FREE PROBABILITY OF TYPE B AND ASYMPTOTICS OF FINITE-RANK PERTURBATIONS OF RANDOM MATRICES

Dima Shlyakhtenko, UCLA

Free Probability and Large N Limit, V

Many B's around:

Many B's around:

- bi-free probability (Voiculescu's talk)

Many B's around:

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)

Many B's around:

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)
- B-valued bi-free (Skoufranis's talk)

Many B's around:

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)
- B-valued bi-free (Skoufranis's talk)
- type B free probability (this talk)

Many B's around:

- bi-free probability (Voiculescu's talk)
- B-valued probability (amalgamation over a subalgebra)
- B-valued bi-free (Skoufranis's talk)
- type B free probability (this talk)

Wigner's Semicircle Law

Let $A(N)$ be an $N \times N$ random matrix so that

$$
\left\{\operatorname{Re}\left(A_{i j}\right), \operatorname{Im}\left(A_{i j}\right): 1 \leq i<j \leq N\right\} \cup\left\{A_{k k}: 1 \leq k \leq N\right\}
$$

are iid real Gaussians of variance $N^{-1 / 2}\left(1+\delta_{i j}\right)$. Let $\lambda_{1}^{A}(N) \leq \cdots \leq \lambda_{N}^{A}(N)$ be the eigenvalues of $A(N)$, and let

$$
\mu_{N}^{A}=\frac{1}{N} \sum_{j} \delta_{\lambda_{j}^{A}(N)}
$$

Then as $N \rightarrow \infty$

$$
\mathbb{E}\left[\mu_{N}^{A}\right] \rightarrow \text { semicircle law }=\frac{1}{\pi} \sqrt{2-t^{2}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t
$$

Voiculescu's Asymptotic Freeness

$A(N)$ as before, $B(N)$ diagonal matrix with eigenvalues $\lambda_{1}^{B}(N) \leq \cdots \leq \lambda_{N}^{B}(N)$. Assume that

$$
\mu_{N}^{B}=\frac{1}{N} \sum_{j} \delta_{\lambda_{j}^{B}(N)} \rightarrow \mu^{B}
$$

Then $A(N)$ and $B(N)$ are asymptoically freely independent. In particular,

$$
\mu_{N}^{A+B} \rightarrow \mu^{A} \boxplus \mu^{B} .
$$

Voiculescu's Asymptotic Freeness

$A(N)$ as before, $B(N)$ diagonal matrix with eigenvalues $\lambda_{1}^{B}(N) \leq \cdots \leq \lambda_{N}^{B}(N)$. Assume that

$$
\mu_{N}^{B}=\frac{1}{N} \sum_{j} \delta_{\lambda_{j}^{B}(N)} \rightarrow \mu^{B}
$$

Then $A(N)$ and $B(N)$ are asymptoically freely independent. In particular,

$$
\mu_{N}^{A+B} \rightarrow \mu^{A} \boxplus \mu^{B} .
$$

Example: $B=3 P_{N}$ with P_{N} a projection of rank $N / 2$.

Analytic Subordination and Free Convolution

 [Biane,Voiculescu,...]To compute $\eta=\mu^{A} \boxplus \mu^{B}$ define $G_{\nu}=\int \frac{1}{z-t} d \nu(t)$. Then there exist analytic functions $\omega_{A}, \omega_{B}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$uniquely determined by

- $G_{\mu^{A}}\left(\omega_{A}(z)\right)=G_{\mu^{B}}\left(\omega_{B}(z)\right)=G_{\eta}(z)$
- $\omega_{A}(z)+\omega_{B}(z)=z+1 / G_{\eta}(z)$
- $\lim _{y \uparrow \infty} \omega_{A}(i y) /(i y)=\lim _{y \rightarrow \infty} \omega_{A}^{\prime}(i y)=1$ and same for ω_{B}.

Analytic Subordination and Free Convolution

 [Biane,Voiculescu,...]To compute $\eta=\mu^{A} \boxplus \mu^{B}$ define $G_{\nu}=\int \frac{1}{z-t} d \nu(t)$. Then there exist analytic functions $\omega_{A}, \omega_{B}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$uniquely determined by

- $G_{\mu^{A}}\left(\omega_{A}(z)\right)=G_{\mu^{B}}\left(\omega_{B}(z)\right)=G_{\eta}(z)$
- $\omega_{A}(z)+\omega_{B}(z)=z+1 / G_{\eta}(z)$
- $\lim _{y \uparrow \infty} \omega_{A}(i y) /(i y)=\lim _{y \rightarrow \infty} \omega_{A}^{\prime}(i y)=1$ and same for ω_{B}.

Put $F_{\nu}(z)=1 / G_{\nu}(z)$. Then $R_{\nu}(z)=F_{\nu}^{-1}(z)+z$ so that $R_{\mu^{A}}(z)+R_{\mu^{B}}(z)=R_{\mu^{A} \boxplus \mu^{B}}(z)$ becomes

$$
F_{\mu^{A}}^{-1}(z)+F_{\mu^{B}}^{-1}(z)=z+F_{\mu^{\wedge} \boxplus \mu^{B}}^{-1}(z) .
$$

Analytic Subordination and Free Convolution

 [Biane,Voiculescu, ...]To compute $\eta=\mu^{A} \boxplus \mu^{B}$ define $G_{\nu}=\int \frac{1}{z-t} d \nu(t)$. Then there exist analytic functions $\omega_{A}, \omega_{B}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$uniquely determined by

- $G_{\mu^{A}}\left(\omega_{A}(z)\right)=G_{\mu^{B}}\left(\omega_{B}(z)\right)=G_{\eta}(z)$ $\Leftrightarrow F_{\mu^{A}}\left(\omega_{A}(z)\right)=F_{\mu^{B}}\left(\omega_{B}(z)\right)=F_{\eta}(z)$
- $\omega_{A}(z)+\omega_{B}(z)=z+1 / G_{\eta}(z)$
- $\lim _{y \uparrow \infty} \omega_{A}(i y) /(i y)=\lim _{y \rightarrow \infty} \omega_{A}^{\prime}(i y)=1$ and same for ω_{B}.

Put $F_{\nu}(z)=1 / G_{\nu}(z)$. Then $R_{\nu}(z)=F_{\nu}^{-1}(z)+z$ so that $R_{\mu^{A}}(z)+R_{\mu^{B}}(z)=R_{\mu^{A} \boxplus \mu^{B}}(z)$ becomes

$$
\begin{array}{cl}
F_{\mu^{A}}^{-1}(z)+F_{\mu^{B}}^{-1}(z)= & z+F_{\mu^{A} \boxplus \mu^{B}}^{-1}(z) . \\
\omega_{A}=F_{\mu^{A}}^{-1} \circ F_{\mu^{A} \boxplus \mu^{B}} \quad \omega_{B}=F_{\mu^{B}}^{-1} \circ F_{\mu^{A} \boxplus \mu^{B}} .
\end{array}
$$

Analytic Subordination and Free Convolution

 [Biane,Voiculescu, ...]To compute $\eta=\mu^{A} \boxplus \mu^{B}$ define $G_{\nu}=\int \frac{1}{z-t} d \nu(t)$. Then there exist analytic functions $\omega_{A}, \omega_{B}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$uniquely determined by

- $G_{\mu^{A}}\left(\omega_{A}(z)\right)=G_{\mu^{B}}\left(\omega_{B}(z)\right)=G_{\eta}(z)$ $\Leftrightarrow F_{\mu^{A}}\left(\omega_{A}(z)\right)=F_{\mu^{B}}\left(\omega_{B}(z)\right)=F_{\eta}(z)$
- $\omega_{A}(z)+\omega_{B}(z)=z+1 / G_{\eta}(z) \Leftrightarrow \omega_{A}(z)+\omega_{B}(z)=z+F_{\eta}(z)$
- $\lim _{y \uparrow \infty} \omega_{A}(i y) /(i y)=\lim _{y \rightarrow \infty} \omega_{A}^{\prime}(i y)=1$ and same for ω_{B}. Put $F_{\nu}(z)=1 / G_{\nu}(z)$. Then $R_{\nu}(z)=F_{\nu}^{-1}(z)+z$ so that $R_{\mu^{A}}(z)+R_{\mu^{B}}(z)=R_{\mu^{A} \boxplus \mu^{B}}(z)$ becomes

$$
\begin{array}{cl}
F_{\mu^{A}}^{-1}(z)+F_{\mu^{B}}^{-1}(z)= & z+F_{\mu^{A} \boxplus \mu^{B}}^{-1}(z) . \\
\omega_{A}=F_{\mu^{A}}^{-1} \circ F_{\mu^{A} \boxplus \mu^{B}} \quad \omega_{B}=F_{\mu^{B}}^{-1} \circ F_{\mu^{A} \boxplus \mu^{B}} .
\end{array}
$$

Finite-rank perturbations [Ben Arous, Baik, Peche].

Let $A(N)$ be as before but consider $B(N)$ a finite rank matrix (e.g. $\left.B_{N}=\theta Q_{N}\right)$ with Q_{N} rank 1 projection.

Finite-rank perturbations [Ben Arous, Baik, Peche].

Let $A(N)$ be as before but consider $B(N)$ a finite rank matrix (e.g. $B_{N}=\theta Q_{N}$) with Q_{N} rank 1 projection.
Semicircular limit for $A(N)+B(N)$ but there may or may not be outlier eigenvalues:

$\theta=3$

$\theta=0.5$

Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier) that the description of the outlier involves free subordination functions. For example, if A^{N} is GUE and $\overline{B^{N} \text { has } 1 \text { eigenvalue } \theta}$ and the rest zero, then we set

$$
\left(\omega_{A}, \omega_{B}\right)=\text { subordination functions for } \eta \boxplus \delta_{0}
$$

with $\eta=$ semicircle law, i.e., $\omega_{A}(z)=F_{\eta}^{-1}(z), \omega_{B}(z)=z$, then there will be an outlier at $\theta^{\prime}=\omega_{A}(\theta)$ (i.e. $\left.G_{\mu}\left(\theta^{\prime}\right)=1 / \theta\right)$.

Finite rank perturbations and freeness?

It was discovered (Capitaine, Belischi-Bercovici-Capitain-Fevrier) that the description of the outlier involves free subordination functions. For example, if A^{N} is GUE and $\overline{B^{N} \text { has } 1 \text { eigenvalue } \theta}$ and the rest zero, then we set

$$
\left(\omega_{A}, \omega_{B}\right)=\text { subordination functions for } \eta \boxplus \delta_{0}
$$

with $\eta=$ semicircle law, i.e., $\omega_{A}(z)=F_{\eta}^{-1}(z), \omega_{B}(z)=z$, then there will be an outlier at $\theta^{\prime}=\omega_{A}(\theta)$ (i.e. $\left.G_{\mu}\left(\theta^{\prime}\right)=1 / \theta\right)$. Why?! Is there still some free independence involved?

Another look at laws of random matrices

We consider the $1 / N$ expansion of the law of $A^{N}+B^{N}$:

$$
\mu_{N}^{A+B}=\mu^{A+B}+\frac{1}{N} \dot{\mu}^{A+B}+o\left(N^{-1}\right)
$$

The idea is that moving 1 eigenvalue out of N gives a perturbation of μ^{A+B} which is of order $1 / N$. Our aim is to compute $\dot{\mu}^{A+B}$. Thus we want to keep track of the pair $\mu^{A+B}, \dot{\mu}^{A+B}$ and not just μ^{A+B} (ordinary free probability).

Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability space $\left(A, \phi, \phi^{\prime}\right)$ where A is a unital algebra, $\phi, \phi^{\prime}: A \rightarrow \mathbb{C}$ are linear functionals and $\phi(1)=1, \phi^{\prime}(1)=0$.

Example
Let $\left(A, \phi_{t}\right)$ be a family of probability spaces, and assume that $\phi_{t}=\phi+t \phi^{\prime}+o(t)$. Then $\left(A, \phi, \phi^{\prime}\right)$ is an infinitesimal probability space.

Infinitesimal free probability theory [Belinschi-D.S, 2012]

To encode such questions we consider an infinitesimal probability space $\left(A, \phi, \phi^{\prime}\right)$ where A is a unital algebra, $\phi, \phi^{\prime}: A \rightarrow \mathbb{C}$ are linear functionals and $\phi(1)=1, \phi^{\prime}(1)=0$.

Example

Let $\left(A, \phi_{t}\right)$ be a family of probability spaces, and assume that $\phi_{t}=\phi+t \phi^{\prime}+o(t)$. Then $\left(A, \phi, \phi^{\prime}\right)$ is an infinitesimal probability space.
Eg: X_{t} family of random variables and you define $\phi_{t}: \mathbb{C}[t] \rightarrow \mathbb{C}$ by $\phi_{t}(p)=\mathbb{E}\left(p\left(X_{t}\right)\right)$.

Infinitesimal freeness, ctd.

We say that $A_{1}, A_{2} \subset A$ are infinitesimally free if the freeness condition in $\left(A, \phi_{t}=\phi+t \phi^{\prime}\right)$ holds to order o (t).

Infinitesimal freeness, ctd.

We say that $A_{1}, A_{2} \subset A$ are infinitesimally free if the freeness condition in ($A, \phi_{t}=\phi+t \phi^{\prime}$) holds to order o (t). In other words, the following conditions holds whenever $a_{1}, \ldots, a_{r} \in A$ are such that $a_{k} \in A_{i_{k}}, i_{1} \neq i_{2}, i_{2} \neq i_{3}, \ldots$ and $\phi\left(a_{1}\right)=\phi\left(a_{2}\right)=\cdots=\phi\left(a_{n}\right)=0$.

$$
\begin{aligned}
\phi\left(a_{1} \cdots a_{r}\right) & =0 \\
\phi^{\prime}\left(a_{1} \cdots a_{r}\right) & =\sum_{j=1}^{r} \phi\left(a_{1} \cdots a_{j-1} \phi^{\prime}\left(a_{j}\right) a_{j+1} \cdots a_{r}\right)
\end{aligned}
$$

Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better understanding of type B free probability introduced by Biane-Goodman-Nica. Their motivation was purely combinatorial: free probability is obtained from classical probability by replacing the lattice of all partitions by the lattice of (type A) non-crossing partitions:

Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better understanding of type B free probability introduced by Biane-Goodman-Nica. Their motivation was purely combinatorial: free probability is obtained from classical probability by replacing the lattice of all partitions by the lattice of (type A) non-crossing partitions:
Non-crossing partition (of type A): partition of $(1, \ldots, n)$ so that if $i<j<k<I$ and $i \sim k, j \sim I$ then $i \sim I$.

Free probability of type B [Biane-Goodman-Nica, 2003]

We introduced infinitesimal free probability theory to get a better understanding of type B free probability introduced by Biane-Goodman-Nica. Their motivation was purely combinatorial: free probability is obtained from classical probability by replacing the lattice of all partitions by the lattice of (type A) non-crossing partitions:
Non-crossing partition (of type A): partition of $(1, \ldots, n)$ so that if $i<j<k<I$ and $i \sim k, j \sim I$ then $i \sim I$.

Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of $(1,2, \ldots, n,-1,-2, \ldots,-n)$ so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi=\pi_{+} \sqcup \pi_{-}$with π_{+}partition of $(1, \ldots, n)$ or there is a zero block \mathfrak{B} so that $\mathfrak{B}=-\mathfrak{B}$.

Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of $(1,2, \ldots, n,-1,-2, \ldots,-n)$ so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi=\pi_{+} \sqcup \pi_{-}$with π_{+}partition of $(1, \ldots, n)$ or there is a zero block \mathfrak{B} so that $\mathfrak{B}=-\mathfrak{B}$.

Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of $(1,2, \ldots, n,-1,-2, \ldots,-n)$ so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi=\pi_{+} \sqcup \pi_{-}$with π_{+}partition of $(1, \ldots, n)$ or there is a zero block \mathfrak{B} so that $\mathfrak{B}=-\mathfrak{B}$.

Type A non-crossing partitions have to do with geodesics in (S_{n}, transpositions) connecting 1 and ($1 \ldots n$).

$$
\pi \mapsto \prod_{C \text { block of } \pi}(\text { cyclic permutation of } C)
$$

Non-crossing partitions of type B

Non-crossing partition (of type B): non-crossing partition of $(1,2, \ldots, n,-1,-2, \ldots,-n)$ so that if \mathfrak{B} is a block then so is $-\mathfrak{B}$. Either $\pi=\pi_{+} \sqcup \pi_{-}$with π_{+}partition of $(1, \ldots, n)$ or there is a zero block \mathfrak{B} so that $\mathfrak{B}=-\mathfrak{B}$.

Type A non-crossing partitions have to do with geodesics in (S_{n}, transpositions) connecting 1 and ($1 \ldots n$).

$$
\pi \mapsto \prod_{C \text { block of } \pi}(\text { cyclic permutation of } C)
$$

Type B: same for the hyperoctahedral group.

Type B free probability

Appropriate notion of free independence, free convolution \boxplus_{B}, etc.

Type B free probability

Appropriate notion of free independence, free convolution \boxplus_{B}, etc. Connection with infinitesimal probability $\left(A, \phi, \phi^{\prime}\right)$: two types of type B non-crossing partitions: either no zero block (" ϕ part") or having a zero block (" ϕ^{\prime} part").

Type B free probability

Appropriate notion of free independence, free convolution \boxplus_{B}, etc. Connection with infinitesimal probability $\left(A, \phi, \phi^{\prime}\right)$: two types of type B non-crossing partitions: either no zero block (" ϕ part") or having a zero block (" ϕ^{\prime} part"). There is a good analytical theory:

Theorem (Belinschi+DS '12)
Let $\left(\mu_{1}, \mu_{1}^{\prime}\right)$ and $\left(\mu_{2}, \mu_{2}^{\prime}\right)$ be infinitesimal laws: μ_{j} measures and μ_{j}^{\prime} distributions satisfying certain conditions. Let $X_{j}(t) \in(A, \phi)$ so that $\mu^{X_{j}(t)} \sim \mu_{j}+t \mu_{j}^{\prime}+O\left(t^{2}\right)$, and assume $X_{1}(t), X_{2}(t)$ are free for all t. Then $Y(t)=X_{1}(t)+X_{2}(t) \sim \eta+t \eta^{\prime}+O\left(t^{2}\right)$ where:

- $\eta=\mu_{1} \boxplus \mu_{2}$
- $G_{\eta^{\prime}}=G_{\mu_{1}^{\prime}}\left(\omega_{1}(z)\right) \omega_{1}^{\prime}(z)+G_{\mu_{2}^{\prime}}\left(\omega_{2}(z)\right) \omega_{2}^{\prime}(z)$, where ω_{i} are subordination functions $G_{\eta}=G_{\mu_{i}} \circ \omega_{i}$.

Type B free probability

Appropriate notion of free independence, free convolution \boxplus_{B}, etc. Connection with infinitesimal probability $\left(A, \phi, \phi^{\prime}\right)$: two types of type B non-crossing partitions: either no zero block (" ϕ part") or having a zero block (" ϕ^{\prime} part"). There is a good analytical theory:
Theorem (Belinschi+DS '12)
Let $\left(\mu_{1}, \mu_{1}^{\prime}\right)$ and $\left(\mu_{2}, \mu_{2}^{\prime}\right)$ be infinitesimal laws: μ_{j} measures and μ_{j}^{\prime} distributions satisfying certain conditions. Let $X_{j}(t) \in(A, \phi)$ so that $\mu^{X_{j}(t)} \sim \mu_{j}+t \mu_{j}^{\prime}+O\left(t^{2}\right)$, and assume $X_{1}(t), X_{2}(t)$ are free for all t. Then $Y(t)=X_{1}(t)+X_{2}(t) \sim \eta+t \eta^{\prime}+O\left(t^{2}\right)$ where:

- $\eta=\mu_{1} \boxplus \mu_{2}$
- $G_{\eta^{\prime}}=G_{\mu_{1}^{\prime}}\left(\omega_{1}(z)\right) \omega_{1}^{\prime}(z)+G_{\mu_{2}^{\prime}}\left(\omega_{2}(z)\right) \omega_{2}^{\prime}(z)$, where ω_{i} are subordination functions $G_{\eta}=G_{\mu_{i}} \circ \omega_{i}$.

Can also consider multiplicative convolution \boxtimes_{B} etc.

Asyptotic infinitesimal freeness

Theorem
Let $A(N)$ be a Gaussian random matrix and let $B(N)$ be a finite-rank matrix. Let τ_{N} be the joint law of $A(N)$ and $B(N)$ with respect to $N^{-1} \operatorname{Tr}$. Then $\tau_{N}=\tau+\frac{1}{N} \tau^{\prime}+o\left(N^{-1}\right)$ and moreover $A(N)$ and $B(N)$ are infinitesimally free under $\left(\tau, \tau^{\prime}\right)$.

Asyptotic infinitesimal freeness

Theorem
Let $A(N)$ be a Gaussian random matrix and let $B(N)$ be a finite-rank matrix. Let τ_{N} be the joint law of $A(N)$ and $B(N)$ with respect to $N^{-1} \operatorname{Tr}$. Then $\tau_{N}=\tau+\frac{1}{N} \tau^{\prime}+o\left(N^{-1}\right)$ and moreover $A(N)$ and $B(N)$ are infinitesimally free under $\left(\tau, \tau^{\prime}\right)$.

Corollary
Let $\mathcal{A}(N), \mathcal{B}(N) \in(A, \phi)$ be operators having the same law of $A(N)$ and $B(N)$ respectively, but such that $\mathcal{A}(N)$ and $\mathcal{B}(N)$ are free for each N. Then

$$
\mu^{\mathcal{A}(N)+\mathcal{B}(N)}=\mu^{A(N)+B(N)}+o(1 / N)
$$

In particular,

$$
\mu^{A(N)+B(N)}=\mu^{A(N)} \boxplus \mu^{B(N)}+o(1 / N)
$$

explaining the connection with free convolution.

Example.

Let $B_{N}=\theta E_{11}$ with E_{11} rank one projection with entry 1 in position 1,1 and zero elsewhere.
Then

$$
\mu^{B_{N}}=\delta_{0}+\frac{1}{N}\left(\delta_{\theta}-\delta_{0}\right)
$$

If A_{N} is a Gaussian random matrix and η is the semicircle law, then

$$
\mu^{A_{N}}=\eta+O\left(N^{-2}\right)
$$

So: $\mu^{A_{N}+B_{N}}=\mu+\frac{1}{N} \dot{\mu}+o(1 / N)$ and

$$
(\mu, \dot{\mu})=(\eta, 0) \boxplus_{B}\left(\delta_{0}, \delta_{\theta}-\delta_{0}\right)
$$

Example, ctd.

$$
(\mu, \dot{\mu})=(\eta, 0) \boxplus_{B}\left(\delta_{0}, \delta_{\theta}-\delta_{0}\right)
$$

Example, ctd.

$$
(\mu, \dot{\mu})=(\eta, 0) \boxplus_{B}\left(\delta_{0}, \delta_{\theta}-\delta_{0}\right)
$$

$\mu=$ semicircule law $, \quad G_{\mu}(z)=z-\sqrt{z^{2}-2}, z \in \mathbb{C}^{+} \cup(\mathbb{R} \backslash\{ \pm \sqrt{2}\}$
Let

$$
G_{\dot{\mu}}(z)=\int \frac{1}{z-t} d \dot{\mu}(t)
$$

Example, ctd.

$$
(\mu, \dot{\mu})=(\eta, 0) \boxplus_{B}\left(\delta_{0}, \delta_{\theta}-\delta_{0}\right)
$$

$\mu=$ semicircule law $, \quad G_{\mu}(z)=z-\sqrt{z^{2}-2}, z \in \mathbb{C}^{+} \cup(\mathbb{R} \backslash\{ \pm \sqrt{2}\}$
Let

$$
G_{\dot{\mu}}(z)=\int \frac{1}{z-t} d \dot{\mu}(t)
$$

General theory implies:

$$
\begin{aligned}
G_{\dot{\mu}}(z) & =\partial_{z} \int \log (z-t) d \dot{\mu}(t) \\
& =\partial_{z} \int \frac{1}{z-t}\left[h_{+}(t)-h_{-}(t)\right] d z, \quad h_{ \pm} \text {monotone }
\end{aligned}
$$

Example, ctd.

$$
(\mu, \dot{\mu})=(\eta, 0) \boxplus_{B}\left(\delta_{0}, \delta_{\theta}-\delta_{0}\right)
$$

$\mu=$ semicircule law, $\quad G_{\mu}(z)=z-\sqrt{z^{2}-2}, z \in \mathbb{C}^{+} \cup(\mathbb{R} \backslash\{ \pm \sqrt{2}\}$
Let

$$
G_{\dot{\mu}}(z)=\int \frac{1}{z-t} d \dot{\mu}(t)
$$

General theory implies:

$$
\begin{aligned}
G_{\dot{\mu}}(z) & =\partial_{z} \int \log (z-t) d \dot{\mu}(t) \\
& =\partial_{z} \int \frac{1}{z-t}\left[h_{+}(t)-h_{-}(t)\right] d z, \quad h_{ \pm} \text {monotone } \\
& =F_{\mu}^{\prime}(z)\left(\frac{1}{F_{\mu}(z)-\theta}-\frac{1}{F_{\mu}(z)}\right), \quad F_{\mu}(z)=\frac{1}{G_{\mu}(z)} .
\end{aligned}
$$

Example, ctd.

Formula for \boxplus_{B} involving subordination functions gives:

$$
\begin{aligned}
G_{\dot{\mu}}(z) & =F_{\mu}^{\prime}(z)\left(\frac{1}{F_{\mu}(z)-\theta}-\frac{1}{F_{\mu}(z)}\right)=\partial_{z} \log \left(\frac{F_{\mu}(z)-\theta}{F_{\mu}(z)}\right) \\
& =\partial_{z} \log \left(1-\theta G_{\mu}(z)\right)
\end{aligned}
$$

Example, ctd.

Formula for \boxplus_{B} involving subordination functions gives:

$$
\begin{aligned}
G_{\dot{\mu}}(z) & =F_{\mu}^{\prime}(z)\left(\frac{1}{F_{\mu}(z)-\theta}-\frac{1}{F_{\mu}(z)}\right)=\partial_{z} \log \left(\frac{F_{\mu}(z)-\theta}{F_{\mu}(z)}\right) \\
& =\partial_{z} \log \left(1-\theta G_{\mu}(z)\right)=\partial_{z} \int(z-t)^{-1}\left[h_{+}(t)-h_{-}(t)\right] d t
\end{aligned}
$$

Example, ctd.

Formula for \boxplus_{B} involving subordination functions gives:

$$
\begin{aligned}
& G_{\dot{\mu}}(z)=F_{\mu}^{\prime}(z)\left(\frac{1}{F_{\mu}(z)-\theta}-\frac{1}{F_{\mu}(z)}\right)=\partial_{z} \log \left(\frac{F_{\mu}(z)-\theta}{F_{\mu}(z)}\right) \\
&=\partial_{z} \log \left(1-\theta G_{\mu}(z)\right)=\partial_{z} \int(z-t)^{-1}\left[h_{+}(t)-h_{-}(t)\right] d t \\
& \int \frac{\left[h_{+}(t)-h_{-}(t)\right]}{z-t} d t=\log \left(1-\theta G_{\mu}(z)\right)=\log \left(1-\theta\left(z-\sqrt{z^{2}-2}\right)\right)
\end{aligned}
$$

Example, ctd.

$$
\int \frac{\left[h_{+}(t)-h_{-}(t)\right]}{z-t} d t=\log \left(1-\theta G_{\mu}(z)\right)=\log \left(1-\theta\left(z-\sqrt{z^{2}-2}\right)\right)
$$

Example, ctd.

$\int \frac{\left[h_{+}(t)-h_{-}(t)\right]}{z-t} d t=\log \left(1-\theta G_{\mu}(z)\right)=\log \left(1-\theta\left(z-\sqrt{z^{2}-2}\right)\right)$
Recover $\frac{d \dot{\mu}}{d t}=\partial_{t}\left(h_{+}(t)-h_{-}(t)\right)$ by a kind of Stiletjes inversion formula.

Example, ctd.

$\int \frac{\left[h_{+}(t)-h_{-}(t)\right]}{z-t} d t=\log \left(1-\theta G_{\mu}(z)\right)=\log \left(1-\theta\left(z-\sqrt{z^{2}-2}\right)\right)$
Recover $\frac{d \dot{\mu}}{d t}=\partial_{t}\left(h_{+}(t)-h_{-}(t)\right)$ by a kind of Stiletjes inversion formula.
If $\theta>1 / \sqrt{2}$: let θ^{\prime} be the solution to $G_{\eta}\left(\theta^{\prime}\right)=1 / \theta$. Then

$$
\dot{\mu}=\delta_{\theta^{\prime}}-\frac{\theta(t-2 \theta)}{\pi(2 \theta(t-\theta)-1) \sqrt{2-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t
$$

Example, ctd.

$\int \frac{\left[h_{+}(t)-h_{-}(t)\right]}{z-t} d t=\log \left(1-\theta G_{\mu}(z)\right)=\log \left(1-\theta\left(z-\sqrt{z^{2}-2}\right)\right)$
Recover $\frac{d \dot{\mu}}{d t}=\partial_{t}\left(h_{+}(t)-h_{-}(t)\right)$ by a kind of Stiletjes inversion formula.
If $\theta>1 / \sqrt{2}$: let θ^{\prime} be the solution to $G_{\eta}\left(\theta^{\prime}\right)=1 / \theta$. Then

$$
\dot{\mu}=\delta_{\theta^{\prime}}-\frac{\theta(t-2 \theta)}{\pi(2 \theta(t-\theta)-1) \sqrt{2-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t
$$

If $\theta<1 / \sqrt{2}$: no (real) solution to $G_{\eta}\left(\theta^{\prime}\right)=1 / \theta$. Then

$$
\dot{\mu}=\frac{\theta(t-2 \theta)}{\pi(2 \theta(t-\theta)-1) \sqrt{2-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t
$$

Example, ctd.

$\int \frac{\left[h_{+}(t)-h_{-}(t)\right]}{z-t} d t=\log \left(1-\theta G_{\mu}(z)\right)=\log \left(1-\theta\left(z-\sqrt{z^{2}-2}\right)\right)$
Recover $\frac{d \dot{\mu}}{d t}=\partial_{t}\left(h_{+}(t)-h_{-}(t)\right)$ by a kind of Stiletjes inversion formula.
If $\theta>1 / \sqrt{2}$: let θ^{\prime} be the solution to $G_{\eta}\left(\theta^{\prime}\right)=1 / \theta$. Then

$$
\dot{\mu}=\delta_{\theta^{\prime}}-\frac{\theta(t-2 \theta)}{\pi(2 \theta(t-\theta)-1) \sqrt{2-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t
$$

If $\theta<1 / \sqrt{2}$: no (real) solution to $G_{\eta}\left(\theta^{\prime}\right)=1 / \theta$. Then

$$
\dot{\mu}=\frac{\theta(t-2 \theta)}{\pi(2 \theta(t-\theta)-1) \sqrt{2-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t
$$

Thus $d \mu_{N}=\frac{1}{\pi} \sqrt{2-t^{2}} \chi_{[-\sqrt{2}, \sqrt{2}]}+\frac{1}{N} \dot{\mu}+O\left(N^{-2}\right)$.

Numerical simulation

Average of 40 complex 100×100 matrices, with $\theta=4$ or $\theta=0.4$.

Ideas of proof

It turns out that $\mu_{N}^{A}=\mu+O\left(1 / N^{2}\right)$. On the other hand, if $E_{i j}$ is the matrix with 1 in the i, j-th entries and zeros elsewhere, then for any fixed $p, \frac{1}{N} \operatorname{Tr}\left(p\left(\left\{E_{i j}\right\}\right)=p(0)+\frac{1}{N} \dot{\tau}(p)\right.$. For example, the law of θE_{11} is $\delta_{0}+\frac{1}{N}\left(\delta_{\theta}-\delta_{0}\right)$.
Lemma
Then for any polynomials q_{1}, \ldots, q_{r},

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \mathbb{E} \operatorname{Tr}\left[E_{i_{r} j_{1}} q_{1}(A(N)) E_{i_{1} j_{2}} q_{2}(A(N)) E_{i_{2} j_{3}} \times\right. \\
& \left.\cdots \times E_{i_{r-1} j_{r}} q_{r}(A(N))\right]=\prod_{s=1}^{r} \delta_{j_{s}=i_{s}} \tau\left(q_{s}\right) \quad \text { i.e. }
\end{aligned}
$$

$\lim _{N \rightarrow \infty} \mathbb{E} \operatorname{Tr}\left(E_{i_{r} j_{1}} q_{1} E_{i_{1} j_{2}} q_{2} E_{i_{2} j_{3}} \cdots q_{r}\right)=\prod_{s=1}^{r} \lim _{N} \mathbb{E} \operatorname{Tr}\left(E_{j_{s} j_{s}} q_{s} E_{i_{s} i_{s}}\right)$

Compute or use concentration.

Infinitesimal freeness is not for free!

Let $Y_{N}^{(1)}, Y_{N}^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_{N}=\eta+\frac{1}{N} \eta^{\prime}+O\left(N^{-2}\right)$. However, they are not asymptocially infinitesimally free.

Infinitesimal freeness is not for free!

Let $Y_{N}^{(1)}, Y_{N}^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_{N}=\eta+\frac{1}{N} \eta^{\prime}+O\left(N^{-2}\right)$. However, they are not asymptocially infinitesimally free. Indeed,

$$
Y_{N}^{(1)} \sim \frac{1}{\sqrt{K}} \sum_{j=1}^{K} Y_{N}^{(j)}
$$

Infinitesimal freeness is not for free!

Let $Y_{N}^{(1)}, Y_{N}^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_{N}=\eta+\frac{1}{N} \eta^{\prime}+O\left(N^{-2}\right)$. However, they are not asymptocially infinitesimally free. Indeed,

$$
Y_{N}^{(1)} \sim \frac{1}{\sqrt{K}} \sum_{j=1}^{K} Y_{N}^{(j)}
$$

and so if inf. freeness were to hold we would get by CLT

$$
\left(\eta, \eta^{\prime}\right)=(\text { scaling by } 1 / \sqrt{K}) \underbrace{\left(\left(\eta, \eta^{\prime}\right) \boxplus_{B} \cdots \boxplus_{B}\left(\eta, \eta^{\prime}\right)\right)}_{K} \rightarrow\left(\nu, \nu^{\prime}\right)
$$

where (ν, ν^{\prime}) is an infinitesimal semicircle law (ν is semicircular, $\nu^{\prime}=$ arcsine - semicircular).

Infinitesimal freeness is not for free!

Let $Y_{N}^{(1)}, Y_{N}^{(2)}$ be an $N \times N$ real iid self-adjoint Gaussian matrices. Then each has law $\mu_{N}=\eta+\frac{1}{N} \eta^{\prime}+O\left(N^{-2}\right)$. However, they are not asymptocially infinitesimally free. Indeed,

$$
Y_{N}^{(1)} \sim \frac{1}{\sqrt{K}} \sum_{j=1}^{K} Y_{N}^{(j)}
$$

and so if inf. freeness were to hold we would get by CLT

$$
\left(\eta, \eta^{\prime}\right)=(\text { scaling by } 1 / \sqrt{K}) \underbrace{\left(\left(\eta, \eta^{\prime}\right) \boxplus_{B} \cdots \boxplus_{B}\left(\eta, \eta^{\prime}\right)\right)}_{K} \rightarrow\left(\nu, \nu^{\prime}\right)
$$

where (ν, ν^{\prime}) is an infinitesimal semicircle law (ν is semicircular, $\nu^{\prime}=\operatorname{arcsine}-$ semicircular). But computation shows [Johannsen] that $\eta^{\prime}=\frac{1}{4}\left(\delta_{\sqrt{2}}+\delta_{-\sqrt{2}}\right)-\frac{1}{2 \pi} \frac{1}{\sqrt{1-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]} d t$ is not the arcsine law.

Remarks

- Same statement holds if we assume that $A(N)=U(N) D(N) U(N)^{*}$ with $U(N)$ Haar-distributed unitary matrix and $D(N)$ a diagonal matrix so that μ_{N}^{D} are all supported on a compact set and $\mu_{N}^{D} \rightarrow \mu^{D}$ weakly.
- Can also handle the real Gaussian case, which is different in that $\mu_{N}^{A}=\eta+\frac{1}{N} \dot{\eta}+o(1 / N)$ with η the semicircle law and

$$
\begin{aligned}
\dot{\eta} & =\frac{1}{4}\left(\delta_{\sqrt{2}}+\delta_{-\sqrt{2}}\right)-\frac{1}{2 \pi \sqrt{2-t^{2}}} \chi_{[-\sqrt{2}, \sqrt{2}]}(t) d t \\
\mu_{\text {real }} & =\dot{\mu}_{\text {complex }}+\dot{\eta} .
\end{aligned}
$$

- We can also deduce formulas for other polynomials in $A(N)$ and $B(N)$, such as products $B(N) A(N)^{2} B(N)$.

Thank you!

