De Finetti theorems for a Boolean analogue of easy quantum groups

De Finetti theorems for a Boolean analogue of easy quantum groups

Tomohiro Hayase
Graduate School of Mathematical Sciences, the University of Tokyo

March, 2016

Free Probability and the Large N limit, V
The University of California, Berkeley

Free and Boolean de Finetti theorems

Free and Boolean de Finetti theorems:

(1) Free de Finetti theorem for A_{s} (C. Köstler and R. Speicher, 2009)
(2) Free de Finetti theorems for free quantum groups (T. BANICA, S. Curran and R. Speicher, 2012)
(3) Boolean de Finetti theorem for \mathcal{B}_{s} (W.Liu, 2015)

Our result: Find general Boolean de Finetti theorem for a Boolean analogue of free quantum groups.
Our strategy: Find a nice class of interval partitions and use BCS's framework.

Liu himself proved Boolean de Finetti theorems for quantum semigroups by a different way.

De Finetti theorems for free quantum groups

(M, φ) : v.N.alg and faithful normal state
$x_{n} \in M_{\text {s.a. }}(n \in \mathbb{N})$

Invariant under	iff	$\left(x_{n}\right)_{n \in \mathbb{N}}$ is
S_{n}^{+}		free i.i.d. over tail $\left(^{*}\right)$
O_{n}^{+}		$\left(^{*}\right)$ \& centered semicircular
B_{n}^{+}		$\left(^{*}\right)$ \& semicircular
H_{n}		$\left(^{*}\right)$ \& even

Symmetries	Categories of partitions	Distributions
S_{n}^{+}	$N C$	free i.i.d. over tail (*)
O_{n}^{+}	$N C_{2}$	$\left(^{*}\right) \&$ centered semicircular
B_{n}^{+}	$N C_{b}$	$\left(^{*}\right) \&$ semicircular
H_{n}	$N C_{h}$	$\left(^{*}\right) \&$ even

Tannaka-Klein duality: A sequence of free quantum groups $\left(A_{x}(n)\right)_{n \in \mathbb{N}} \stackrel{1: 1}{\Longleftrightarrow}$ A category of noncrossing partitions $N C_{x}$ Cumulants-Moments formula

Review on conditional Boolean independence

Definition

$\eta: N \hookrightarrow M$: a normal embedding of $v . N$. algebras $w / \eta\left(1_{N}\right) \neq 1_{M}$, $E: M \rightarrow N$: a normal conditional expecation $\mathrm{w} / E \circ \eta=i d_{N}$.
$\left(x_{j} \in M_{\text {s.a. }}\right)_{j \in J}$ is Boolean independent w.r.t. E if

$$
E\left[f_{1}\left(x_{j_{1}}\right) f_{2}\left(x_{j_{2}}\right) \cdots f_{k}\left(x_{j_{k}}\right)\right]=E\left[f_{1}\left(x_{j_{1}}\right)\right] E\left[f_{2}\left(x_{j_{2}}\right)\right] \cdots E\left[f_{k}\left(x_{j_{k}}\right)\right],
$$

whenever $j_{1} \neq j_{2} \neq \cdots \neq j_{k}$ and

$$
f_{1}, \ldots, f_{k} \in N\langle X\rangle^{\circ} .
$$

(i.e. N - polynomials without constant terms)

Liu's Boolean de Finetti theorem

Liu defined a quantum semigroup $\mathcal{B}_{s}(n)$ as the universal unital C^{*}-algebra generated by projections $P, U_{i, j}(i, j=1, \ldots, n)$ and relations such that

$$
\begin{aligned}
& \sum_{j=1}^{n} U_{i j} P=P, \sum_{i=1}^{n} U_{i j} P=P \\
& U_{i_{1} j} U_{i_{2} j}=0, \text { if } i_{1} \neq i_{2}, U_{i j_{1}} U_{i j_{2}}=0, \text { if } j_{1} \neq j_{2}
\end{aligned}
$$

Theorem (Liu, 2015)

(M, φ) : a v.N.algebra \& a nondegenerate normal state.
$x_{j} \in M_{\text {s.a. },}, j \in \mathbb{N}$ with $M=W^{*}\left(e v_{x}\left(\mathscr{P}_{\infty}^{o}\right)\right)$ where
$\mathscr{P}_{\infty}^{0}:=\left\{f \in \mathbb{C}\left\langle\left(X_{j}\right)_{j \in \mathbb{N}}\right\rangle \mid f(0)=0\right\}$
TFAE.
(1) The joint distribution of $\left(x_{j}\right)_{j \in \mathbb{N}}$ is invariant under the coaction of B_{s}.
(2) There exists a normal conditional expectation
$E_{\text {tail }}: M \rightarrow M_{\text {tail }}:=\bigcap_{n=1}^{\infty} \overline{\operatorname{ev}_{x}\left(\mathscr{P}_{\geq n}^{\circ}\right)}$ and $\left(x_{j}\right)_{j \in \mathbb{N}}$ is Boolean i.i.d. over tail.

Our strategy

Aim : Fill the missing piece in Boolean de Finetti theorem.
Our strategy : Find a nice class of interval partitions and use BCS's framework.

Difficulity: Bad-behavors of non-unital embeddings and non-faithful states

Review on category of partitions

$P(k, I)$: the set of all partitions of the disjoint union $[k] \amalg[I]$, where $[k]=\{1,2, \ldots, k\}$ for $k \in \mathbb{N}$.
Such a partition will be pictured as

$$
p=\left\{\begin{array}{c}
1 \ldots k \\
\mathcal{P} \\
1 \ldots . l
\end{array}\right\}
$$

where \mathcal{P} is a diagram joining the elements in the same block of the partition. Categorical operations:

$$
\begin{aligned}
p \otimes q & =\{\mathcal{P} \mathcal{Q}\}: \text { Horizontal concatenation } \\
p q & =\left\{\begin{array}{l}
\mathcal{Q} \\
\mathcal{P}\}
\end{array}\right\}-\{\text { closed blocks }\}: \text { Vertical concatenation } \\
p^{*} & =\left\{\mathcal{P}^{\wedge}\right\}: \text { Upside-down turning }
\end{aligned}
$$

category of interval partitions

$N C:=(N C(k, l))_{k, l}:$ the family of all noncrossing partitions $N C_{x}=\left\{N C_{x}(k, I)\right\}_{k, l}, N C_{x}(k, l) \subseteq N C(k, l)$ is a category of noncrossing partitions if
(1) It is stable by categorical operations
(2) $\square \in N C_{x}(0,2)$
(3) $\mid \in N C_{x}(1,1)$
$I(k):=\{\pi \in P(k) \mid$ interval partition $\}, I:=(I(k) \times I(I))_{k, I}$

Definition (Category of interval partitions)

$I_{x}=\left\{I_{x}(k, I)\right\}_{k, l}, I_{x}(k, I) \subseteq I(k, I)$ is a category of interval partitions if
(1) It is stable by categorical operations
(2) $\square \in I_{x}(0,2)$

Category of interval partitions

Remark

$$
I_{x}(k, I)=I_{x}(k, 0) \times I_{x}(0, I)
$$

$$
I_{x}(k):=I_{x}(0, k)
$$

Example

The followings are categories of interval partitions.
(1) $I_{2}=(\{\pi \in I(k) \mid \text { block size } 2\})_{k}$
(2) $I_{b}=(\{\pi \in I(k) \mid \text { block size } \leq 2\})_{k}$
(3) $I_{h}=(\{\pi \in I(k) \mid \text { block size even }\})_{k}$

Review on $N C_{x}$

To find the class of interval partitions suited to de Finetti, review on $N C_{x}$. $N C, N C_{2}, N C_{b}$, and $N C_{h}$ are block-stable,
i.e. for any $\pi \in N C_{x}$ and $V \in \pi$,

These four categories of noncrossing partitions are also closed under taking an interval in NC, i.e.

$$
\rho, \sigma \in N C_{x}(k), \pi \in N C(k), \rho \leq \pi \leq \sigma \Longrightarrow \pi \in N C_{x}(k) .
$$

This condtition appears in Möbius inversions:

Review on Möbius function

Let (Q, \leq) be a finite poset. The Möbius function $\mu_{Q}:\left\{(\pi, \sigma) \in Q^{2} \mid \pi \leq \sigma\right\} \rightarrow \mathbb{C}$ is defined by the following relations: for any $\pi, \sigma \in Q$ with $\pi \leq \sigma$,

$$
\begin{aligned}
& \sum_{\substack{\rho \in Q \\
\pi \leq \rho \leq \sigma}} \mu_{Q}(\pi, \rho)=\delta(\pi, \sigma), \\
& \sum_{\substack{\rho \in Q \\
\pi \leq \rho \leq \sigma}} \mu_{Q}(\rho, \sigma)=\delta(\pi, \sigma),
\end{aligned}
$$

where if $\pi=\sigma$ then $\delta(\pi, \sigma)=1$, otherwise, $\delta(\pi, \sigma)=0$.

Closed under taking an interval

If $R \subseteq Q$ is closed under taking an interval in Q,

$$
\mu_{R}(\pi, \sigma)=\mu_{Q}(\pi, \sigma)
$$

Blockwise condition

We define a suitable class of interval partitions.

Definition (Blockwise condition)

Let D be a category of interval partition. D is said to be blockwise if
(1) D is block-stable,
(2) D is closed under taking an interval in I, i.e.,

$$
\rho, \sigma \in D(k), \pi \in I(k), \rho \leq \pi \leq \sigma \Longrightarrow \pi \in D(k) .
$$

Key condition

If D is blockwise,

$$
\mu_{D(k)}(\pi, \sigma)=\mu_{I(k)}(\pi, \sigma)
$$

Pairing

By composition with the pair partition $\sqcap \&$ the unit partition |, it holds that

I_{x} : a category of interval partitions
Becasue the unit partition $\mid \notin I_{x}(1,1)$, in general,

Pairing in blockwise category of interval partition

Lemma

D : a blockwise category of interval partitions
If $k:$ even $\& k>2$, or $k:$ odd $\& k>\min \left\{k \mid 1_{k} \in D(k)\right\}=: 2 n_{D}-1$, we have

Consider the case k is odd, $k \neq 2 n_{D}-1$. We have the following inequalities among partitions.

By block-stable property, $\mathbf{1}_{k-2} \otimes \in D$.

Classification

D : blockwise category of interval partitions $L_{D}:=\left\{k \in \mathbb{N} \mid \mathbf{1}_{k} \in D(k)\right\}$

$$
I_{D}:=\sup \left\{I \in \mathbb{N} \mid 2 I \in L_{D}\right\}
$$

$$
m_{D}:= \begin{cases}\sup \left\{m \in \mathbb{N} \mid 2 m-1 \in L_{D}\right\}, & \text { if } L_{D} \text { contains some odd numbers, } \\ \infty, & \text { otherwise }\end{cases}
$$

$n_{D}:= \begin{cases}\min \left\{m \in \mathbb{N} \mid 2 m-1 \in L_{D}\right\}, & \text { if } L_{D} \text { contains some odd numbers, } \\ \infty, & \text { otherwise } .\end{cases}$

By lemma, we have
(1) $m_{D}-n_{D} \leq I_{D}$ if $n_{D} \neq \infty$.
(2) $l_{D} \leq m_{D}+n_{D}-1$.

And D is determined by I_{D}, m_{D} and n_{D}.

A Boolean analogue of free quantum groups

Definition

D : a blockwise category of interval partitions.
$C\left(G_{n}^{D}\right):=*$-algebra generated by $p, u_{i j}(1 \leq i, j \leq n)$ with

$$
p=p^{*}=p^{2}, u_{i j}^{*}=u_{i j}
$$

and the following relations:
for any k with $\mathbf{1}_{k}$:=

$$
\begin{aligned}
& \sum_{i=1}^{n} u_{i i j 1 \cdots u_{i j_{k}} p= \begin{cases}p, & j_{1}=\cdots=j_{k}, \\
0, & \text { otherwise },\end{cases} }^{\sum_{j=1}^{n} u_{i j} \cdots u_{i_{k} j} p= \begin{cases}p, & i_{1}=\cdots=i_{k} \\
0, & \text { otherwise }\end{cases} } .
\end{aligned}
$$

Notations on $C\left(G_{n}^{D}\right)$

Set a *-hom $\Delta: C\left(G_{n}^{D}\right) \rightarrow C\left(G_{n}^{D}\right) \otimes C\left(G_{n}^{D}\right)$ by

$$
\begin{aligned}
\Delta\left(u_{i j}\right) & =\sum_{k=1}^{n} u_{i k} \otimes u_{k j} \\
\Delta(p) & =p \otimes p .
\end{aligned}
$$

Δ is a coproduct: $(\mathrm{id} \otimes \Delta) \Delta=(\Delta \otimes \mathrm{id}) \Delta$.
Set $\mathscr{P}_{\infty}^{o}:=$ the *-algebra of all nonunital polynomials in noncommutative countably infinite many variables $\left(X_{j}\right)_{j \in \mathbb{N}}$.
We can define a linear map $\Psi_{n}: \mathscr{P}_{\infty}^{o} \rightarrow \mathscr{P}_{\infty}^{o} \otimes C\left(G_{n}^{D}\right)$ as the extension of

$$
\Psi_{n}\left(X_{j_{1}} \cdots X_{j_{k}}\right):=\sum_{i \in[n]^{k}} X_{i_{1}} \cdots X_{i_{k}} \otimes p u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} p, \mathbf{j} \in[n]^{k}
$$

Ψ_{n} is a coaction, that is,

$$
\left(\Psi_{n} \otimes \mathrm{id}\right) \circ \Psi_{n}=(\mathrm{id} \otimes \Delta) \circ \Psi_{n}
$$

Fixed point algebra

Denote by $\mathscr{P}^{\Psi_{n}}$ the fixed point algebra:

$$
\mathscr{P}^{\Psi_{n}}:=\left\{f \in \mathscr{P}_{\infty}^{0} \mid f=f \otimes p\right\} .
$$

We have

$$
\mathscr{P}^{\Psi_{n}}=\operatorname{Span}\left\{X_{\pi} \in \mathscr{P}_{\infty}^{o} \mid \pi \in D(k), k \in \mathbb{N}\right\}
$$

where $X_{\pi}:=\sum_{\mathbf{j} \in[n]^{k}} X_{j_{1}} \cdots X_{j_{k}}$. By this representation of $\mathscr{P}^{\Psi_{n}}$, there is a $\pi \leq k e r j$
functional h on the subspace S_{n}^{D} satisfying

$$
(\mathrm{id} \otimes h) \Delta=(h \otimes \mathrm{id}) \Delta=h
$$

Define a linear map $E_{n}: \mathscr{P}_{\infty}^{\circ} \rightarrow \mathscr{P}^{\Psi_{n}}$ by $E_{n}:=(\mathrm{id} \otimes h) \circ \Psi_{n}$.

Invariance

(M, φ) : a v.N.algebra \& a nondegenerate normal state.

Definition

$\left(x_{j} \in M_{\text {s.a. }}\right)_{j \in \mathbb{N}}$ is said to have G^{D}-invariant joint distribution if

$$
\left(\varphi \circ e v_{x} \otimes i d\right) \circ \Psi_{n}=\varphi \circ e v_{x} \otimes p
$$

Main Theorem

Theorem

(M, φ) : a v.N.algebra \& a nondegenerate normal state.
$x_{j} \in M_{\text {s.a. }}, j \in \mathbb{N}$ with $M=W^{*}\left(e v_{x}\left(\mathscr{P}_{\infty}^{o}\right)\right)$
For any blockwise category of interval partitions D, TFAE.
(1) The joint distribution of $\left(x_{j}\right)_{j \in \mathbb{N}}$ is G^{D}-invariant.
(2) $\left(x_{j}\right)_{j \in \mathbb{N}}$ is Boolean i.i.d. over tail,
\& for any k with $1_{k} \in D(k), K_{k}^{E_{\text {tail }}}\left[x_{1} b_{1}, x_{1} b_{2}, \ldots, x_{1}\right]=0$ $, b_{1}, \cdots, b_{k} \in M_{\text {tail }} \cup\{1\}$.

In particular,

> | Symmetries | Categories of partitions | Distributions |
| :--- | :--- | :--- |

G_{n}^{l}	I	Boolean i.i.d. over tail $\left(^{*}\right)$
$G_{n}^{l_{2}}$	I_{2}	$\left({ }^{*}\right) \&$ centered Bernoulli
$G_{n}^{l_{b}}$	I_{b}	$\left(^{*}\right) \&$ Bernoulli
$G_{n}^{l_{h}}$	I_{h}	$\left(^{*}\right) \&$ even

Strategy

Assume the joint distribution of $\left(x_{j}\right)_{j \in \mathbb{N}}$ is G^{D}-invariant.
Since G^{D}-invariance implies \mathcal{B}_{s}-invariance, there exist a normal c.e.
$E_{\text {tail }}: M \rightarrow M_{\text {tail }}$ given by $E_{\text {tail }}=e_{\text {tail }}(\cdot) e_{\text {tail }}$.
ISTS for any $b_{0}, \ldots, b_{k} \in M_{\text {tail }} \cup\{1\}, \mathbf{j} \in[n]^{k}$, and $k \in \mathbb{N}$,

$$
E_{\text {tail }}\left[x_{j_{1}} b_{1} x_{j_{2}} b_{2} \cdots b_{k-1} x_{j_{k}}\right]=\sum_{\substack{\sigma \in D(k) \\ \sigma \leq \operatorname{ker} j}} K_{\sigma}^{E_{\text {tail }}}\left[x_{1} b_{1}, x_{1} b_{2}, \ldots, x_{1}\right] .
$$

Main strategy of the proof:
(1) Examine $E_{\text {tail }}$ can be approximated by $E_{n}:=(i d \otimes h) \Psi_{n}$
(2) Use Weingarten estimate

If D is blockwise then $\mu_{D(k)}=\mu_{I(k)}$. By using this,

$$
h\left(p u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}} p\right)=\sum_{\substack{\pi, \sigma \in D(k) \\ \pi \leq \operatorname{ker} \dot{j} \\ \sigma \leq \operatorname{ker} \mathbf{j}}} \frac{1}{n^{|\pi|}}\left[\mu_{I(k)}(\pi, \sigma)+O\left(\frac{1}{n}\right)\right](\text { as } n \rightarrow \infty)
$$

(3) Apply moments-cumulants formula.

Difficulty 1 : Coaction is non-multiplicative

Since the coaction Ψ_{n} is non-multiplicative :

$$
\Psi_{n}(f(X) g(X)) \neq \Psi_{n}(f(X)) \wedge_{n}(g(X))
$$

there exist $b_{1}, \ldots, b_{k-1} \in \mathscr{P}^{\Psi_{n}}$ with

$$
\Psi_{n}\left[X_{j_{1}} b_{1} X_{j_{2}} b_{2} \cdots b_{k-1} X_{j_{k}}\right] \neq \sum_{i \in[n]^{k}} X_{i_{1}} b_{1} X_{i_{2}} b_{2} \cdots b_{k-1} X_{i_{k}} \otimes p u_{i_{1} j_{1}} \ldots u_{i_{k} j_{k}} p
$$

So it is difficult to approximate
$E_{\text {tail }}\left[x_{j_{1}} b_{1} \cdots b_{k-1} x_{j_{k}}\right]$ by $E_{n}\left[X_{j_{1}} b_{1} X_{j_{2}} b_{2} \cdots b_{k-1} X_{j_{k}}\right]$.
idea: By block-stable condition, and since $E_{\text {tail }}$ satisfies $E_{\text {tail }}=e_{\text {tail }}(\cdot) e_{\text {tail }}$, the following holds; Assume for any $\mathbf{j} \in[n]^{k}$ and $k \in \mathbb{N}$,

$$
E_{\text {tail }}\left[x_{j_{1}} \cdots x_{j_{k}}\right]=\sum_{\substack{\sigma \in D(k) \\ \sigma \leq k e r j}} K_{\sigma}^{E_{\text {tail }}}\left[x_{1}, \ldots, x_{1}\right] .
$$

Then for any $b_{0}, \ldots, b_{k} \in M_{\text {tail }} \cup\{1\}, \mathbf{j} \in[n]^{k}$, and $k \in \mathbb{N}$,

$$
E_{\text {tail }}\left[x_{j_{1}} b_{1} x_{j_{2}} b_{2} \cdots b_{k-1} x_{j_{k}}\right]=\sum_{\substack{\sigma \in D(k) \\ \sigma \leq \operatorname{ker} \mathrm{j}}} K_{\sigma}^{E_{\text {tail }}}\left[x_{1} b_{1}, x_{1} b_{2}, \ldots, x_{1}\right] .
$$

Difficulty 2

Difficulty 2: As the state φ is non-faithful, we cannot define E_{n} on M and cannot approximate $E_{\text {tail }}$ by E_{n}. idea:
$e_{n}:=$ the orthogonal projection onto $\overline{\operatorname{ev}_{x}\left(\mathscr{P}^{\Psi_{n}}\right) \Omega_{\varphi}}$. If we prove $L^{2}-\lim _{n} e v_{x}\left(E_{n}\left[X_{j_{1}} X_{j_{2}} \cdots X_{j_{k}}\right]\right) \Omega_{\varphi}=E_{\text {tail }}\left[x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}\right] \Omega_{\varphi}\left(\mathbf{j} \in[n]^{k}, k \in \mathbb{N}\right)$
Then s-lim $e_{n}=e_{\text {tail }}$ and hence

$$
s-\lim _{n} e v_{x}\left(E_{n}\left[X_{j_{1}} X_{j_{2}} \cdots X_{j_{k}}\right]\right) e_{n}=E_{\text {tail }}\left[x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}\right]\left(\mathbf{j} \in[n]^{k}, k \in \mathbb{N}\right)
$$

Difficulties and key ideas

Difficulty1: As the state is non-faithful, we cannot define E_{n} on M and cannot approximate $E_{\text {tail }}$ by E_{n}.
Idea : ISTS

$$
\lim _{n \rightarrow \infty} E_{t a i l}\left[x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}\right]=L^{2}-\lim _{n \rightarrow \infty} \operatorname{ev}_{x} \circ E_{n}\left[X_{j_{1}} X_{j_{2}} \cdots X_{j_{k}}\right]
$$

Difficulty2 : Coactions are non-multiplicative. Hence it is difficult to estimate $E_{\text {tail }}\left[x_{j_{1}} b_{1} x_{j_{2}} b_{2} \cdots b_{k-1} x_{j_{k}}\right]\left(b_{0}, \ldots, b_{k} \in M_{\text {tail }} \cup\{1\}\right)$. Idea: ISTS

$$
E_{\text {tail }}\left[x_{j_{1}} \cdots x_{j_{k}}\right]=\sum_{\substack{\sigma \in D(k) \\ \sigma \leq k e r j}} K_{\sigma}^{E_{\text {tail }}}\left[x_{1}, \ldots, x_{1}\right] .
$$

Main Theorem

Theorem

(M, φ) : a v.N.algebra \& a nondegenerate normal state.
$x_{j} \in M_{\text {s.a. }}, j \in \mathbb{N}$ with $M=W^{*}\left(e v_{x}\left(\mathscr{P}_{\infty}^{o}\right)\right)$
For any blockwise category of interval partitions D, TFAE.
(1) The joint distribution of $\left(x_{j}\right)_{j \in \mathbb{N}}$ is G^{D}-invariant.
(2) $\left(x_{j}\right)_{j \in \mathbb{N}}$ is Boolean i.i.d. over tail,
\& for any k with $1_{k} \in D(k), K_{k}^{E_{\text {tail }}}\left[x_{1} b_{1}, x_{1} b_{2}, \ldots, x_{1}\right]=0$ $, b_{1}, \cdots, b_{k} \in M_{\text {tail }} \cup\{1\}$.

In particular,

> | Symmetries | Categories of partitions | Distributions |
| :--- | :--- | :--- |

G_{n}^{l}	I	Boolean i.i.d. over tail $\left(^{*}\right)$
$G_{n}^{l_{2}}$	I_{2}	$\left({ }^{*}\right) \&$ centered Bernoulli
$G_{n}^{l_{b}}$	I_{b}	$\left(^{*}\right) \&$ Bernoulli
$G_{n}^{l_{h}}$	I_{h}	$\left(^{*}\right) \&$ even

C^{*}-closure

Free case: By Tannaka-Klein duality for compact quantum groups, Free quantum groups $A_{x} \Longleftrightarrow N C_{x}$.

$$
\begin{aligned}
A_{x}(n) & =C_{u n i v}^{*}\left(u=\left(u_{i j}\right) \mid u^{t} u==^{t} u u=1\right) / \text { relations implied by } N C_{x} \\
\mathbb{C}\left\langle X_{j} \mid j \in \mathbb{N}\right\rangle^{\Psi_{n}^{A_{x}}} & =\operatorname{Span}\left\{X_{\pi} \in \mathscr{P}_{\infty}^{o} \mid \pi \in N C_{x}\right\} .
\end{aligned}
$$

Boolean case: $C_{\text {univ }}^{*}\left(p, u=\left(u_{i j}\right) \mid\right.$ relations implied by $\left.D\right)$ can be ill-defined.
Liu: $B_{o}(n):=C_{\text {univ }}^{*}\left(p, u=\left(u_{i j}\right) \mid p=p^{*}=p^{2}, u^{t} u p=t u u=p,\|u\| \leq 1\right)$
It is not clear

$$
\mathscr{P}^{\Psi_{n}^{B o}} \stackrel{?}{=} \operatorname{Span}\left\{X_{\pi} \in \mathscr{P}_{\infty}^{o} \mid \pi \in I_{2}\right\} .
$$

Hence h and E_{n} can be changed, it is not obvious that our strategy works well for $B_{o}(n)$.

Summary

Aim : Prove general Boolean de Finetti theorem.
Our strategy : Find a nice class of interval partitions and use BCS's framework.
Key condition: D is blockwise i.e. block-stable and closed under taking an interval in I. Second condition implies

$$
\mu_{D(k)}(\pi, \sigma)=\mu_{I(k)}(\pi, \sigma), \pi, \sigma \in D(k) .
$$

Difficulty1: As the state φ is non-faithful, it is difficult to define E_{n} on \bar{M} and approximate $E_{\text {tail }}$ by E_{n}.
Idea : ISTS

$$
E_{t a i l}\left[x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}\right]=L^{2}-\lim _{n \rightarrow \infty} \operatorname{ev}_{x} \circ E_{n}\left[X_{j_{1}} X_{j_{2}} \cdots X_{j_{k}}\right]
$$

Difficulty2 : Coactions are non-multiplicative. Hence it is difficult to estimate $E_{\text {tail }}\left[x_{j_{1}} b_{1} x_{j_{2}} b_{2} \cdots b_{k-1} x_{j_{k}}\right]\left(b_{0}, \ldots, b_{k} \in M_{\text {tail }} \cup\{1\}\right)$.
Idea : By block-stable condition, ISTS

$$
E_{\text {tail }}\left[x_{j_{1}} \cdots x_{j_{k}}\right]=\sum_{\substack{\sigma \in D(k) \\ \sigma \leq \text { ker } j}} K_{\sigma}^{E_{\text {tail }}}\left[x_{1}, \ldots, x_{1}\right] .
$$

