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Wigner’s Semicircle Law
Let A(N) be an N × N random matrix so that

{Re(Aij), Im(Aij) : 1 ≤ i < j ≤ N} ∪ {Akk : 1 ≤ k ≤ N}
are iid real Gaussians of variance N−1/2(1 + δij). Let
λA

1
(N) ≤ · · · ≤ λA

N(N) be the eigenvalues of A(N), and let

µA
N =

1

N

∑

j

δλA
j
(N).

Then as N → ∞

E[µA
N ] → semicircle law =

1

π

√

2 − t2χ[−
√

2,
√

2]dt



Voiculescu’s Asymptotic Freeness
A(N) as before, B(N) diagonal matrix with eigenvalues
λB

1
(N) ≤ · · · ≤ λB

N(N). Assume that

µB
N =

1

N

∑

j

δλB
j
(N) → µB .

Then A(N) and B(N) are asymptoically freely independent. In
particular,

µA+B
N → µA
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Voiculescu’s Asymptotic Freeness
A(N) as before, B(N) diagonal matrix with eigenvalues
λB

1
(N) ≤ · · · ≤ λB

N(N). Assume that

µB
N =

1

N

∑

j

δλB
j
(N) → µB .

Then A(N) and B(N) are asymptoically freely independent. In
particular,

µA+B
N → µA

⊞ µB .

Example: B = 3PN with PN a projection of rank N/2.



Analytic Subordination and Free Convolution
[Biane,Voiculescu,...]

To compute η = µA ⊞ µB define Gν =
´

1

z−t
dν(t). Then there

exist analytic functions ωA, ωB : C+ → C
+ uniquely determined by

◮ GµA(ωA(z)) = GµB (ωB(z)) = Gη(z)

◮ ωA(z) + ωB(z) = z + 1/Gη(z)

◮ limy↑∞ ωA(iy)/(iy) = limy→∞ ω′
A(iy) = 1 and same for ωB .
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Finite-rank perturbations [Ben Arous, Baik, Peche].

Let A(N) be as before but consider B(N) a finite rank matrix (e.g.
BN = θQN) with QN rank 1 projection.
Semicircular limit for A(N) + B(N) but there may or may not be
outlier eigenvalues:

θ = 3 θ = 0.5



Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier)
that the description of the outlier involves free subordination
functions. For example, if AN is GUE and BN has 1 eigenvalue θ
and the rest zero, then we set

(ωA, ωB) = subordination functions for η ⊞ δ0

with η = semicircle law, i.e., ωA(z) = F−1
η (z), ωB(z) = z ,

then there will be an outlier at θ′ = ωA(θ) (i.e. Gµ(θ
′) = 1/θ).



Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier)
that the description of the outlier involves free subordination
functions. For example, if AN is GUE and BN has 1 eigenvalue θ
and the rest zero, then we set

(ωA, ωB) = subordination functions for η ⊞ δ0

with η = semicircle law, i.e., ωA(z) = F−1
η (z), ωB(z) = z ,

then there will be an outlier at θ′ = ωA(θ) (i.e. Gµ(θ
′) = 1/θ).

Why?! Is there still some free independence involved?



Another look at laws of random matrices

We consider the 1/N expansion of the law of AN + BN :

µA+B
N = µA+B +

1

N
µ̇A+B + o(N−1).

The idea is that moving 1 eigenvalue out of N gives a perturbation
of µA+B which is of order 1/N. Our aim is to compute µ̇A+B .
Thus we want to keep track of the pair µA+B , µ̇A+B and not just
µA+B (ordinary free probability).



Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability
space (A, φ, φ′) where A is a unital algebra, φ, φ′ : A → C are linear
functionals and φ(1) = 1, φ′(1) = 0.

Example

Let (A, φt) be a family of probability spaces, and assume that
φt = φ+ tφ′ + o(t). Then (A, φ, φ′) is an infinitesimal probability
space.



Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability
space (A, φ, φ′) where A is a unital algebra, φ, φ′ : A → C are linear
functionals and φ(1) = 1, φ′(1) = 0.

Example

Let (A, φt) be a family of probability spaces, and assume that
φt = φ+ tφ′ + o(t). Then (A, φ, φ′) is an infinitesimal probability
space.
Eg: Xt family of random variables and you define φt : C[t] → C by
φt(p) = E(p(Xt)).
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Infinitesimal freeness, ctd.

We say that A1,A2 ⊂ A are infinitesimally free if the freeness
condition in (A, φt = φ+ tφ′) holds to order o(t).
In other words, the following conditions holds whenever
a1, . . . , ar ∈ A are such that ak ∈ Aik , i1 6= i2, i2 6= i3, . . . and
φ(a1) = φ(a2) = · · · = φ(an) = 0:

φ(a1 · · · ar ) = 0;

φ′(a1 · · · ar ) =

r∑

j=1

φ(a1 · · · aj−1φ
′(aj)aj+1 · · · ar ).



Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better
understanding of type B free probability introduced by
Biane-Goodman-Nica. Their motivation was purely combinatorial:
free probability is obtained from classical probability by replacing
the lattice of all partitions by the lattice of (type A) non-crossing
partitions:
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Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of
(1, 2, . . . , n,−1,−2, . . . ,−n) so that if B is a block then so is −B.
Either π = π+ ⊔ π− with π+ partition of (1, . . . , n) or there is a
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Non-crossing partition (of type B): non-crossing partition of
(1, 2, . . . , n,−1,−2, . . . ,−n) so that if B is a block then so is −B.
Either π = π+ ⊔ π− with π+ partition of (1, . . . , n) or there is a
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•
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•
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•
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zero block

Type A non-crossing partitions have to do with geodesics in
(Sn, transpositions) connecting 1 and (1 . . . n).

π 7→
∏

C block of π

(cyclic permutation of C )

Type B: same for the hyperoctahedral group.
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Type B free probability

Appropriate notion of free independence, free convolution ⊞B , etc.
Connection with infinitesimal probability (A, φ, φ′): two types of
type B non-crossing partitions: either no zero block (“φ part”) or
having a zero block (“φ′ part”). There is a good analytical theory:

Theorem (Belinschi+DS ’12)

Let (µ1, µ
′
1
) and (µ2, µ

′
2
) be infinitesimal laws: µj measures and µ′

j

distributions satisfying certain conditions. Let Xj(t) ∈ (A, φ) so

that µXj (t) ∼ µj + tµ′
j + O(t2), and assume X1(t),X2(t) are free

for all t. Then Y (t) = X1(t) + X2(t) ∼ η + tη′ + O(t2) where:

◮ η = µ1 ⊞ µ2

◮ Gη′ = Gµ′

1
(ω1(z))ω

′
1
(z) + Gµ′

2
(ω2(z))ω

′
2
(z), where ωi are

subordination functions Gη = Gµi
◦ ωi .
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(z) + Gµ′

2
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(z), where ωi are

subordination functions Gη = Gµi
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Can also consider multiplicative convolution ⊠B etc.



Asyptotic infinitesimal freeness

Theorem
Let A(N) be a Gaussian random matrix and let B(N) be a

finite-rank matrix. Let τN be the joint law of A(N) and B(N) with

respect to N−1Tr . Then τN = τ + 1

N
τ ′ + o(N−1) and moreover

A(N) and B(N) are infinitesimally free under (τ, τ ′).



Asyptotic infinitesimal freeness

Theorem
Let A(N) be a Gaussian random matrix and let B(N) be a

finite-rank matrix. Let τN be the joint law of A(N) and B(N) with

respect to N−1Tr . Then τN = τ + 1

N
τ ′ + o(N−1) and moreover

A(N) and B(N) are infinitesimally free under (τ, τ ′).

Corollary

Let A(N),B(N) ∈ (A, φ) be operators having the same law of

A(N) and B(N) respectively, but such that A(N) and B(N) are

free for each N. Then

µA(N)+B(N) = µA(N)+B(N) + o(1/N).

In particular,

µA(N)+B(N) = µA(N)
⊞ µB(N) + o(1/N)

explaining the connection with free convolution.



Example.

Let BN = θE11 with E11 rank one projection with entry 1 in
position 1, 1 and zero elsewhere.
Then

µBN = δ0 +
1

N
(δθ − δ0).

If AN is a Gaussian random matrix and η is the semicircle law, then

µAN = η + O(N−2).

So: µAN+BN = µ+ 1

N
µ̇+ o(1/N) and

(µ, µ̇) = (η, 0) ⊞B (δ0, δθ − δ0).



Example, ctd.

(µ, µ̇) = (η, 0) ⊞B (δ0, δθ − δ0)



Example, ctd.

(µ, µ̇) = (η, 0) ⊞B (δ0, δθ − δ0)

µ = semicircule law, Gµ(z) = z−
√

z2 − 2, z ∈ C
+∪(R\{±

√
2}

Let

Gµ̇(z) =

ˆ

1

z − t
d µ̇(t)



Example, ctd.

(µ, µ̇) = (η, 0) ⊞B (δ0, δθ − δ0)

µ = semicircule law, Gµ(z) = z−
√

z2 − 2, z ∈ C
+∪(R\{±

√
2}

Let

Gµ̇(z) =

ˆ

1

z − t
d µ̇(t)

General theory implies:

Gµ̇(z) = ∂z

ˆ

log(z − t)d µ̇(t)

= ∂z

ˆ

1

z − t
[h+(t)− h−(t)]dz , h± monotone



Example, ctd.

(µ, µ̇) = (η, 0) ⊞B (δ0, δθ − δ0)

µ = semicircule law, Gµ(z) = z−
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1
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Gµ̇(z) = ∂z

ˆ

log(z − t)d µ̇(t)

= ∂z

ˆ

1

z − t
[h+(t)− h−(t)]dz , h± monotone

= F ′
µ(z)

(
1

Fµ(z)− θ
− 1

Fµ(z)

)

, Fµ(z) =
1

Gµ(z)
.
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Formula for ⊞B involving subordination functions gives:

Gµ̇(z) = F ′
µ(z)

(
1
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− 1

Fµ(z)

)

= ∂z log

(
Fµ(z)− θ

Fµ(z)

)

= ∂z log(1 − θGµ(z)) = ∂z

ˆ
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ˆ

[h+(t)− h−(t)]

z − t
dt = log (1 − θGµ(z)) = log(1−θ(z−

√

z2 − 2)).
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= ∂t(h+(t)− h−(t)) by a kind of Stiletjes inversion
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√
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′) = 1/θ. Then
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√

2: no (real) solution to Gη(θ
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Thus dµN = 1

π
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2 − t2χ[−

√
2,
√

2] +
1

N
µ̇+ O(N−2).



Numerical simulation

Average of 40 complex 100 × 100 matrices, with θ = 4 or θ = 0.4.



Ideas of proof

It turns out that µA
N = µ+ O(1/N2). On the other hand, if Eij is

the matrix with 1 in the i , j-th entries and zeros elsewhere, then for
any fixed p, 1

N
Tr(p({Eij}) = p(0) + 1

N
τ̇(p). For example, the law

of θE11 is δ0 +
1

N
(δθ − δ0).

Lemma
Then for any polynomials q1, . . . , qr ,

lim
N→∞

ETr
[

Eir j1q1(A(N))Ei1 j2q2(A(N))Ei2 j3 ×

· · · × Eir−1jrqr (A(N))
]

=

r∏

s=1

δjs=is τ(qs) i.e.

lim
N→∞

ETr(Eir j1q1Ei1j2q2Ei2j3 · · · qr ) =
r∏

s=1

lim
N

ETr(Ejs jsqsEis is )

Compute or use concentration.



Infinitesimal freeness is not for free!

Let Y
(1)
N , Y

(2)
N be an N × N real iid self-adjoint Gaussian matrices.

Then each has law µN = η + 1

N
η′ + O(N−2) . However, they are

not asymptocially infinitesimally free.
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where (ν, ν ′) is an infinitesimal semicircle law (ν is semicircular,
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N be an N × N real iid self-adjoint Gaussian matrices.

Then each has law µN = η + 1

N
η′ + O(N−2) . However, they are

not asymptocially infinitesimally free. Indeed,

Y
(1)
N ∼ 1√

K

K∑

j=1

Y
(j)
N

and so if inf. freeness were to hold we would get by CLT

(η, η′) = (scaling by 1/
√
K ) ((η, η′)⊞B · · ·⊞B (η, η′))

︸ ︷︷ ︸

K

→ (ν, ν ′)

where (ν, ν ′) is an infinitesimal semicircle law (ν is semicircular,
ν ′ = arcsine − semicircular). But computation shows [Johannsen]
that η′ = 1

4
(δ√

2
+ δ−

√
2
)− 1

2π
1√

1−t2
χ[−

√
2,
√

2]dt is not the arcsine

law.



Remarks

◮ Same statement holds if we assume that
A(N) = U(N)D(N)U(N)∗ with U(N) Haar-distributed unitary
matrix and D(N) a diagonal matrix so that µD

N are all
supported on a compact set and µD

N → µD weakly.

◮ Can also handle the real Gaussian case, which is different in
that µA

N = η + 1

N
η̇ + o(1/N) with η the semicircle law and

η̇ =
1

4
(δ√

2
+ δ−

√
2
)− 1

2π
√

2 − t2
χ[−

√
2,
√

2](t)dt

˙µreal = µ̇complex + η̇.

◮ We can also deduce formulas for other polynomials in A(N)
and B(N), such as products B(N)A(N)2B(N).



Thank you!


