_{\mu^{A}\boxplus\mu^{B}}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To compute $\eta = \mu^A \boxplus \mu^B$ define $G_{\nu} = \int \frac{1}{z-t} d\nu(t)$. Then there exist analytic functions $\omega_A, \omega_B : \mathbb{C}^+ \to \mathbb{C}^+$ uniquely determined by

•
$$G_{\mu^{A}}(\omega_{A}(z)) = G_{\mu^{B}}(\omega_{B}(z)) = G_{\eta}(z)$$

 $\Leftrightarrow F_{\mu^{A}}(\omega_{A}(z)) = F_{\mu^{B}}(\omega_{B}(z)) = F_{\eta}(z)$

$$\blacktriangleright \ \omega_A(z) + \omega_B(z) = z + 1/G_\eta(z) \Leftrightarrow \omega_A(z) + \omega_B(z) = z + F_\eta(z)$$

• $\lim_{y\uparrow\infty} \omega_A(iy)/(iy) = \lim_{y\to\infty} \omega'_A(iy) = 1$ and same for ω_B . Put $F_{\nu}(z) = 1/G_{\nu}(z)$. Then $R_{\nu}(z) = F_{\nu}^{-1}(z) + z$ so that $R_{\mu^A}(z) + R_{\mu^B}(z) = R_{\mu^A \boxplus \mu^B}(z)$ becomes

$$\begin{split} \mathcal{F}_{\mu^{A}}^{-1}(z) + \mathcal{F}_{\mu^{B}}^{-1}(z) &= z + \mathcal{F}_{\mu^{A}\boxplus\mu^{B}}^{-1}(z).\\ \omega_{A} &= \mathcal{F}_{\mu^{A}}^{-1} \circ \mathcal{F}_{\mu^{A}\boxplus\mu^{B}} \qquad \omega_{B} = \mathcal{F}_{\mu^{B}}^{-1} \circ \mathcal{F}_{\mu^{A}\boxplus\mu^{B}}. \end{split}$$

・ロト ・ 日 ・ モー・ モー・ うへの

Finite-rank perturbations [Ben Arous, Baik, Peche].

Let A(N) be as before but consider B(N) a finite rank matrix (e.g. $B_N = \theta Q_N$) with Q_N rank 1 projection.

Finite-rank perturbations [Ben Arous, Baik, Peche].

Let A(N) be as before but consider B(N) a finite rank matrix (e.g. $B_N = \theta Q_N$) with Q_N rank 1 projection. Semicircular limit for A(N) + B(N) but there may or may not be <u>outlier eigenvalues</u>:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier) that the description of the outlier involves free subordination functions. For example, if A^N is GUE and $\overline{B^N}$ has 1 eigenvalue θ and the rest zero, then we set

 (ω_A, ω_B) = subordination functions for $\eta \boxplus \delta_0$

with $\eta = \text{semicircle law}$, i.e., $\omega_A(z) = F_{\eta}^{-1}(z)$, $\omega_B(z) = z$, then there will be an outlier at $\theta' = \omega_A(\theta)$ (i.e. $G_{\mu}(\theta') = 1/\theta$).

Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier) that the description of the outlier involves free subordination functions. For example, if A^N is GUE and $\overline{B^N}$ has 1 eigenvalue θ and the rest zero, then we set

 (ω_A, ω_B) = subordination functions for $\eta \boxplus \delta_0$

with $\eta = \text{semicircle law}$, i.e., $\omega_A(z) = F_{\eta}^{-1}(z)$, $\omega_B(z) = z$, then there will be an outlier at $\theta' = \omega_A(\theta)$ (i.e. $G_{\mu}(\theta') = 1/\theta$). Why?! Is there still some free independence involved?

Another look at laws of random matrices

We consider the 1/N expansion of the law of $A^N + B^N$:

$$\mu_N^{A+B} = \mu^{A+B} + \frac{1}{N}\dot{\mu}^{A+B} + o(N^{-1}).$$

The idea is that moving 1 eigenvalue out of N gives a perturbation of μ^{A+B} which is of order 1/N. Our aim is to compute $\dot{\mu}^{A+B}$. Thus we want to keep track of the pair μ^{A+B} , $\dot{\mu}^{A+B}$ and not just μ^{A+B} (ordinary free probability).

ション ふゆ くち くち くち くち

Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability space (A, ϕ, ϕ') where A is a unital algebra, $\phi, \phi' : A \to \mathbb{C}$ are linear functionals and $\phi(1) = 1$, $\phi'(1) = 0$.

Example

Let (A, ϕ_t) be a family of probability spaces, and assume that $\phi_t = \phi + t\phi' + o(t)$. Then (A, ϕ, ϕ') is an infinitesimal probability space.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability space (A, ϕ, ϕ') where A is a unital algebra, $\phi, \phi' : A \to \mathbb{C}$ are linear functionals and $\phi(1) = 1$, $\phi'(1) = 0$.

Example

Let (A, ϕ_t) be a family of probability spaces, and assume that $\phi_t = \phi + t\phi' + o(t)$. Then (A, ϕ, ϕ') is an infinitesimal probability space.

Eg: X_t family of random variables and you define $\phi_t : \mathbb{C}[t] \to \mathbb{C}$ by $\phi_t(p) = \mathbb{E}(p(X_t))$.

Infinitesimal freeness, ctd.

We say that $A_1, A_2 \subset A$ are <u>infinitesimally free</u> if the freeness condition in $(A, \phi_t = \phi + t\phi')$ holds to order o(t).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Infinitesimal freeness, ctd.

We say that $A_1, A_2 \subset A$ are <u>infinitesimally free</u> if the freeness condition in $(A, \phi_t = \phi + t\phi')$ holds to order o(t). In other words, the following conditions holds whenever $a_1, \ldots, a_r \in A$ are such that $a_k \in A_{i_k}$, $i_1 \neq i_2$, $i_2 \neq i_3$, ... and $\phi(a_1) = \phi(a_2) = \cdots = \phi(a_n) = 0$:

$$\phi(a_1 \cdots a_r) = 0;$$

$$\phi'(a_1 \cdots a_r) = \sum_{j=1}^r \phi(a_1 \cdots a_{j-1} \phi'(a_j) a_{j+1} \cdots a_r).$$

ション ふゆ くち くち くち くち

Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better understanding of <u>type B free probability</u> introduced by Biane-Goodman-Nica. Their motivation was purely combinatorial: free probability is obtained from classical probability by replacing the lattice of all partitions by the lattice of (type A) non-crossing partitions:

ション ふゆ くち くち くち くち

Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better understanding of <u>type B free probability</u> introduced by Biane-Goodman-Nica. Their motivation was purely combinatorial: free probability is obtained from classical probability by replacing the lattice of all partitions by the lattice of (type A) non-crossing partitions:

Non-crossing partition (of type A): partition of (1, ..., n) so that if i < j < k < l and $i \sim k$, $j \sim l$ then $i \sim l$.

(日) (同) (日) (日) (日) (の) (の)

Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better understanding of <u>type B free probability</u> introduced by Biane-Goodman-Nica. Their motivation was purely combinatorial: free probability is obtained from classical probability by replacing the lattice of all partitions by the lattice of (type A) non-crossing partitions:

Non-crossing partition (of type A): partition of (1, ..., n) so that if i < j < k < l and $i \sim k, j \sim l$ then $i \sim l$.

ション ふゆ くち くち くち くち

Non-crossing partition (of type B): non-crossing partition of (1, 2, ..., n, -1, -2, ..., -n) so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi = \pi_+ \sqcup \pi_-$ with π_+ partition of (1, ..., n) or there is a **zero block** \mathfrak{B} so that $\mathfrak{B} = -\mathfrak{B}$.

Non-crossing partition (of type B): non-crossing partition of (1, 2, ..., n, -1, -2, ..., -n) so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi = \pi_+ \sqcup \pi_-$ with π_+ partition of (1, ..., n) or there is a **zero block** \mathfrak{B} so that $\mathfrak{B} = -\mathfrak{B}$.

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへの

Non-crossing partition (of type B): non-crossing partition of (1, 2, ..., n, -1, -2, ..., -n) so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi = \pi_+ \sqcup \pi_-$ with π_+ partition of (1, ..., n) or there is a **zero block** \mathfrak{B} so that $\mathfrak{B} = -\mathfrak{B}$.

Type A non-crossing partitions have to do with geodesics in $(S_n, \text{transpositions})$ connecting 1 and $(1 \dots n)$.

$$\pi \mapsto \prod_{C \text{ block of } \pi} (\text{cyclic permutation of } C)$$

ション ふゆ くち くち くち くち

Non-crossing partition (of type B): non-crossing partition of (1, 2, ..., n, -1, -2, ..., -n) so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi = \pi_+ \sqcup \pi_-$ with π_+ partition of (1, ..., n) or there is a **zero block** \mathfrak{B} so that $\mathfrak{B} = -\mathfrak{B}$.

Type A non-crossing partitions have to do with geodesics in $(S_n, \text{transpositions})$ connecting 1 and $(1 \dots n)$.

$$\pi \mapsto \prod_{C \text{ block of } \pi} (\text{cyclic permutation of } C)$$

Type B: same for the hyperoctahedral group.

Appropriate notion of free independence, free convolution \boxplus_B , etc.

Appropriate notion of free independence, free convolution \boxplus_B , etc. Connection with infinitesimal probability (A, ϕ, ϕ') : two types of type B non-crossing partitions: either no zero block (" ϕ part") or having a zero block (" ϕ' part").

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへの

Appropriate notion of free independence, free convolution \boxplus_B , etc. Connection with infinitesimal probability (A, ϕ, ϕ') : two types of type B non-crossing partitions: either no zero block (" ϕ part") or having a zero block (" ϕ' part"). There is a good analytical theory:

Theorem (Belinschi+DS '12)

Let (μ_1, μ'_1) and (μ_2, μ'_2) be infinitesimal laws: μ_j measures and μ'_j distributions satisfying certain conditions. Let $X_j(t) \in (A, \phi)$ so that $\mu^{X_j(t)} \sim \mu_j + t\mu'_j + O(t^2)$, and assume $X_1(t), X_2(t)$ are free for all t. Then $Y(t) = X_1(t) + X_2(t) \sim \eta + t\eta' + O(t^2)$ where:

$$\blacktriangleright \eta = \mu_1 \boxplus \mu_2$$

• $G_{\eta'} = G_{\mu'_1}(\omega_1(z))\omega'_1(z) + G_{\mu'_2}(\omega_2(z))\omega'_2(z)$, where ω_i are subordination functions $G_{\eta} = G_{\mu_i} \circ \omega_i$.

Appropriate notion of free independence, free convolution \boxplus_B , etc. Connection with infinitesimal probability (A, ϕ, ϕ') : two types of type B non-crossing partitions: either no zero block (" ϕ part") or having a zero block (" ϕ' part"). There is a good analytical theory:

Theorem (Belinschi+DS '12)

Let (μ_1, μ'_1) and (μ_2, μ'_2) be infinitesimal laws: μ_j measures and μ'_j distributions satisfying certain conditions. Let $X_j(t) \in (A, \phi)$ so that $\mu^{X_j(t)} \sim \mu_j + t\mu'_j + O(t^2)$, and assume $X_1(t), X_2(t)$ are free for all t. Then $Y(t) = X_1(t) + X_2(t) \sim \eta + t\eta' + O(t^2)$ where:

$$\blacktriangleright \eta = \mu_1 \boxplus \mu_2$$

• $G_{\eta'} = G_{\mu'_1}(\omega_1(z))\omega'_1(z) + G_{\mu'_2}(\omega_2(z))\omega'_2(z)$, where ω_i are subordination functions $G_{\eta} = G_{\mu_i} \circ \omega_i$.

Can also consider multiplicative convolution \boxtimes_B etc.

Asyptotic infinitesimal freeness

Theorem

Let A(N) be a Gaussian random matrix and let B(N) be a finite-rank matrix. Let τ_N be the joint law of A(N) and B(N) with respect to N^{-1} Tr. Then $\tau_N = \tau + \frac{1}{N}\tau' + o(N^{-1})$ and moreover A(N) and B(N) are infinitesimally free under (τ, τ') .

ション ふゆ くち くち くち くち

Asyptotic infinitesimal freeness

Theorem

Let A(N) be a Gaussian random matrix and let B(N) be a finite-rank matrix. Let τ_N be the joint law of A(N) and B(N) with respect to N^{-1} Tr. Then $\tau_N = \tau + \frac{1}{N}\tau' + o(N^{-1})$ and moreover A(N) and B(N) are infinitesimally free under (τ, τ') .

Corollary

Let $\mathcal{A}(N), \mathcal{B}(N) \in (A, \phi)$ be operators having the same law of $\mathcal{A}(N)$ and $\mathcal{B}(N)$ respectively, but such that $\mathcal{A}(N)$ and $\mathcal{B}(N)$ are free for each N. Then

$$\mu^{\mathcal{A}(N)+\mathcal{B}(N)} = \mu^{\mathcal{A}(N)+\mathcal{B}(N)} + o(1/N).$$

In particular,

$$\mu^{\mathcal{A}(\mathcal{N})+\mathcal{B}(\mathcal{N})}=\mu^{\mathcal{A}(\mathcal{N})}\boxplus\mu^{\mathcal{B}(\mathcal{N})}+o(1/\mathcal{N})$$

explaining the connection with free convolution.

Example.

Let $B_N = \theta E_{11}$ with E_{11} rank one projection with entry 1 in position 1, 1 and zero elsewhere. Then

$$\mu^{B_N} = \delta_0 + \frac{1}{N} (\delta_\theta - \delta_0).$$

If A_N is a Gaussian random matrix and η is the semicircle law, then

$$\mu^{A_N} = \eta + O(N^{-2}).$$

So: $\mu^{A_N+B_N} = \mu + \frac{1}{N}\dot{\mu} + o(1/N)$ and $(\mu,\dot{\mu}) = (\eta,0) \boxplus_B (\delta_0, \delta_\theta - \delta_0).$

$$(\mu,\dot{\mu}) = (\eta,0) \boxplus_B (\delta_0,\delta_\theta - \delta_0)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$(\mu,\dot{\mu}) = (\eta,0) \boxplus_B (\delta_0,\delta_\theta - \delta_0)$$

 $\mu = ext{semicircule law}, \qquad G_{\mu}(z) = z - \sqrt{z^2 - 2}, \ z \in \mathbb{C}^+ \cup (\mathbb{R} \setminus \{\pm \sqrt{2}\})$

Let

$$G_{\dot{\mu}}(z) = \int rac{1}{z-t} d\dot{\mu}(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

$$(\mu,\dot{\mu}) = (\eta,0) \boxplus_B (\delta_0,\delta_\theta - \delta_0)$$

 $\mu = ext{semicircule law}, \qquad G_{\mu}(z) = z - \sqrt{z^2 - 2}, \ z \in \mathbb{C}^+ \cup (\mathbb{R} \setminus \{\pm \sqrt{2}\})$

Let

$$G_{\dot{\mu}}(z) = \int rac{1}{z-t} d\dot{\mu}(t)$$

General theory implies:

$$egin{array}{rcl} G_{\dot{\mu}}(z)&=&\partial_z\int\log(z-t)d\dot{\mu}(t)\ &=&\partial_z\intrac{1}{z-t}[h_+(t)-h_-(t)]dz,\quad h_\pm ext{ monotone} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$(\mu,\dot{\mu}) = (\eta,0) \boxplus_B (\delta_0,\delta_\theta - \delta_0)$$

 $\mu = ext{semicircule law}, \qquad G_{\mu}(z) = z - \sqrt{z^2 - 2}, \ z \in \mathbb{C}^+ \cup (\mathbb{R} \setminus \{\pm \sqrt{2}\})$

Let

$$G_{\dot{\mu}}(z) = \int rac{1}{z-t} d\dot{\mu}(t)$$

General theory implies:

$$\begin{aligned} G_{\dot{\mu}}(z) &= \partial_z \int \log(z-t) d\dot{\mu}(t) \\ &= \partial_z \int \frac{1}{z-t} [h_+(t) - h_-(t)] dz, \quad h_\pm \text{ monotone} \\ &= F'_{\mu}(z) \left(\frac{1}{F_{\mu}(z) - \theta} - \frac{1}{F_{\mu}(z)} \right), \quad F_{\mu}(z) = \frac{1}{G_{\mu}(z)}. \end{aligned}$$

Formula for \boxplus_B involving subordination functions gives:

$$\begin{aligned} G_{\mu}(z) &= F_{\mu}'(z) \left(\frac{1}{F_{\mu}(z) - \theta} - \frac{1}{F_{\mu}(z)} \right) &= \partial_{z} \log \left(\frac{F_{\mu}(z) - \theta}{F_{\mu}(z)} \right) \\ &= \partial_{z} \log(1 - \theta G_{\mu}(z)) \end{aligned}$$

Formula for \boxplus_B involving subordination functions gives:

$$egin{array}{rcl} G_{\dot{\mu}}(z)&=&F_{\mu}'(z)\left(rac{1}{F_{\mu}(z)- heta}-rac{1}{F_{\mu}(z)}
ight)=\partial_z\log\left(rac{F_{\mu}(z)- heta}{F_{\mu}(z)}
ight)\ &=&\partial_z\log(1- heta G_{\mu}(z))=\partial_z\int(z-t)^{-1}[h_+(t)-h_-(t)]dt. \end{array}$$

Formula for \boxplus_B involving subordination functions gives:

$$egin{array}{rcl} G_{\mu}(z)&=&F_{\mu}'(z)\left(rac{1}{F_{\mu}(z)- heta}-rac{1}{F_{\mu}(z)}
ight)=\partial_z\log\left(rac{F_{\mu}(z)- heta}{F_{\mu}(z)}
ight)\ &=&\partial_z\log(1- heta\,G_{\mu}(z))=\partial_z\int(z-t)^{-1}[h_+(t)-h_-(t)]dt. \end{array}$$

$$\int rac{[h_+(t)-h_-(t)]}{z-t} dt = \log{(1- heta G_\mu(z))} = \log(1{-} heta(z{-}\sqrt{z^2-2})).$$

$$\int \frac{[h_{+}(t) - h_{-}(t)]}{z - t} dt = \log \left(1 - \theta G_{\mu}(z)\right) = \log(1 - \theta (z - \sqrt{z^{2} - 2}))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$\int \frac{[h_+(t) - h_-(t)]}{z - t} dt = \log \left(1 - \theta G_\mu(z)\right) = \log(1 - \theta(z - \sqrt{z^2 - 2}))$$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Recover $\frac{d\dot{\mu}}{dt} = \partial_t (h_+(t) - h_-(t))$ by a kind of Stiletjes inversion formula.

$$\int \frac{[h_{+}(t) - h_{-}(t)]}{z - t} dt = \log (1 - \theta G_{\mu}(z)) = \log (1 - \theta (z - \sqrt{z^{2} - 2}))$$

Recover $\frac{d\dot{\mu}}{dt} = \partial_t (h_+(t) - h_-(t))$ by a kind of Stiletjes inversion formula.

If $heta > 1/\sqrt{2}$: let heta' be the solution to $G_\eta(heta') = 1/ heta$. Then

$$\dot{\mu} = \delta_{ heta'} - rac{ heta(t-2 heta)}{\pi(2 heta(t- heta)-1)\sqrt{2-t^2}}\chi_{[-\sqrt{2},\sqrt{2}]}dt$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\int \frac{[h_{+}(t) - h_{-}(t)]}{z - t} dt = \log (1 - \theta G_{\mu}(z)) = \log (1 - \theta (z - \sqrt{z^{2} - 2}))$$

Recover $\frac{d\dot{\mu}}{dt} = \partial_t (h_+(t) - h_-(t))$ by a kind of Stiletjes inversion formula.

If $heta > 1/\sqrt{2}$: let heta' be the solution to $G_\eta(heta') = 1/ heta$. Then

$$\dot{\mu} = \delta_{ heta'} - rac{ heta(t-2 heta)}{\pi(2 heta(t- heta)-1)\sqrt{2-t^2}}\chi_{[-\sqrt{2},\sqrt{2}]}dt$$

If $heta < 1/\sqrt{2}$: no (real) solution to ${\it G}_\eta(heta') = 1/ heta$. Then

$$\dot{\mu} = \frac{\theta(t-2\theta)}{\pi(2\theta(t-\theta)-1)\sqrt{2-t^2}}\chi_{[-\sqrt{2},\sqrt{2}]}dt.$$

(ロト (個) (目) (目) (日) (0) (0)

$$\int \frac{[h_{+}(t) - h_{-}(t)]}{z - t} dt = \log (1 - \theta G_{\mu}(z)) = \log (1 - \theta (z - \sqrt{z^{2} - 2}))$$

Recover $\frac{d\mu}{dt} = \partial_t (h_+(t) - h_-(t))$ by a kind of Stiletjes inversion formula.

If $heta > 1/\sqrt{2}$: let heta' be the solution to ${\it G}_\eta(heta') = 1/ heta$. Then

$$\dot{\mu} = \delta_{\theta'} - \frac{\theta(t-2\theta)}{\pi(2\theta(t-\theta)-1)\sqrt{2-t^2}}\chi_{[-\sqrt{2},\sqrt{2}]}dt$$

If $heta < 1/\sqrt{2}$: no (real) solution to ${\it G}_\eta(heta') = 1/ heta$. Then

$$\dot{\mu} = \frac{\theta(t-2\theta)}{\pi(2\theta(t-\theta)-1)\sqrt{2-t^2}}\chi_{[-\sqrt{2},\sqrt{2}]}dt.$$

Thus $d\mu_N = \frac{1}{\pi}\sqrt{2-t^2}\chi_{[-\sqrt{2},\sqrt{2}]} + \frac{1}{N}\dot{\mu} + O(N^{-2}).$

Numerical simulation

Average of 40 complex 100 \times 100 matrices, with $\theta=$ 4 or $\theta=$ 0.4.

< □ > < □ > < □ > < □ > < □ > < □ >

э

Ideas of proof

It turns out that $\mu_N^A = \mu + O(1/N^2)$. On the other hand, if E_{ij} is the matrix with 1 in the *i*, *j*-th entries and zeros elsewhere, then for any fixed p, $\frac{1}{N}Tr(p(\{E_{ij}\}) = p(0) + \frac{1}{N}\dot{\tau}(p))$. For example, the law of θE_{11} is $\delta_0 + \frac{1}{N}(\delta_\theta - \delta_0)$.

Lemma

 $\lim_{N\to\infty}$

Then for any polynomials q_1, \ldots, q_r ,

$$\lim_{N \to \infty} \mathbb{E} \operatorname{Tr} \Big[E_{i_r j_1} q_1(A(N)) E_{i_1 j_2} q_2(A(N)) E_{i_2 j_3} \times \cdots \times E_{i_{r-1} j_r} q_r(A(N)) \Big] = \prod_{s=1}^r \delta_{j_s = i_s} \tau(q_s) \quad \text{i.e.}$$
$$\mathbb{E} \operatorname{Tr} (E_{i_r j_1} q_1 E_{i_1 j_2} q_2 E_{i_2 j_3} \cdots q_r) = \prod_{s=1}^r \lim_N \mathbb{E} \operatorname{Tr} (E_{j_s j_s} q_s E_{i_s i_s})$$

Compute or use concentration.

Let $Y_N^{(1)}$, $Y_N^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_N = \eta + \frac{1}{N}\eta' + O(N^{-2})$. However, they are not asymptocially infinitesimally free.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $Y_N^{(1)}$, $Y_N^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_N = \eta + \frac{1}{N}\eta' + O(N^{-2})$. However, they are not asymptocially infinitesimally free. Indeed,

$$Y_N^{(1)} \sim rac{1}{\sqrt{\mathcal{K}}} \sum_{j=1}^{\mathcal{K}} Y_N^{(j)}$$

Let $Y_N^{(1)}$, $Y_N^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_N = \eta + \frac{1}{N}\eta' + O(N^{-2})$. However, they are not asymptocially infinitesimally free. Indeed,

$$Y_N^{(1)} \sim rac{1}{\sqrt{K}} \sum_{j=1}^K Y_N^{(j)}$$

and so if inf. freeness were to hold we would get by CLT

$$(\eta, \eta') = (\text{scaling by } 1/\sqrt{K}) \underbrace{((\eta, \eta') \boxplus_B \cdots \boxplus_B (\eta, \eta'))}_{K} \rightarrow (\nu, \nu')$$

where (ν, ν') is an infinitesimal semicircle law (ν is semicircular, $\nu' = \arcsin - \text{semicircular}$).

◆□▶ <圖▶ < E▶ < E▶ E のQ@</p>

Let $Y_N^{(1)}$, $Y_N^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_N = \eta + \frac{1}{N}\eta' + O(N^{-2})$. However, they are not asymptocially infinitesimally free. Indeed,

$$Y_N^{(1)} \sim rac{1}{\sqrt{K}} \sum_{j=1}^K Y_N^{(j)}$$

and so if inf. freeness were to hold we would get by CLT

$$(\eta, \eta') = (\text{scaling by } 1/\sqrt{\kappa}) \underbrace{((\eta, \eta') \boxplus_B \cdots \boxplus_B (\eta, \eta'))}_{\kappa} \to (\nu, \nu')$$

where (ν, ν') is an infinitesimal semicircle law (ν is semicircular, $\nu' = \arcsin - semicircular$). But computation shows [Johannsen] that $\eta' = \frac{1}{4}(\delta_{\sqrt{2}} + \delta_{-\sqrt{2}}) - \frac{1}{2\pi} \frac{1}{\sqrt{1-t^2}} \chi_{[-\sqrt{2},\sqrt{2}]} dt$ is not the arcsine law.

Remarks

- Same statement holds if we assume that $A(N) = U(N)D(N)U(N)^*$ with U(N) Haar-distributed unitary matrix and D(N) a diagonal matrix so that μ_N^D are all supported on a compact set and $\mu_N^D \to \mu^D$ weakly.
- Can also handle the real Gaussian case, which is different in that $\mu_N^A = \eta + \frac{1}{N}\dot{\eta} + o(1/N)$ with η the semicircle law and

$$\begin{split} \dot{\eta} &= \ \frac{1}{4} (\delta_{\sqrt{2}} + \delta_{-\sqrt{2}}) - \frac{1}{2\pi\sqrt{2 - t^2}} \chi_{[-\sqrt{2},\sqrt{2}]}(t) dt \\ \dot{\mu}_{\text{real}} &= \ \dot{\mu}_{\text{complex}} + \dot{\eta}. \end{split}$$

(日) (同) (日) (日) (日) (の) (の)

We can also deduce formulas for other polynomials in A(N) and B(N), such as products B(N)A(N)²B(N). Thank you!

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●