De Finetti theorems for a Boolean analogue of easy quantum groups

De Finetti theorems for a Boolean analogue of easy quantum groups

Tomohiro Hayase

Graduate School of Mathematical Sciences, the University of Tokyo

March, 2016

Free Probability and the Large N limit, V

The University of California, Berkeley

Free and Boolean de Finetti theorems:

- Free de Finetti theorem for A_s (C. KÖSTLER AND R. SPEICHER, 2009)
- Free de Finetti theorems for free quantum groups (T. BANICA, S. CURRAN AND R. SPEICHER, 2012)
- Solean de Finetti theorem for \mathcal{B}_s (W.LIU, 2015)

<u>Our result</u>: Find general Boolean de Finetti theorem for a Boolean analogue of free quantum groups.

Our strategy: Find a nice class of interval partitions and use BCS's framework.

Liu himself proved Boolean de Finetti theorems for quantum semigroups by a different way.

De Finetti theorems for free quantum groups

 (M, φ) : v.N.alg and faithful normal state $x_n \in M_{s.a.} \ (n \in \mathbb{N})$

Invariant under	iff	$(x_n)_{n\in\mathbb{N}}$ is
S_n^+		free i.i.d. over tail (*)
O_n^+		(*) & centered semicircular
B_n^+		(*) & semicircular
H _n		(*) & even

Symmetries	Categories of partitions	Distributions
S_n^+	NC	free i.i.d. over tail (*)
O_n^+	NC ₂	(*) & centered semicircular
B_n^+	NC _b	(*) & semicircular
H _n	NC _h	(*) & even

Tannaka-Klein duality : A sequence of free quantum groups $(A_x(n))_{n\in\mathbb{N}} \stackrel{1:1}{\longleftrightarrow}$ A category of noncrossing partitions NC_x Cumulants-Moments formula

Definition

 $\eta: N \hookrightarrow M$: a normal embedding of v.N. algebras w/ $\eta(1_N) \neq 1_M$, $E: M \to N$: a normal conditional expectation w/ $E \circ \eta = id_N$.

 $(x_j \in M_{s.a.})_{j \in J}$ is Boolean independent w.r.t. E if

 $E[f_1(x_{j_1})f_2(x_{j_2})\cdots f_k(x_{j_k})] = E[f_1(x_{j_1})]E[f_2(x_{j_2})]\cdots E[f_k(x_{j_k})],$

whenever $j_1 \neq j_2 \neq \cdots \neq j_k$ and

 $f_1,\ldots,f_k\in N\langle X\rangle^\circ.$

(*i.e. N* – *polynomials without constant terms*)

Liu's Boolean de Finetti theorem

Liu defined a quantum semigroup $\mathcal{B}_s(n)$ as the universal unital C^{*}-algebra generated by projections $P, U_{i,j}(i, j = 1, ..., n)$ and relations such that

$$\sum_{j=1}^{n} U_{ij}P = P, \sum_{i=1}^{n} U_{ij}P = P,$$
$$U_{i_1j}U_{i_2j} = 0, \text{ if } i_1 \neq i_2, U_{ij_1}U_{ij_2} = 0, \text{ if } j_1 \neq j_2.$$

Theorem (Liu, 2015)

 (M, φ) : a v.N.algebra & a nondegenerate normal state. $x_j \in M_{s.a.}, j \in \mathbb{N}$ with $M = W^*(ev_x(\mathscr{P}^o_\infty))$ where $\mathscr{P}^o_\infty := \{f \in \mathbb{C}\langle (X_j)_{j \in \mathbb{N}} \rangle \mid f(0) = 0\}$ TFAE.

• The joint distribution of $(x_j)_{j \in \mathbb{N}}$ is invariant under the coaction of B_s .

② There exists a normal conditional expectation $E_{tail}: M \to M_{tail} := \bigcap_{n=1}^{\infty} \overline{\operatorname{ev}_{x}(\mathscr{P}_{\geq n}^{o})}^{\sigma W}$ and $(x_{j})_{j \in \mathbb{N}}$ is Boolean i.i.d. over tail. Aim : Fill the missing piece in Boolean de Finetti theorem.

Our strategy : Find a nice class of interval partitions and use BCS's framework.

Difficulity: Bad-behavors of non-unital embeddings and non-faithful states

Review on category of partitions

1

P(k, I): the set of all partitions of the disjoint union $[k] \amalg [I]$, where $[k] = \{1, 2, ..., k\}$ for $k \in \mathbb{N}$. Such a partition will be pictured as

$$p = \begin{cases} 1 \dots k \\ \mathcal{P} \\ 1 \dots l \end{cases}$$

where \mathcal{P} is a diagram joining the elements in the same block of the partition. Categorical operations:

$$p \otimes q = \{\mathcal{PQ}\}: \text{Horizontal concatenation}$$

$$pq = \begin{cases} \mathcal{Q} \\ \mathcal{P} \end{cases} - \{\text{closed blocks}\}: \text{Vertical concatenation}$$

$$p^* = \{\mathcal{P}^{\sim}\}: \text{Upside-down turning}$$

 $NC := (NC(k, I))_{k,l}$: the family of all noncrossing partitions $NC_x = \{NC_x(k, I)\}_{k,l}, NC_x(k, l) \subseteq NC(k, l)$ is a category of noncrossing partitions if

- It is stable by categorical operations
- ② $\sqcap ∈ NC_x(0,2)$
- $| \in NC_{x}(1,1)$
- $I(k) \coloneqq \{\pi \in P(k) \mid interval \ partition\}, \ I \coloneqq (I(k) \times I(I))_{k,l}$

Definition (Category of interval partitions)

 $I_x = \{I_x(k, l)\}_{k, l}, I_x(k, l) \subseteq I(k, l)$ is a category of interval partitions if

- It is stable by categorical operations
- $\square \in I_{x}(0,2)$

Remark

$$I_x(k,l)=I_x(k,0)\times I_x(0,l)$$

 $I_x(k) \coloneqq I_x(0,k)$

Example

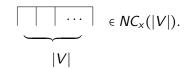
The followings are categories of interval partitions.

1
$$I_2 = (\{\pi \in I(k) \mid block \ size \ 2\})_k$$

$$I_b = (\{\pi \in I(k) \mid block \ size \le 2\})_k$$

•
$$I_h = (\{\pi \in I(k) \mid block \ size \ even\})_k$$

To find the class of interval partitions suited to de Finetti, review on NC_x . NC, NC_2, NC_b , and NC_h are **block-stable**, i.e. for any $\pi \in NC_x$ and $V \in \pi$,



These four categories of noncrossing partitions are also **closed under taking an interval in** *NC*, i.e.

$$\rho, \sigma \in \mathsf{NC}_{\mathsf{x}}(k), \pi \in \mathsf{NC}(k), \rho \leq \pi \leq \sigma \Longrightarrow \pi \in \mathsf{NC}_{\mathsf{x}}(k).$$

This condtition appears in Möbius inversions:

Review on Möbius function

Let (Q, \leq) be a finite poset. The Möbius function $\mu_Q: \{(\pi, \sigma) \in Q^2 \mid \pi \leq \sigma\} \rightarrow \mathbb{C}$ is defined by the following relations: for any $\pi, \sigma \in Q$ with $\pi \leq \sigma$,

$$\sum_{\substack{\rho \in \mathbf{Q} \\ \pi \le \rho \le \sigma}} \mu_{\mathbf{Q}}(\pi, \rho) = \delta(\pi, \sigma),$$
$$\sum_{\substack{\rho \in \mathbf{Q} \\ \pi \le \rho \le \sigma}} \mu_{\mathbf{Q}}(\rho, \sigma) = \delta(\pi, \sigma),$$

where if $\pi = \sigma$ then $\delta(\pi, \sigma) = 1$, otherwise, $\delta(\pi, \sigma) = 0$.

Closed under taking an interval

If $R \subseteq Q$ is closed under taking an interval in Q,

 $\mu_R(\pi,\sigma) = \mu_Q(\pi,\sigma).$

We define a suitable class of interval partitions.

Definition (Blockwise condition)

Let D be a category of interval partition. D is said to be *blockwise* if

- D is block-stable,
- 2 D is closed under taking an interval in I, i.e.,

$$\rho, \sigma \in D(k), \pi \in I(k), \rho \leq \pi \leq \sigma \Longrightarrow \pi \in D(k).$$

Key condition

If D is blockwise,

$$\mu_{D(k)}(\pi,\sigma) = \mu_{I(k)}(\pi,\sigma).$$

By composition with the pair partition \sqcap & **the unit partition** \mid , it holds that

$$\overbrace{k} \in NC_{x}(0,k) \Longrightarrow \overbrace{k-2} \in NC_{x}(0,k-2).$$

 I_x : a category of interval partitions Becasue **the unit partition** $| \notin I_x(1,1)$, in general,

$$\underbrace{|}_{k} \cdots \in I_{x}(0,k) \not\Longrightarrow \underbrace{|}_{k-2} \in I_{x}(0,k-2).$$

Pairing in blockwise category of interval partition

Lemma

D : a blockwise category of interval partitions If *k* : even & k > 2, or *k* : odd & $k > min\{k \mid 1_k \in D(k)\} =: 2n_D - 1$, we have

$$\overbrace{k} \quad \stackrel{\leftarrow}{\leftarrow} D(0,k) \Longrightarrow \underbrace{[} \\ \underset{k-2}{\frown} \\ \stackrel{\leftarrow}{\leftarrow} D(0,k-2).$$

Consider the case k is odd, $k \neq 2n_D - 1$. We have the following inequalities among partitions.

$$1_{2n_D-1} \underbrace{ \begin{array}{c} & & \\ & \\ & & \\$$

By block-stable property, $\mathbf{1}_{k-2} \otimes \in D$.

Classification

D: blockwise category of interval partitions $L_D := \{k \in \mathbb{N} \mid \mathbf{1}_k \in D(k)\}$

$$\begin{split} I_D &\coloneqq \sup\{I \in \mathbb{N} \mid 2I \in L_D\}, \\ m_D &\coloneqq \begin{cases} \sup\{m \in \mathbb{N} \mid 2m - 1 \in L_D\}, & \text{if } L_D \text{ contains some odd numbers,} \\ \infty, & \text{otherwise.} \end{cases} \\ n_D &\coloneqq \begin{cases} \min\{m \in \mathbb{N} \mid 2m - 1 \in L_D\}, & \text{if } L_D \text{ contains some odd numbers,} \\ \infty, & \text{otherwise.} \end{cases} \end{split}$$

By lemma, we have

$$m_D - n_D \leq l_D \text{ if } n_D \neq \infty.$$

$$l_D \leq m_D + n_D - 1.$$

And D is determined by I_D , m_D and n_D .

A Boolean analogue of free quantum groups

Definition

D: a blockwise category of interval partitions. $C(G^D_n):=$ *-algebra generated by $p,\;u_{ij}(1\leq i,j\leq n)$ with

$$p=p^*=p^2, u_{ij}^*=u_{ij}$$

and the following relations:

for any k with $\mathbf{1}_k := \underbrace{ \begin{array}{c} & & \\ &$

Notations on $C(G_n^D)$

Set a *-hom $\Delta: C(G_n^D) \to C(G_n^D) \otimes C(G_n^D)$ by

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj},$$
$$\Delta(p) = p \otimes p.$$

 Δ is a coproduct: $(\operatorname{id} \otimes \Delta)\Delta = (\Delta \otimes \operatorname{id})\Delta$.

Set $\mathscr{P}^o_{\infty} :=$ the *-algebra of all nonunital polynomials in noncommutative countably infinite many variables $(X_j)_{j \in \mathbb{N}}$.

We can define a linear map $\Psi_n: \mathscr{P}^o_\infty \to \mathscr{P}^o_\infty \otimes C(G^D_n)$ as the extension of

$$\Psi_n(X_{j_1}\cdots X_{j_k}) \coloneqq \sum_{\mathbf{i}\in[n]^k} X_{i_1}\cdots X_{i_k} \otimes pu_{i_1j_1}\cdots u_{i_kj_k}p, \ \mathbf{j}\in[n]^k$$

 Ψ_n is a coaction, that is,

$$(\Psi_n \otimes \mathrm{id}) \circ \Psi_n = (\mathrm{id} \otimes \Delta) \circ \Psi_n.$$

Fixed point algebra

Denote by \mathscr{P}^{Ψ_n} the fixed point algebra:

$$\mathscr{P}^{\Psi_n} \coloneqq \{f \in \mathscr{P}^o_\infty \mid f = f \otimes p\}.$$

We have

$$\mathscr{P}^{\Psi_n} = \operatorname{Span}\{X_{\pi} \in \mathscr{P}^o_{\infty} \mid \pi \in D(k), k \in \mathbb{N}\},\$$

where $X_{\pi} \coloneqq \sum_{\substack{\mathbf{j} \in [n]^k \\ \pi \leq \ker \mathbf{j}}} X_{j_1} \cdots X_{j_k}$. By this representation of \mathscr{P}^{Ψ_n} , there is a functional h on the subspace S_n^D satisfying

 $(\mathrm{id} \otimes h)\Delta = (h \otimes \mathrm{id})\Delta = h.$

Define a linear map $E_n: \mathscr{P}^o_\infty \to \mathscr{P}^{\Psi_n}$ by $E_n := (\mathrm{id} \otimes h) \circ \Psi_n$.

(M, φ) : a v.N.algebra & a nondegenerate normal state.

Definition

 $(x_j \in M_{s.a.})_{j \in \mathbb{N}}$ is said to have G^D -invariant joint distribution if

$$(\varphi \circ ev_x \otimes id) \circ \Psi_n = \varphi \circ ev_x \otimes p.$$

Main Theorem

Theorem

In particular,

Symmetries	Categories of partitions	Distributions
G_n^I	1	Boolean i.i.d. over tail (*)
$G_n^{I_2}$	<i>I</i> ₂	(*) & centered Bernoulli
$G_n^{I_b}$	I _b	(*) & Bernoulli
$G_n^{I_h}$	l _h	(*) & even

Strategy

Assume the joint distribution of $(x_j)_{j \in \mathbb{N}}$ is G^D -invariant. Since G^D -invariance implies \mathcal{B}_s -invariance, there exist a normal c.e. $E_{tail}: M \to M_{tail}$ given by $E_{tail} = e_{tail}(\cdot)e_{tail}$. ISTS for any $b_0, \ldots, b_k \in M_{tail} \cup \{1\}, \mathbf{j} \in [n]^k$, and $k \in \mathbb{N}$,

$$\mathsf{E}_{\mathrm{tail}}[x_{j_1}b_1x_{j_2}b_2\cdots b_{k-1}x_{j_k}] = \sum_{\substack{\sigma \in D(k)\\ \sigma \leq \ker \mathbf{j}}} \mathsf{K}_{\sigma}^{\mathsf{E}_{\mathrm{tail}}}[x_1b_1, x_1b_2, \dots, x_1].$$

Main strategy of the proof:

- **1** Examine E_{tail} can be approximated by $E_n := (id \otimes h)\Psi_n$
- Ose Weingarten estimate

If D is blockwise then $\mu_{D(k)} = \mu_{I(k)}$. By using this,

$$h(pu_{i_1j_1}\cdots u_{i_kj_k}p) = \sum_{\substack{\pi,\sigma\in D(k)\\\pi\leq \ker i\\\sigma\leq \ker j}} \frac{1}{n^{|\pi|}} \left[\mu_{I(k)}(\pi,\sigma) + O(\frac{1}{n}) \right] \text{ (as } n \to \infty)$$

Opply moments-cumulants formula.

Difficulty 1 : Coaction is non-multiplicative

Since the coaction Ψ_n is non-multiplicative :

$$\Psi_n(f(X)g(X)) \neq \Psi_n(f(X))\Lambda_n(g(X)),$$

there exist $b_1, \ldots, b_{k-1} \in \mathscr{P}^{\Psi_n}$ with

$$\Psi_n[X_{j_1}b_1X_{j_2}b_2\cdots b_{k-1}X_{j_k}] \neq \sum_{\mathbf{i}\in[n]^k} X_{i_1}b_1X_{i_2}b_2\cdots b_{k-1}X_{i_k} \otimes pu_{i_1j_1}\cdots u_{i_kj_k}p,$$

So it is difficult to approximate $E_{\text{tail}}[x_{j_1}b_1\cdots b_{k-1}x_{j_k}]$ by $E_n[X_{j_1}b_1X_{j_2}b_2\cdots b_{k-1}X_{j_k}]$. idea: By block-stable condition, and since E_{tail} satisfies $E_{tail} = e_{tail}(\cdot)e_{tail}$, the following holds; Assume for any $\mathbf{j} \in [n]^k$ and $k \in \mathbb{N}$,

$$E_{\text{tail}}[x_{j_1}\cdots x_{j_k}] = \sum_{\substack{\sigma \in D(k) \\ \sigma \leq \text{ker } \mathbf{j}}} K_{\sigma}^{E_{\text{tail}}}[x_1, \dots, x_1].$$

Then for any $b_0, \ldots, b_k \in M_{\text{tail}} \cup \{1\}, \mathbf{j} \in [n]^k$, and $k \in \mathbb{N}$,

$$E_{\text{tail}}[x_{j_1}b_1x_{j_2}b_2\cdots b_{k-1}x_{j_k}] = \sum_{\substack{\sigma \in D(k)\\ \sigma \leq \text{ker } \mathbf{j}}} K_{\sigma}^{E_{\text{tail}}}[x_1b_1, x_1b_2, \dots, x_1].$$

Difficulty 2 : As the state φ is non-faithful, we cannot define E_n on M and cannot approximate E_{tail} by E_n . idea:

 $e_n :=$ the orthogonal projection onto $\overline{\operatorname{ev}_x(\mathscr{P}^{\Psi_n})\Omega_{\varphi}}$. If we prove L^2 -lim_n $\operatorname{ev}_x(E_n[X_{j_1}X_{j_2}\cdots X_{j_k}])\Omega_{\varphi} = E_{tail}[x_{j_1}x_{j_2}\cdots x_{j_k}]\Omega_{\varphi}$ ($\mathbf{j} \in [n]^k, k \in \mathbb{N}$) Then *s*-lim $e_n = e_{tail}$ and hence

$$s - \lim_{n} ev_{x}(E_{n}[X_{j_{1}}X_{j_{2}}\cdots X_{j_{k}}])e_{n} = E_{tail}[x_{j_{1}}x_{j_{2}}\cdots x_{j_{k}}](\mathbf{j} \in [n]^{k}, k \in \mathbb{N})$$

Difficulty1 : As the state is non-faithful, we cannot define E_n on M and cannot approximate E_{tail} by E_n . Idea : ISTS

$$\lim_{n\to\infty} E_{tail}[x_{j_1}x_{j_2}\cdots x_{j_k}] = L^2 - \lim_{n\to\infty} \operatorname{ev}_x \circ E_n[X_{j_1}X_{j_2}\cdots X_{j_k}].$$

Difficulty2 : Coactions are non-multiplicative. Hence it is difficult to estimate $\overline{E_{\text{tail}}[x_{j_1}b_1x_{j_2}b_2\cdots b_{k-1}x_{j_k}]}$ $(b_0,\ldots,b_k \in M_{\text{tail}} \cup \{1\})$. **Idea** : ISTS

$$E_{\text{tail}}[x_{j_1}\cdots x_{j_k}] = \sum_{\substack{\sigma \in D(k) \\ \sigma \leq \ker \mathbf{j}}} K_{\sigma}^{E_{\text{tail}}}[x_1, \dots, x_1].$$

Main Theorem

Theorem

In particular,

Symmetries	Categories of partitions	Distributions
G_n^I	1	Boolean i.i.d. over tail (*)
$G_n^{I_2}$	<i>I</i> ₂	(*) & centered Bernoulli
$G_n^{I_b}$	I _b	(*) & Bernoulli
$G_n^{I_h}$	l _h	(*) & even

C*-closure

<u>Free case</u>: By Tannaka-Klein duality for compact quantum groups, Free quantum groups $A_x \iff NC_x$.

$$A_{x}(n) = C_{univ}^{*}(u = (u_{ij}) \mid u^{t}u = {}^{t}uu = 1)/\text{relations implied by } NC_{x}$$
$$\mathbb{C}\langle X_{j} \mid j \in \mathbb{N} \rangle^{\Psi_{n}^{A_{x}}} = \text{Span}\{X_{\pi} \in \mathscr{P}_{\infty}^{o} \mid \pi \in NC_{x}\}.$$

<u>Boolean case</u>: $C_{univ}^*(p, u = (u_{ij}) | \text{ relations implied by } D)$ can be **ill-defined.** Liu: $B_o(n) := C_{univ}^*(p, u = (u_{ij}) | p = p^* = p^2, u^t up = uu = p, ||u|| \le 1)$ It is not clear

$$\mathscr{P}^{\Psi_n^{\mathcal{B}_o}} \stackrel{?}{=} \operatorname{Span}\{X_{\pi} \in \mathscr{P}_{\infty}^o \mid \pi \in I_2\}.$$

Hence h and E_n can be changed, it is not obvious that our strategy works well for $B_o(n)$.

Summary

Aim : Prove general Boolean de Finetti theorem.

Our strategy : Find a nice class of interval partitions and use BCS's framework.

Key condition: *D* is **blockwise** i.e. block-stable and closed under taking an interval in *I*. Second condition implies

$$\mu_{D(k)}(\pi,\sigma)=\mu_{I(k)}(\pi,\sigma),\pi,\sigma\in D(k).$$

Difficulty1 : As the state φ is **non-faithful**, it is difficult to define E_n on \overline{M} and approximate E_{tail} by E_n . **Idea** : ISTS

$$E_{tail}[x_{j_1}x_{j_2}\cdots x_{j_k}] = L^2 - \lim_{n \to \infty} \operatorname{ev}_x \circ E_n[X_{j_1}X_{j_2}\cdots X_{j_k}].$$

Difficulty2 : Coactions are non-multiplicative. Hence it is difficult to estimate $E_{tail}[x_{j_1}b_1x_{j_2}b_2\cdots b_{k-1}x_{j_k}]$ $(b_0,\ldots,b_k \in M_{tail} \cup \{1\})$. **Idea** : By block-stable condition, ISTS

$$E_{\text{tail}}[x_{j_1} \cdots x_{j_k}] = \sum_{\substack{\sigma \in D(k) \\ \sigma \leq \text{ker } \mathbf{j}}} K_{\sigma}^{E_{\text{tail}}}[x_1, \dots, x_1].$$