Local law of addition of random matrices

Kevin Schnelli ${ }^{1}$

IST Austria

Joint work with Zhigang Bao and László Erdős
${ }^{1}$ Supported by ERC Advanced Grant RANMAT No. 338804

Spectrum of sum of random matrices

Question: Given $A=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$ and $B=\operatorname{diag}\left(b_{1}, \ldots, b_{N}\right)$, what is the eigenvalue density of the random matrix

$$
H=A+U B U^{*}
$$

if U is a Haar unitary and N is large?
Answer: [Voiculescu '91]
Let $\quad \mu_{A}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i}}, \quad \mu_{B}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{b_{i}}$.
Then for large N the empirical spectral distribution of $A+U B U^{*}$,

$$
\mu_{H}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \quad \lambda_{i}: \text { eigenvalues of } H
$$

is close to $\mu_{A} \boxplus \mu_{B}$, the free additive convolution of μ_{A} and μ_{B}.
Of course, we choose neither A nor B to be multiples of the identity matrix. Wlog: $\operatorname{Tr} A=\operatorname{Tr} B=0$.

Stieltjes transform

Definition: For any probability measure ν, its Stieltjes transform $m_{\nu}(z)$ is defined by

$$
m_{\nu}(z):=\int_{\mathbb{R}} \frac{1}{x-z} \mathrm{~d} \nu(x), \quad z \in \mathbb{C}^{+}
$$

Observe: $m_{\nu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$, analytic and $\lim _{\eta \nearrow \infty} \mathrm{i} \eta m_{\nu}(\mathrm{i} \eta)=-1$.
Define (negative) reciprocal Stieltjes transform:

$$
F_{\nu}(z):=-\frac{1}{m_{\nu}(z)}, \quad z \in \mathbb{C}^{+}
$$

Observe: $F_{\nu}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$, analytic and $\lim _{\eta \nearrow \infty} \frac{F_{\nu}(\mathrm{i} \eta)}{\mathrm{i} \eta}=1$.

Free additive convolution

Analytic definition via subordination functions: Symmetric binary operation on the set of probability measures uniquely characterized by the following result:

Theorem (Belinschi-Bercovici '07, Chistyakov-Götze '11).

Given μ_{A} and μ_{B} (thus also $F_{\mu_{A}}$ and $F_{\mu_{B}}$), there exist unique analytic $\omega_{A}, \omega_{B}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$, such that
(1) $\operatorname{Im} \omega_{A}(z), \operatorname{Im} \omega_{B}(z) \geq \operatorname{Im} z$ and $\lim _{\eta \nearrow \infty} \frac{\omega_{A}(\mathrm{i} \eta)}{\mathrm{i} \eta}=\lim _{\eta \nearrow \infty} \frac{\omega_{B}(\mathrm{i} \eta)}{\mathrm{i} \eta}=1$;
(2)

$$
\left.\begin{array}{l}
F_{\mu_{A}}\left(\omega_{B}(z)\right)=\omega_{A}(z)+\omega_{B}(z)-z \\
F_{\mu_{B}}\left(\omega_{A}(z)\right)=\omega_{A}(z)+\omega_{B}(z)-z
\end{array}\right\} \text { self-consistent equation (SCE) for } \omega_{A}, \omega_{B} .
$$

By (2): $F_{\mu_{A}}\left(\omega_{B}(z)\right)=F_{\mu_{B}}\left(\omega_{A}(z)\right)=: F(z)$.
By (1) : $F(z)$ is the reciprocal Stieltjes transform of a probability measure: $\mu_{A} \boxplus \mu_{B}$.

Algebraic definition: Addition of free random variables [Voiculescu '86].
Subordination phenomenon: [Voiculescu '93], [Biane '98].

Examples I

semicircle \boxplus semicircle

semicircle \boxplus Bernoulli

Examples II

Bernoulli \boxplus Bernoulli

three point masses \boxplus three point masses

Definition:
Regular bulk: Free additive convolution admits a finite and strictly positive density.
Lemma: Inside the regular bulk,

$$
\lim _{\eta \searrow 0} \operatorname{Im} \omega_{A}(E+\mathrm{i} \eta)>0, \quad \lim _{\eta \searrow 0} \operatorname{Im} \omega_{B}(E+\mathrm{i} \eta)>0 .
$$

Theorem (Voiculescu '91).

Let $H=A+U B U^{*}$ and $\mu_{H}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$, with $\left(\lambda_{i}\right)$ the eigenvalues of H.
For any fixed interval $\mathcal{I} \subset \mathbb{R}$,

$$
\frac{\left|\mu_{H}(\mathcal{I})-\mu_{A} \boxplus \mu_{B}(\mathcal{I})\right|}{|\mathcal{I}|} \stackrel{\text { a.s. }}{\longrightarrow} 0, \quad N \rightarrow \infty .
$$

Alternative proofs: [Speicher '93], [Biane '98], [Pastur-Vasilchuk '00], [Collins '03],...

Question 1 (local law): Does the convergence still hold if $|\mathcal{I}|=o(1)$, and how small can $|\mathcal{I}|$ be?

Question 2 (convergence rate): What is the convergence rate, as $N \nearrow \infty$, of

$$
\sup _{\mathcal{I} \subset \mathbb{R}}\left|\mu_{H}(\mathcal{I})-\mu_{A \boxplus B}(\mathcal{I})\right| .
$$

Questions 1 and 2 are related.

Main result:

Theorem (Bao-Erdős-S. '15b).
Let $H=A+U B U^{*}$ and $\mu_{H}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$, with $\left(\lambda_{i}\right)$ the eigenvalues of H.
Fix any $\gamma>0$. For any compact interval \mathcal{I} in the regular bulk with $|\mathcal{I}| \geq N^{-1+\gamma}$,

$$
\frac{\left|\mu_{H}(\mathcal{I})-\mu_{A} \boxplus \mu_{B}(\mathcal{I})\right|}{|\mathcal{I}|} \prec \frac{1}{\sqrt{N|\mathcal{I}|}},
$$

for N sufficiently large.

Main result:

Theorem (Bao-Erdős-S. '15b).
Fix any $\gamma>0$. For any compact interval \mathcal{I} in the regular bulk with $|\mathcal{I}| \geq N^{-1+\gamma}$, we have

$$
\frac{\left|\mu_{H}(\mathcal{I})-\mu_{A} \boxplus \mu_{B}(\mathcal{I})\right|}{|\mathcal{I}|} \prec \frac{1}{\sqrt{N|\mathcal{I}|}},
$$

for N sufficiently large.

Remarks:

- Technical assumption: $\|A\|,\|B\| \leq C$.
- Typical eigenvalue spacing in the regular bulk is order $1 / N$.
- Special case: Entries of A and B are supported at two points (Bernoulli).
- Previous results:

$$
\begin{array}{llrl}
\frac{\left|\mu_{H}(\mathcal{I})-\mu_{A} \boxplus \mu_{B}(\mathcal{I})\right|}{|\mathcal{I}|} & \prec \frac{1}{N|\mathcal{I}|^{7}}, & |\mathcal{I}| \geq N^{-1 / 7+\gamma} & \text { [Kargin '12-'15] } \\
\frac{\left|\mu_{H}(\mathcal{I})-\mu_{A} \boxplus \mu_{B}(\mathcal{I})\right|}{|\mathcal{I}|} \prec \frac{1}{N|\mathcal{I}|^{3 / 2}}, & |\mathcal{I}| \geq N^{-2 / 3+\gamma} & \text { [Bao-Erdős-S. '15a] }
\end{array}
$$

Main technical result: Local law

Local law is mostly stated in terms of the Green function $G(z):=(H-z)^{-1}$. Link with
Stieltjes transform $m_{H} \equiv m_{\mu_{H}}: \operatorname{tr} G(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=m_{H}(z), \quad \operatorname{tr}:=\frac{1}{N} \operatorname{Tr}$.
Theorem (Bao-Erdős-S. '15b).
Choose any compact interval \mathcal{I} in the regular bulk of $\mu_{A} \boxplus \mu_{B}$, and set

$$
\mathcal{S}_{\mathcal{I}}(\gamma):=\left\{z=E+\mathrm{i} \eta: E \in \mathcal{I}, N^{-1+\gamma} \leq \eta<\infty\right\} .
$$

For any (small) $\gamma>0$, we have

$$
\begin{aligned}
\left|m_{H}(z)-m_{\mu_{A} \boxplus \mu_{B}}(z)\right| & \prec \frac{1}{\sqrt{N \eta}}, \\
\left|G_{i j}(z)-\frac{\delta_{i j}}{a_{i}-\omega_{B}(z)}\right| & \prec \frac{1}{\sqrt{N \eta}}, \quad \text { uniformly on } \quad \mathcal{S}_{\mathcal{I}}(\gamma) .
\end{aligned}
$$

Recall: $m_{\mu_{A} \boxplus \mu_{B}}(z)=m_{\mu_{A}}\left(\omega_{B}(z)\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{a_{i}-\omega_{B}(z)}$.

About local laws in RMT

Local laws for the spectrum of random matrices have been widely studied since the works by Erdős-Schlein-Yau-Yin etc.. It serves as an input for proving the universality of local statistics.

Some reference: (on optimal scale)

- (Wigner type matrices) [Erdős-Schlein-Yau ‘07-'09], [Tao-Vu '09-'12], [Erdős-Yau-Yin '10-'12], [Erdős-Knowles-Yau-Yin '13], [Ajanki-Erdős-Krüger '15], [Götze-Naumov-Tikhomirov '15],

Remarks:

- Schur complement is used, which expresses $G_{i i}$ in terms of $\mathbf{a}_{i}^{*} G^{(i)} \mathbf{a}_{i}$, where \mathbf{a}_{i} is a column of the matrix and $G^{(i)}$ (a submatrix of G) is independent of \mathbf{a}_{i}.

Local stability of SCE

$$
\text { Let } \quad \Phi_{\mu_{A}, \mu_{B}}\left(\omega_{1}, \omega_{2}, z\right):=\binom{F_{\mu_{A}}\left(\omega_{2}\right)-\omega_{1}-\omega_{2}+z}{F_{\mu_{B}}\left(\omega_{1}\right)-\omega_{1}-\omega_{2}+z} \text {. }
$$

SCE for ω_{A}, ω_{B} :

$$
\Phi_{\mu_{A}, \mu_{B}}\left(\omega_{A}(z), \omega_{B}(z), z\right)=0
$$

Local Stability: [Bao-Erdős-S. '15a]
Fix $z \in \mathcal{S}_{\mathcal{I}}(\gamma)$. Assume $\omega_{A}^{c}, \omega_{B}^{c}, \mathbf{r}$ satisfy $\operatorname{Im} \omega_{A}^{c}(z), \operatorname{Im} \omega_{B}^{c}(z)>0$ and

$$
\Phi_{\mu_{A}, \mu_{B}}\left(\omega_{A}^{c}(z), \omega_{B}^{c}(z), z\right)=\mathbf{r}(z),
$$

and that there is a small $\delta>0$ such that

$$
\left|\omega_{A}^{c}(z)-\omega_{A}(z)\right| \leq \delta, \quad\left|\omega_{B}^{c}(z)-\omega_{B}(z)\right| \leq \delta
$$

Then we have, in the regular bulk, uniformly in $\operatorname{Im} z \geq 0$,

$$
\left|\omega_{A}^{c}(z)-\omega_{A}(z)\right| \leq C\|\mathbf{r}(z)\|, \quad\left|\omega_{B}^{c}(z)-\omega_{B}(z)\right| \leq C\|\mathbf{r}(z)\|
$$

Previous results: Local stability with an additional condition [Kargin '13].

Perturbed SCE for random matrix

Approximate subordination functions:

$$
\omega_{A}^{c}(z):=z-\frac{\operatorname{tr} A G(z)}{m_{H}(z)}, \quad \omega_{B}^{c}(z):=z-\frac{\operatorname{tr} U B U^{*} G(z)}{m_{H}(z)} .
$$

Since $\left(A+U B U^{*}-z\right) G(z)=I$, we have

$$
-\frac{1}{m_{H}(z)}=\omega_{A}^{c}(z)+\omega_{B}^{c}(z)-z .
$$

Our aim: Show that

$$
\left\|\Phi_{\mu_{A}, \mu_{B}}\left(\omega_{A}^{c}(z), \omega_{B}^{c}(z), z\right)\right\| \prec \frac{1}{\sqrt{N \eta}}, \quad z=E+\mathrm{i} \eta
$$

which is equivalent to

$$
\begin{aligned}
& m_{H}(z)=m_{\mu_{A}}\left(\omega_{B}^{c}(z)\right)+O_{\prec}\left(\frac{1}{\sqrt{N \eta}}\right), \\
& m_{H}(z)=m_{\mu_{B}}\left(\omega_{A}^{c}(z)\right)+O_{\prec}\left(\frac{1}{\sqrt{N \eta}}\right) .
\end{aligned}
$$

Main task: Prove

$$
G_{i i}(z)=\frac{1}{a_{i}-\omega_{B}^{c}(z)}+O_{\prec}\left(\frac{1}{\sqrt{N \eta}}\right) .
$$

Non-optimal way: Using the full randomness of U at once
Full expectation $\mathbb{E}\left[G_{i i}\right]$
$+$
Gromov-Milman concentration for $G_{i i}-\mathbb{E}\left[G_{i i}\right]$.
Optimal way: Separating some partial randomness \mathbf{v}_{i} from U
Partial expectation $\mathbb{E}_{\mathbf{V}_{i}}\left[G_{i i}\right]$

$$
+
$$

Concentration for $G_{i i}-\mathbb{E}_{\mathbf{v}_{i}}\left[G_{i i}\right]$.
Remark: Shorthand $\mathbb{E}_{i}:=\mathbb{E}_{\mathbf{v}_{i}}$. In general, identifying $\mathbb{E}[\cdot]$ is easier than identifying $\mathbb{E}_{i}[\cdot]$, while estimating $(\operatorname{Id}-\mathbb{E})[\cdot]$ is harder than estimating $\left(\operatorname{Id}-\mathbb{E}_{i}\right)[\cdot]$.

Householder reflection as partial randomness

Proposition (Diaconis-Shahshahani ‘87).

U Haar distributed on $\mathcal{U}(N)$,

$$
\begin{gathered}
U=-\mathrm{e}^{\mathrm{i} \theta_{1}}\left(I-2 \mathbf{r}_{1} \mathbf{r}_{1}^{*}\right)\left(\begin{array}{ll}
1 & \\
& U^{1}
\end{array}\right):=-\mathrm{e}^{\mathrm{i} \theta_{1}} R_{1} U^{\langle 1\rangle} \\
\mathbf{r}_{1}:=\frac{\mathbf{e}_{1}+\mathrm{e}^{-\mathrm{i} \theta_{1}} \mathbf{v}_{1}}{\left\|\mathbf{e}_{1}+\mathrm{e}^{-\mathrm{i} \theta_{1}} \mathbf{v}_{1}\right\|_{2}}
\end{gathered}
$$

\mathbf{v}_{1} denotes the first column of U, \mathbf{v}_{1} is uniformly distributed on $\mathcal{S}_{\mathbb{C}}^{N-1}$,
U^{1} is Haar on $\mathcal{U}(N-1)$,
\mathbf{v}_{1} and U^{1} are independent.

Remark 1: $-\mathrm{e}^{\mathrm{i} \theta_{1}} R_{1}$ is the Householder reflection sending \mathbf{e}_{1} to \mathbf{v}_{1}.
Remark 2: Analogously, we have an independent pair \mathbf{v}_{i} and U^{i} for all i.
Remark 3: Independence between \mathbf{v}_{i} and U^{i} enables us to work with the partial expectation $\mathbb{E}_{\mathbf{v}_{i}}\left[G_{i i}\right]$.

Concentration of Green function elements

Lemma.

For all $z \in \mathcal{S}_{\mathcal{I}}(\gamma)$,

$$
\left|G_{i i}(z)-\mathbb{E}_{i}\left[G_{i i}(z)\right]\right| \prec \frac{1}{\sqrt{N \eta}}, \quad \quad z=E+\mathrm{i} \eta
$$

Proof: Use resolvent expansions to write

$$
G_{i i}=G_{i i}^{[i]}+\frac{\Psi_{i}}{\Xi_{i}},
$$

$G^{[i]}$: a matrix independent of \mathbf{v}_{i};
Ψ_{i}, Ξ_{i} : polynomials of quadratic forms $\mathbf{x}_{i}^{*} G^{[i]} \mathbf{y}_{i}$, with $\mathbf{x}_{i}, \mathbf{y}_{i}=\mathbf{e}_{i}, \mathbf{v}_{i}$.
Then concentration of quadratic forms, e.g.

$$
\left|\mathbf{v}_{i}^{*} G^{[i]} \mathbf{v}_{i}-\mathbb{E}_{i}\left[\mathbf{v}_{i}^{*} G^{[i]} \mathbf{v}_{i}\right]\right| \prec \frac{\left\|G^{[i]}\right\|_{2}}{N}, \quad \mathbb{E}_{i}\left[\mathbf{v}_{i}^{*} G^{[i]} \mathbf{v}_{i}\right]=\operatorname{tr} G^{[i]}
$$

implies concentration of $G_{i i}$.

Green function entries

Aim:

$$
G_{i i} \approx \frac{1}{a_{i}-\omega_{B}^{c}(z)}, \quad \omega_{B}^{c}(z)=z-\frac{\operatorname{tr} \widetilde{B} G(z)}{\operatorname{tr} G(z)}, \quad \widetilde{B}:=U B U^{*}
$$

From $(H-z) G(z)=1$, we have $\left(a_{i}-z\right) G_{i i}=-(\widetilde{B} G)_{i i}+1$, so that

$$
G_{i i}=\frac{1}{a_{i}-z+\frac{(\widetilde{B} G)_{i i}}{G_{i i}}} .
$$

We shall show:

Proposition.

For all $i=1,2, \ldots, N$,

$$
(\widetilde{B} G)_{i i} \approx \frac{\operatorname{tr} \widetilde{B} G}{\operatorname{tr} G} G_{i i}
$$

Green function entries II

Proposition: $(\widetilde{B} G)_{i i} \approx \frac{\operatorname{tr} \widetilde{B} G}{\operatorname{tr} G} G_{i i}$.
Recall the decomposition $U=-\mathrm{e}^{\mathrm{i} \theta_{i}}\left(I-2 \mathbf{r}_{i} \mathbf{r}_{i}^{*}\right) U^{\langle i\rangle}$, where

$$
\mathbf{r}_{i}:=\frac{\mathbf{e}_{i}+\mathrm{e}^{-\mathrm{i} \theta_{i}} \mathbf{v}_{i}}{\left\|\mathbf{e}_{i}+\mathrm{e}^{-\mathrm{i} \theta_{i}} \mathbf{v}_{i}\right\|_{2}}
$$

with \mathbf{v}_{i} uniformly distributed on $\mathcal{S}_{\mathbb{C}}^{N-1}$. Set $\widetilde{B}^{\langle i\rangle}:=U^{\langle i\rangle} B\left(U^{\langle i\rangle}\right)^{*}$. Then,

$$
\begin{aligned}
(\widetilde{B} G)_{i i} & =\mathbf{e}_{i}^{*}\left(I-2 \mathbf{r}_{i} \mathbf{r}_{i}^{*}\right) \widetilde{B}^{\langle i\rangle}\left(I-2 \mathbf{r}_{i} \mathbf{r}_{i}^{*}\right) G \mathbf{e}_{i} \\
& \approx-\mathrm{e}^{\mathrm{i} \theta_{i}} \mathbf{v}_{i}^{*} \widetilde{B}^{\langle i\rangle} G \mathbf{e}_{i} .
\end{aligned}
$$

Main idea: Introduce two auxiliary quantities:

$$
S_{i}(z):=\mathrm{e}^{\mathrm{i} \theta_{i}} \mathbf{v}_{i}^{*} \widetilde{B}^{\langle i\rangle} G(z) \mathbf{e}_{i} \approx-(\widetilde{B} G)_{i i}, \quad T_{i}(z):=\mathrm{e}^{\mathrm{i} \theta_{i}} \mathbf{v}_{i}^{*} G(z) \mathbf{e}_{i}
$$

Derive a system of equations involving $G_{i i}, \mathbb{E}_{i}\left[S_{i}\right]$ and $\mathbb{E}_{i}\left[T_{i}\right]$ and solve $\mathbb{E}_{i}\left[S_{i}\right]$ from the system to get the proposition.

System of G, S and T

Computing $\mathbb{E}_{i}\left[S_{i}\right]$ and $\mathbb{E}_{i}\left[T_{i}\right]$ (using Gaussian approximation or Stein lemma), we get

$$
\begin{aligned}
& \mathbb{E}_{i}\left[S_{i}\right] \approx \operatorname{tr}(\widetilde{B} G)\left(\mathbb{E}_{i}\left[S_{i}\right]-b_{i} \mathbb{E}_{i}\left[T_{i}\right]\right)+\operatorname{tr}(\widetilde{B} G \widetilde{B})\left(G_{i i}+\mathbb{E}_{i}\left[T_{i}\right]\right), \\
& \mathbb{E}_{i}\left[T_{i}\right] \approx \operatorname{tr} G\left(\mathbb{E}_{i}\left[S_{i}\right]-b_{i} \mathbb{E}_{i}\left[T_{i}\right]\right)+\operatorname{tr}(\widetilde{B} G)\left(G_{i i}+\mathbb{E}_{i}\left[T_{i}\right]\right) .
\end{aligned}
$$

Solving the system for $\mathbb{E}_{i}\left[S_{i}\right]$ gives

$$
\mathbb{E}_{i}\left[S_{i}\right] \approx-\frac{\operatorname{tr}(\widetilde{B} G)}{\operatorname{tr} G} G_{i i}+\left(\frac{\operatorname{tr}(\widetilde{B} G)-(\operatorname{tr} \widetilde{B} G)^{2}}{\operatorname{tr} G}+\operatorname{tr}(\widetilde{B} G \widetilde{B})\right)\left(G_{i i}+\mathbb{E}_{i}\left[T_{i}\right]\right)
$$

Claim: The second term is negligible. ("Ward identity")
Proof: Averaging over i and using the facts $\mathbb{E}_{i}\left[S_{i}\right] \approx S_{i} \approx-(\widetilde{B} G)_{i i}$, and the less obvious fact $\left|\operatorname{tr} G-N^{-1} \sum_{i} \mathbb{E}_{i}\left[T_{i}\right]\right| \geq c$, which can be proved via a continuity argument.

Since $\left.(\widetilde{B} G)_{i i} \approx \mathbb{E}_{i}[\widetilde{B} G)_{i i}\right] \approx-\mathbb{E}_{i}\left[S_{i}\right]$, we finally get

$$
\left|(\widetilde{B} G)_{i i}-\frac{\operatorname{tr}(\widetilde{B} G)}{\operatorname{tr} G} G_{i i}\right| \prec \frac{1}{\sqrt{N \eta}}, \quad z=E+\mathrm{i} \eta
$$

Ongoing work:

- Strong local law:

$$
\left|m_{H}(z)-m_{\mu_{A} \boxplus \mu_{B}}(z)\right| \prec \frac{1}{N \eta}, \quad\left|G_{i j}(z)-\delta_{i j} \frac{1}{a_{i}-\omega_{B}(z)}\right| \prec \frac{1}{\sqrt{N \eta}} .
$$

- Derive the sine-kernel statistics of $H=A+U B U^{*}$ in the bulk.

Histogram of eigenvalues of H .

Histogram of eigenvalue gaps of H .

$$
a_{i} \sim \operatorname{Bernoulli}(1 / 2), \quad b_{i} \sim \operatorname{Unif}(-1,1), \quad N=3000
$$

- Multiplicative model: $A^{1 / 2} U B U^{*} A^{1 / 2}$, global law (free multiplicative convolution) is known [Voiculescu '91].

