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Spectrum of sum of random matrices

Question: Given A = diag (a1, . . . , aN ) and B = diag (b1, . . . , bN ), what is the
eigenvalue density of the random matrix

H = A+ UBU∗

if U is a Haar unitary and N is large?

Answer: [Voiculescu ‘91]

Let µA :=
1
N

N∑
i=1

δai , µB :=
1
N

N∑
i=1

δbi .

Then for large N the empirical spectral distribution of A+ UBU∗,

µH :=
1
N

N∑
i=1

δλi , λi : eigenvalues of H ,

is close to µA � µB , the free additive convolution of µA and µB .

Of course, we choose neither A nor B to be multiples of the identity matrix.
Wlog: TrA = TrB = 0.



Stieltjes transform

Definition: For any probability measure ν, its Stieltjes transform mν(z) is defined by

mν(z) :=
∫
R

1
x− z

dν(x) , z ∈ C+.

Observe: mν : C+ → C+, analytic and lim
η↗∞

iηmν(iη) = −1.

Define (negative) reciprocal Stieltjes transform:

Fν(z) := −
1

mν(z)
, z ∈ C+.

Observe: Fν : C+ → C+, analytic and lim
η↗∞

Fν(iη)
iη

= 1.



Free additive convolution

Analytic definition via subordination functions: Symmetric binary operation on the
set of probability measures uniquely characterized by the following result:

Theorem (Belinschi-Bercovici ‘07, Chistyakov-Götze ‘11).

Given µA and µB (thus also FµA and FµB ), there exist unique analytic
ωA, ωB : C+ → C+, such that

(1) ImωA(z), ImωB(z) ≥ Im z and lim
η↗∞

ωA(iη)
iη

= lim
η↗∞

ωB(iη)
iη

= 1;

(2)

FµA (ωB(z)) = ωA(z) + ωB(z) − z

FµB (ωA(z)) = ωA(z) + ωB(z) − z

}
self-consistent equation (SCE) for ωA, ωB .

By (2): FµA (ωB(z)) = FµB (ωA(z))=: F (z).
By (1) : F (z) is the reciprocal Stieltjes transform of a probability measure: µA � µB .

Algebraic definition: Addition of free random variables [Voiculescu ‘86].

Subordination phenomenon: [Voiculescu ‘93], [Biane ‘98].
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semicircle � semicircle
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Examples II

Bernoulli � Bernoulli
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three point masses � three point masses
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Definition:
Regular bulk: Free additive convolution admits a finite and strictly positive density.

Lemma: Inside the regular bulk,

lim
η↘0

ImωA(E + iη) > 0 , lim
η↘0

ImωB(E + iη) > 0 .



Theorem (Voiculescu ‘91).

Let H = A+ UBU∗ and µH :=
1
N

N∑
i=1

δλi , with (λi) the eigenvalues of H.

For any fixed interval I ⊂ R,

|µH(I)− µA � µB(I)|
|I|

a.s.−−→ 0 , N →∞.

Alternative proofs: [Speicher ‘93], [Biane ‘98], [Pastur-Vasilchuk ‘00], [Collins ‘03],...

Question 1 (local law): Does the convergence still hold if |I| = o(1), and how small
can |I| be?

Question 2 (convergence rate): What is the convergence rate, as N ↗∞, of

sup
I⊂R

∣∣µH(I)− µA�B(I)
∣∣ .

Questions 1 and 2 are related.



Main result:

Theorem (Bao-Erdős-S. ‘15b).

Let H = A+ UBU∗ and µH :=
1
N

N∑
i=1

δλi , with (λi) the eigenvalues of H.

Fix any γ > 0. For any compact interval I in the regular bulk with |I| ≥ N−1+γ ,

|µH(I)− µA � µB(I)|
|I|

≺
1√
N |I|

,

for N sufficiently large.



Main result:

Theorem (Bao-Erdős-S. ‘15b).

Fix any γ > 0. For any compact interval I in the regular bulk with |I| ≥ N−1+γ , we have

|µH(I)− µA � µB(I)|
|I|

≺
1√
N |I|

,

for N sufficiently large.

Remarks:

◦ Technical assumption: ‖A‖, ‖B‖ ≤ C.

◦ Typical eigenvalue spacing in the regular bulk is order 1/N .

◦ Special case: Entries of A and B are supported at two points (Bernoulli).

◦ Previous results:

|µH(I)− µA � µB(I)|
|I|

≺
1

N |I|7
, |I| ≥ N−1/7+γ [Kargin ‘12-‘15]

|µH(I)− µA � µB(I)|
|I|

≺
1

N |I|3/2 , |I| ≥ N−2/3+γ [Bao-Erdős-S. ‘15a]



Main technical result: Local law

Local law is mostly stated in terms of the Green function G(z) := (H − z)−1. Link with

Stieltjes transform mH ≡ mµH : trG(z) =
1
N

N∑
i=1

1
λi − z

= mH(z) , tr :=
1
N

Tr.

Theorem (Bao-Erdős-S. ‘15b).

Choose any compact interval I in the regular bulk of µA � µB , and set

SI(γ) := {z = E + iη : E ∈ I , N−1+γ ≤ η <∞} .

For any (small) γ > 0, we have∣∣∣mH(z)−mµA�µB (z)
∣∣∣ ≺ 1
√
Nη

,∣∣∣Gij(z)− δij

ai − ωB(z)

∣∣∣ ≺ 1
√
Nη

, uniformly on SI(γ) .

Recall: mµA�µB (z) = mµA (ωB(z)) =
1
N

N∑
i=1

1
ai − ωB(z)

.



About local laws in RMT

Local laws for the spectrum of random matrices have been widely studied since the works by
Erdős-Schlein-Yau-Yin etc.. It serves as an input for proving the universality of local
statistics.

Some reference: (on optimal scale)

◦ (Wigner type matrices) [Erdős-Schlein-Yau ‘07-‘09], [Tao-Vu ‘09-‘12], [Erdős-Yau-Yin
‘10-‘12], [Erdős-Knowles-Yau-Yin ‘13], [Ajanki-Erdős-Krüger ‘15],
[Gőtze-Naumov-Tikhomirov ‘15 ], ....

Remarks:

◦ Schur complement is used, which expresses Gii in terms of a∗iG
(i)ai, where ai is a

column of the matrix and G(i) (a submatrix of G) is independent of ai.



Local stability of SCE

Let ΦµA,µB (ω1, ω2, z) :=
(
FµA (ω2)− ω1 − ω2 + z
FµB (ω1)− ω1 − ω2 + z

)
.

SCE for ωA, ωB : ΦµA,µB (ωA(z), ωB(z), z) = 0 .

Local Stability: [Bao-Erdős-S. ‘15a]

Fix z ∈ SI(γ). Assume ωcA, ω
c
B , r satisfy ImωcA(z), ImωcB(z) > 0 and

ΦµA,µB (ωcA(z), ωcB(z), z) = r(z) ,

and that there is a small δ > 0 such that

|ωcA(z)− ωA(z)| ≤ δ , |ωcB(z)− ωB(z)| ≤ δ .

Then we have, in the regular bulk, uniformly in Im z ≥ 0,

|ωcA(z)− ωA(z)| ≤ C‖r(z)‖ , |ωcB(z)− ωB(z)| ≤ C‖r(z)‖ .

Previous results: Local stability with an additional condition [Kargin ‘13].



Perturbed SCE for random matrix

Approximate subordination functions:

ωcA(z) := z −
trAG(z)
mH(z)

, ωcB(z) := z −
trUBU∗G(z)

mH(z)
.

Since (A+ UBU∗ − z)G(z) = I, we have

−
1

mH(z)
= ωcA(z) + ωcB(z)− z .

Our aim: Show that

‖ΦµA,µB (ωcA(z), ωcB(z), z)‖ ≺
1
√
Nη

, z = E + iη ,

which is equivalent to

mH(z) = mµA (ωcB(z)) +O≺

( 1
√
Nη

)
,

mH(z) = mµB (ωcA(z)) +O≺

( 1
√
Nη

)
.



Main task: Prove

Gii(z) =
1

ai − ωcB(z)
+O≺

( 1
√
Nη

)
.

Non-optimal way: Using the full randomness of U at once

Full expectation E[Gii]
+

Gromov-Milman concentration for Gii − E[Gii] .

Optimal way: Separating some partial randomness vi from U

Partial expectation Evi [Gii]
+

Concentration for Gii − Evi [Gii] .

Remark: Shorthand Ei := Evi . In general, identifying E[·] is easier than identifying Ei[·],
while estimating (Id− E)[·] is harder than estimating (Id− Ei)[·].



Householder reflection as partial randomness

Proposition (Diaconis-Shahshahani ‘87).

U Haar distributed on U(N),

U = −eiθ1 (I − 2r1r∗1)
(

1
U1

)
:= −eiθ1R1U

〈1〉 ,

r1 :=
e1 + e−iθ1 v1

‖e1 + e−iθ1 v1‖2
.

v1 denotes the first column of U , v1 is uniformly distributed on SN−1
C ,

U1 is Haar on U(N − 1),
v1 and U1 are independent.

Remark 1: −eiθ1R1 is the Householder reflection sending e1 to v1.

Remark 2: Analogously, we have an independent pair vi and U i for all i.

Remark 3: Independence between vi and U i enables us to work with the partial expectation
Evi [Gii].



Concentration of Green function elements

Lemma.

For all z ∈ SI(γ), ∣∣Gii(z)− Ei[Gii(z)]
∣∣ ≺ 1
√
Nη

, z = E + iη .

Proof: Use resolvent expansions to write

Gii = G
[i]
ii +

Ψi
Ξi

,

G[i]: a matrix independent of vi;
Ψi, Ξi: polynomials of quadratic forms x∗iG

[i]yi, with xi,yi = ei,vi.

Then concentration of quadratic forms, e.g.∣∣∣v∗iG[i]vi − Ei[v∗iG
[i]vi]

∣∣∣ ≺ ‖G[i]‖2

N
, Ei[v∗iG

[i]vi] = trG[i] ,

implies concentration of Gii.



Green function entries

Aim:

Gii ≈
1

ai − ωcB(z)
, ωcB(z) = z −

trB̃G(z)
trG(z)

, B̃ := UBU∗

From (H − z)G(z) = 1, we have (ai − z)Gii = −(B̃G)ii + 1, so that

Gii =
1

ai − z + (B̃G)ii
Gii

.

We shall show:

Proposition.
For all i = 1, 2, . . . , N ,

(B̃G)ii ≈
trB̃G
trG

Gii .



Green function entries II

Proposition: (B̃G)ii ≈ trB̃G
trG Gii.

Recall the decomposition U = −eiθi (I − 2rir∗i )U〈i〉, where

ri :=
ei + e−iθivi
‖ei + e−iθivi‖2

,

with vi uniformly distributed on SN−1
C . Set B̃〈i〉 := U〈i〉B(U〈i〉)∗. Then,

(B̃G)ii = e∗i (I − 2rir∗i )B̃〈i〉(I − 2rir∗i )Gei

≈ −eiθiv∗i B̃
〈i〉Gei .

Main idea: Introduce two auxiliary quantities:

Si(z) := eiθiv∗i B̃
〈i〉G(z)ei ≈ −(B̃G)ii , Ti(z) := eiθiv∗iG(z)ei .

Derive a system of equations involving Gii, Ei[Si] and Ei[Ti] and solve Ei[Si] from the
system to get the proposition.



System of G, S and T

Computing Ei[Si] and Ei[Ti] (using Gaussian approximation or Stein lemma), we get

Ei[Si] ≈ tr(B̃G)
(
Ei[Si]− biEi[Ti]

)
+ tr(B̃GB̃)

(
Gii + Ei[Ti]

)
,

Ei[Ti] ≈ trG
(
Ei[Si]− biEi[Ti]

)
+ tr(B̃G)

(
Gii + Ei[Ti]

)
.

Solving the system for Ei[Si] gives

Ei[Si] ≈ −
tr(B̃G)

trG
Gii +

( tr(B̃G)− (trB̃G)2

trG
+ tr(B̃GB̃)

)
(Gii + Ei[Ti]) .

Claim: The second term is negligible. (“Ward identity”)
Proof: Averaging over i and using the facts Ei[Si] ≈ Si ≈ −(B̃G)ii, and the less obvious
fact |trG−N−1

∑
i
Ei[Ti]| ≥ c, which can be proved via a continuity argument.

Since (B̃G)ii ≈ Ei[B̃G)ii] ≈ −Ei[Si], we finally get

∣∣∣(B̃G)ii −
tr(B̃G)

trG
Gii

∣∣∣ ≺ 1
√
Nη

, z = E + iη .



Ongoing work:

◦ Strong local law:∣∣∣mH(z)−mµA�µB (z)
∣∣∣ ≺ 1

Nη
,

∣∣∣Gij(z)− δij 1
ai − ωB(z)

∣∣∣ ≺ 1
√
Nη

.

◦ Derive the sine-kernel statistics of H = A+ UBU∗ in the bulk.
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ai ∼ Bernoulli(1/2), bi ∼ Unif(−1, 1), N = 3000

◦ Multiplicative model: A1/2UBU∗A1/2, global law (free multiplicative convolution) is
known [Voiculescu ‘91].


