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Wigner's Semicircle Law
Let A(N) be an N x N random matrix so that

{Re(Ay),Im(A;) 1 1<i<j< N U{Ag:1<k<N}

are iid real Gaussians of variance N=Y/2(1 4 §;). Let
M(N) < --- < A(N) be the eigenvalues of A(N), and let

1
= 2= -
J
Then as N — oo
1
E[#m — semicircle law = ;mx[_ﬁ’ﬁ] dt
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Voiculescu's Asymptotic Freeness

A(N) as before, B(N) diagonal matrix with eigenvalues
AB(N) < -« < AB(N). Assume that

1
i = D ey = 17
J

Then A(N) and B(N) are asymptoically freely independent. In
particular,

A+B A B
“N+ — p Hus.
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A(N) as before, B(N) diagonal matrix with eigenvalues
AB(N) < -« < AB(N). Assume that

1
i = D ey = 17
J

Then A(N) and B(N) are asymptoically freely independent. In
particular,

A+B A B
“N+ — p Hus.

Example: B = 3Py with Py a projection of rank N/2.
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Analytic Subordination and Free Convolution
[Biane,Voiculescu, .. ]

To compute n = pA B uf define G, = [ zi_tdl/(t). Then there
exist analytic functions wa,wg : C* — C* uniquely determined by

> Gua(wa(z)) = Gus(wa(2)) = Gy(2)
> wa(2) +we(z) = 2+ 1/6,(2)

> limyoo waliy)/(iy) = limy o Wi (iy) = 1 and same for wp.
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Finite-rank perturbations [Ben Arous, Baik, Peche].

Let A(N) be as before but consider B(N) a finite rank matrix (e.g.
By = 0Qn) with Qp rank 1 projection.



Finite-rank perturbations [Ben Arous, Baik, Peche].

Let A(N) be as before but consider B(N) a finite rank matrix (e.g.
By = 0Qn) with Qp rank 1 projection.

Semicircular limit for A(N) 4+ B(N) but there may or may not be
outlier eigenvalues:

oy — = oy — —
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Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier)
that the description of the outlier involves free subordination
functions. For example, if AN is GUE and BN has 1 eigenvalue 6
and the rest zero, then we set

(wa,wpg) = subordination functions for n & dg

with n = semicircle law, i.e., wa(z) = 77_1(2), wg(z) = z,
then there will be an outlier at §' = wa(8) (i.e. G.(0") =1/0).



Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier)
that the description of the outlier involves free subordination
functions. For example, if AN is GUE and BN has 1 eigenvalue 6
and the rest zero, then we set

(wa,wpg) = subordination functions for n & dg

with n = semicircle law, i.e., wa(z) = Fn_l(z), wg(z) = z,
then there will be an outlier at §' = wa(8) (i.e. G.(0") =1/0).
Why?! Is there still some free independence involved?



Another look at laws of random matrices

We consider the 1/N expansion of the law of AV + BN :

1. _
e = S - o(NTY),
The idea is that moving 1 eigenvalue out of N gives a perturbation
of AT B which is of order 1/N. Our aim is to compute 15,
Thus we want to keep track of the pair p**8, 1ATB and not just
pAtB (ordinary free probability).



Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability
space (A, ¢, ¢’) where A is a unital algebra, ¢, ¢’ : A — C are linear
functionals and ¢(1) =1, ¢/(1) = 0.

Example

Let (A, ¢1) be a family of probability spaces, and assume that
¢t = &+ td' + o(t). Then (A, ¢, ¢') is an infinitesimal probability
space.



Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability
space (A, ¢, ¢’) where A is a unital algebra, ¢, ¢’ : A — C are linear
functionals and ¢(1) =1, ¢/(1) = 0.

Example

Let (A, ¢1) be a family of probability spaces, and assume that

¢t = &+ td' + o(t). Then (A, ¢, ¢') is an infinitesimal probability
space.

Eg: X; family of random variables and you define ¢, : C[t] — C by

oe(p) = E(p(Xt))



Infinitesimal freeness, ctd.

We say that A;, A; C A are infinitesimally free if the freeness
condition in (A, ¢+ = ¢ + t¢’) holds to order o(t).




Infinitesimal freeness, ctd.

We say that A;, A; C A are infinitesimally free if the freeness
condition in (A, ¢+ = ¢ + t¢’) holds to order o(t).
In other words, the following conditions holds whenever

ai,...,ar € Aaresuch that ay € A, i1 # o, b # i3, ... and
p(a1) = ¢(a2) = -+ = ¢(an) = 0:

r

Flar---a) = Y lar---a-14'(3))ajr1--- ar).

j=t



Free probability of type B [Biane-Goodman-Nica, 2003|

We introduced infinitesimal free probability theory to get a better
understanding of type B free probability introduced by
Biane-Goodman-Nica. Their motivation was purely combinatorial:
free probability is obtained from classical probability by replacing
the lattice of all partitions by the lattice of (type A) non-crossing
partitions:
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Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of
(1,2,...,n,—1,—2,...,—n) so that if B is a block then so is —5.
Either 7 = w4 U 7_ with 7 partition of (1,...,n) or there is a
zero block 95 so that B = —8.

1 2 3 4 5 6 1 -2 -3 4 -5 —6
° L]

N N
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Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of
(1,2,...,n,—1,—2,...,—n) so that if B is a block then so is —5.
Either 7 = w4 U 7_ with 7 partition of (1,...,n) or there is a
zero block 95 so that B = —8.

zero block

Type A non-crossing partitions have to do with geodesics in
(Sh, transpositions) connecting 1 and (1...n).

T H (cyclic permutation of C)
C block of m

Type B: same for the hyperoctahedral group.
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Type B free probability

Appropriate notion of free independence, free convolution Hpg, etc.
Connection with infinitesimal probability (A, ¢, ¢’): two types of
type B non-crossing partitions: either no zero block ("¢ part”) or
having a zero block ("¢’ part”). There is a good analytical theory:

Theorem (Belinschi+DS '12)

Let (p1,p17) and (po, i) be infinitesimal laws: jj measures and 1’
distributions satisfying certain conditions. Let X;(t) € (A, ¢) so
that (X0 ~ p; + tw; + O(t?), and assume Xi(t), Xo(t) are free
for all t. Then Y (t) = X1(t) + Xa(t) ~ 1 + tn’ + O(t?) where:
> 1= p1Bp
> Gy = Gy (w1(2))wi(2) + Gy (wa(z))ws(2), where w; are
subordination functions G, = G, o w;.



Type B free probability

Appropriate notion of free independence, free convolution Hpg, etc.
Connection with infinitesimal probability (A, ¢, ¢’): two types of
type B non-crossing partitions: either no zero block ("¢ part”) or
having a zero block ("¢’ part”). There is a good analytical theory:

Theorem (Belinschi+DS '12)

Let (p1,p17) and (po, i) be infinitesimal laws: jj measures and 1’
distributions satisfying certain conditions. Let X;(t) € (A, ¢) so
that (X0 ~ p; + tw; + O(t?), and assume Xi(t), Xo(t) are free
for all t. Then Y (t) = X1(t) + Xa(t) ~ 1 + tn’ + O(t?) where:
> 1= p1Bp
> Gy = Gy (w1(2))wi(2) + Gy (wa(z))ws(2), where w; are
subordination functions G, = G, o w;.

Can also consider multiplicative convolution X etc.



Asyptotic infinitesimal freeness

Theorem

Let A(N) be a Gaussian random matrix and let B(N) be a
finite-rank matrix. Let Tp be the joint law of A(N) and B(N) with
respect to N~1Tr. Then 7y = 7 + 47’ + o(N~!) and moreover
A(N) and B(N) are infinitesimally free under (7,7").



Asyptotic infinitesimal freeness

Theorem

Let A(N) be a Gaussian random matrix and let B(N) be a
finite-rank matrix. Let Tp be the joint law of A(N) and B(N) with
respect to N~1Tr. Then 7y = 7 + 47’ + o(N~1) and moreover
A(N) and B(N) are infinitesimally free under (7,7").

Corollary

Let A(N),B(N) € (A, ¢) be operators having the same law of
A(N) and B(N) respectively, but such that A(N) and B(N) are
free for each N. Then

pAMFBN) — ANTBIN) 4 5(1/N).

In particular,
pAMNFBEN) — AN g BIN) 4 5(1/N)

explaining the connection with free convolution.



Example.

Let By = 0Ey1 with Ej; rank one projection with entry 1 in
position 1,1 and zero elsewhere.
Then

BN =g +

0g — O

N( 6 — 0o)-

If Ay is a Gaussian random matrix and 7 is the semicircle law, then
p =n+ O(N7?).

So: pAntBv =+ L+ o(1/N) and

(1, 1) = (n,0) Bp (o, dg — o).
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Example, ctd.

(1, 1) = (n,0) Bp (do, g — do)

p = semicircule law, Gu(2) = z—V 72 — 2, z € CTU(R\{£V2}
Let

Gilz) = [ —di(o)

z—t

General theory implies:

Gi(z) = o, / log(z — £)dj(t)

:a/

- e

[hJr t) — h_(t)]dz, hy monotone

1 1
Fu(z) -0 Fu(z)>
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Example, ctd.

Formula for Hg involving subordination functions gives:

o 1 1 _ Fu(z) -0
Gil2) = FM(Z) (Fu(z) -0 Fu(2)> = 0elog ( Fu(2) >
— 9, log(1— 6G.(2)) = 0, /(z — ) A (8) — h(8)]dt.



Example, ctd.

Formula for Hg involving subordination functions gives:

6 = A (s i) =oes (057)

— 9, log(1— 6G.(2)) = 0, /(z — ) A (8) — h(8)]dt.

/ = z—t = log (1 -0G,(z2)) = |0g(1—9(z—\/22——2)),
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Recover ¢ F5 = O0¢(hy(t) — h_(t)) by a kind of Stiletjes inversion

formula.
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Example, ctd.

/ [h+ -(1)] ——————=dt =log (1 - 0G,(z)) = log(1-0(z— /22 — 2))
Recover ¢ F5 = O0¢(hy(t) — h_(t)) by a kind of Stiletjes inversion
formula.

If & > 1/4/2: let 0 be the solution to G,(¢') = 1/6. Then

. 0(t — 26)
b=t ) 1)va i -vava®t

If < 1/+/2: no (real) solution to G,(¢') = 1/6. Then

. O(t —26) dt
h e et —6) — 1)v2 = g vava®

Thus duy = 2v2 - X33 T Sh+ O(N72).




Numerical simulation

R

2

Average of 40 complex 100 x 100 matrices, with 6 = 4 or § = 0.4.
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|deas of proof

It turns out that uf = u+ O(1/N?). On the other hand, if Ej is
the matrix with 1 in the 7, j-th entries and zeros elsewhere, then for
any fixed p, & Tr(p({E;j}) = p(0) + %;7(p). For example, the law
of OEq1 is g + %((59 — 50).

Lemma
Then for any polynomials ¢, ..., q,,

Jim BT |, 1 (A(N))Eq a2 (A(N)) Erj,
% B alAN)| = [ imir(as) e
s=1

N“_[noo ETr(Eijyq1Eij,q2Eijs -+ Gr) = 1:[1 imETr (Ej.js9sEii.)

Compute or use concentration.
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Let Y,E,l), ,5,2) be an N x N real iid self-adjoint Gaussian matrices.
Then each has law py =1+ 7' + O(N=2) . However, they are
not asymptocially infinitesimally free.
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Infinitesimal freeness is not for free!
Let Y,E,l), ,5,2) be an N x N real iid self-adjoint Gaussian matrices.

Then each has law py =1+ 7' + O(N=2) . However, they are
not asymptocially infinitesimally free. Indeed,

K
v 1 0)
Yy ~— Y,
N W Jz_; N
and so if inf. freeness were to hold we would get by CLT

(n.1') = (scaling by 1/VK) ((n,7') Bg - Bg (n,1)) = (v,V/)
K

where (v,1') is an infinitesimal semicircle law (v is semicircular,

V' = arcsine — semicircular). But computation shows [Johannsen]
r_ 1 11 : :

that ' = (6,53 +6_3) — 37 i X[-v2,y2)dt is not the arcsine

law.



Remarks

» Same statement holds if we assume that
A(N) = UN)D(N)U(N)* with U(N) Haar-distributed unitary
matrix and D(N) a diagonal matrix so that u are all
supported on a compact set and ,uﬁ — 1P weakly.

» Can also handle the real Gaussian case, which is different in
that ufy = n + %7'7 + o(1/N) with 7 the semicircle law and

. 1 1
o= 20zt e - =X vava (Dt

Hreal = /.ﬁcomplex + 7.

» We can also deduce formulas for other polynomials in A(N)
and B(N), such as products B(N)A(N)?B(N).
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