Asymptotic moments of random Vandermonde matrix

March Boedihardjo
Joint work with Ken Dykema

Texas A\&M University
March 2016

Vandermonde matrix

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n-1}
\end{array}\right]
$$

If $m=n$ then the determinant is

$$
\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Vandermonde matrix can be used to find the interpolating polynomial with given data.

Random Vandermonde matrix

$$
X_{N}=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & \zeta_{1} & \zeta_{1}^{2} & \ldots & \zeta_{1}^{N-1} \\
1 & \zeta_{2} & \zeta_{2}^{2} & \ldots & \zeta_{2}^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \zeta_{N} & \zeta_{N}^{2} & \ldots & \zeta_{N}^{N-1}
\end{array}\right]
$$

where $\zeta_{1}, \ldots, \zeta_{N}$ are i.i.d. random variables uniformly distributed on the unit circle.

The rows of X_{N} are i.i.d. copies of

$$
v=\left[\begin{array}{c}
1 \\
\zeta \\
\zeta^{2} \\
\vdots \\
\zeta^{N-1}
\end{array}\right]
$$

where ζ is uniformly distributed on the unit circle.
The random vector is isotropic:

$$
\mathbb{E}|\langle v, x\rangle|^{2}=\|x\|_{2}^{2}, \quad x \in \mathbb{C}^{N}
$$

f_{1}, \ldots, f_{N} are i.i.d. real random variables with mean 0 , variance 1 and uniformly bounded moments.

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{k=1}^{N} f_{k}\right|^{2}=N \\
& \mathbb{E}\left|\sum_{k=1}^{N} f_{k}\right|^{4} \sim 3 N^{2}\left|\sum_{k=1}^{N} \zeta^{k}\right|^{2}=N \\
& \mathbb{E}\left|\sum_{k=1}^{N} \zeta^{k}\right|^{4} \sim \frac{2}{3} N^{3} \\
& \left.f_{k}\right|^{2 p}=\left.O\left(N^{p}\right)|\mathbb{E}| \sum_{k=1}^{N} \zeta^{k}\right|^{2 p}=O\left(N^{2 p-1}\right)
\end{aligned}
$$

To compute

$$
\mathbb{E}\left|\sum_{k=1}^{N} f_{k}\right|^{4}
$$

we expand it as

$$
\sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{N} \mathbb{E} f_{k_{1}} f_{k_{2}} f_{k_{3}} f_{k_{4}} .
$$

We consider all partitions on $\{1,2,3,4\}$. Only pair partitions contribute. There are 3 pair partitions so

$$
\mathbb{E}\left|\sum_{k=1}^{N} f_{k}\right|^{4} \sim 3 N^{2}
$$

To compute

$$
\mathbb{E}\left|\sum_{k=1}^{N} \zeta^{k}\right|^{4}
$$

we expand it as

$$
\begin{gathered}
\sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{N} \mathbb{E} \zeta^{k_{1}} \zeta^{-k_{2}} \zeta^{k_{3}} \zeta^{-k_{4}}=\sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{N} \mathbb{E} \zeta^{k_{1}-k_{2}+k_{3}-k_{4}} \\
\mathbb{E} \zeta^{k_{1}-k_{2}+k_{3}-k_{4}}=\left\{\begin{array}{lc}
1, & k_{1}-k_{2}+k_{3}-k_{4}=0 \\
0, & \text { Otherwise }
\end{array}\right.
\end{gathered}
$$

So

$$
\begin{aligned}
\sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{N} \mathbb{E} \zeta^{k_{1}-k_{2}+k_{3}-k_{4}}=\mid & \left\{\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \in\{1, \ldots, N\}^{4}:\right. \\
& \left.k_{1}-k_{2}+k_{3}-k_{4}=0\right\} \mid .
\end{aligned}
$$

The limit

$$
\begin{gathered}
\left.\lim _{N \rightarrow \infty} \frac{1}{N^{3}} \right\rvert\,\left\{\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \in\{1, \ldots, N\}^{4}:\right. \\
\left.k_{1}-k_{2}+k_{3}-k_{4}=0\right\} \mid
\end{gathered}
$$

is given by
$\operatorname{Vol}_{3}\left\{\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in[0,1]^{4}: t_{1}-t_{2}+t_{3}-t_{4}=0\right\}=\frac{2}{3}$.

Therefore,

$$
\sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{N} \mathbb{E} \zeta^{k_{1}-k_{2}+k_{3}-k_{4}} \sim \frac{2}{3} N^{3}
$$

So

$$
\mathbb{E}\left|\sum_{k=1}^{N} \zeta^{k}\right|^{4} \sim \frac{2}{3} N^{3}
$$

Random Vandermonde matrix

$$
X_{N}=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}
1 & \zeta_{1} & \zeta_{1}^{2} & \ldots & \zeta_{1}^{N-1} \\
1 & \zeta_{2} & \zeta_{2}^{2} & \ldots & \zeta_{2}^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \zeta_{N} & \zeta_{N}^{2} & \ldots & \zeta_{N}^{N-1}
\end{array}\right]
$$

where $\zeta_{1}, \ldots, \zeta_{N}$ are i.i.d. random variables uniformly distributed on the unit circle.

First moment

$$
\begin{aligned}
\left(X_{N}\right)_{i, j} & =\frac{1}{\sqrt{N}} \zeta_{i}^{j} . \\
\left(X_{N}^{*}\right)_{i, j} & =\frac{1}{\sqrt{N}} \zeta_{j}^{-i}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{E} \circ \operatorname{tr} X_{N}^{*} X_{N} & =\frac{1}{N} \sum_{i(1), i(2)=1}^{N} \mathbb{E}\left(X_{N}^{*}\right)_{i(1), i(2)}\left(X_{N}\right)_{i(2), i(1)} \\
& =\frac{1}{N^{2}} \sum_{i(1), i(2)=1}^{N} \mathbb{E} \zeta_{i(2)}^{-i(1)} \zeta_{i(2)}^{i(1)}=1
\end{aligned}
$$

Here tr means normalized trace.

Second moment

$$
\begin{aligned}
\mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{2} & =\frac{1}{N^{3}} \sum_{i(1), i(2), i(3), i(4)=1}^{N} \mathbb{E}_{i(2)}^{-i(1)} \zeta_{i(2)}^{i(3)} \zeta_{i(4)}^{-i(3)} \zeta_{i(4)}^{i(1)} \\
& =\frac{1}{N^{3}} \sum_{i(1), i(2), i(3), i(4)=1}^{N} \mathbb{E}_{i(2)}^{i(3)-i(1)} \zeta_{i(4)}^{i(1)-i(3)}
\end{aligned}
$$

Summing over $i(2)=i(4)$, we get 1 .
If $i(2) \neq i(4)$ then $i(1)=i(3)$. Summing over $i(2) \neq i(4)$, we get

$$
\frac{N(N-1) N}{N^{3}}=1-\frac{1}{N} .
$$

Third moment

So

$$
\mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{2}=2-\frac{1}{N} .
$$

So

$$
\mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{2} \rightarrow 2
$$

Using the same method, we obtain

$$
\mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{3} \rightarrow 5
$$

because there are 5 partitions on $\{2,4,6\}$.

Fourth moment

$$
\begin{aligned}
& \mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{4} \\
= & \frac{1}{N^{5}} \sum_{i(1), \ldots, i(8)=1}^{N} \mathbb{E} \zeta_{i(2)}^{i(3)-i(1)} \zeta_{i(4)}^{i(5)-i(3)} \zeta_{i(6)}^{i(7)-i(5)} \zeta_{i(8)}^{i(1)-i(7)} .
\end{aligned}
$$

For each noncrossing partition π on $\{2,4,6,8\}$, summing over $i(2), i(4), i(6), i(8)$ that respect π, we get 1 .

There are 14 noncrossing partitions on $\{2,4,6,8\}$. So noncrossing partitions give 14 .

For the crossing partition $i(2)=i(6) \neq i(4)=i(8)$,

$$
\begin{aligned}
& \mathbb{E} \zeta_{i(2)}^{i(3)-i(1)} \zeta_{i(4)}^{i(5)-i(3)} \zeta_{i(6)}^{i(7)-i(5)} \zeta_{i(8)}^{i(1)-i(7)} \\
= & \mathbb{E} \zeta_{i(2)}^{i(7)-i(5)+i(3)-i(1)} \mathbb{E} \zeta_{i(4)}^{i(1)-i(7)+i(5)-i(3)} \\
= & \left\{\begin{array}{lc}
1, & i(7)-i(5)+i(3)-i(1)=0 \\
0, & \text { Otherwise }
\end{array}\right.
\end{aligned}
$$

Same as before: this gives $\frac{2}{3}$.
Therefore, $\mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{4} \rightarrow 14+\frac{2}{3}$.

General moments

Let

$$
m_{p}=\lim _{N \rightarrow \infty} \mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{p}
$$

1. $m_{1}=1, m_{2}=2, m_{3}=5, m_{4}=14+\frac{2}{3}$ (Ryan, Debbah 09)
2. $c_{p} \leq m_{p} \leq B_{p}$ (Ryan, Debbah 09)
3. \exists measure μ on $[0, \infty)$ of unbounded support such that (Tucci, Whiting 11)

$$
m_{p}=\int x^{p} d \mu(x), \quad p \geq 0
$$

*-moments

Question
Compute

$$
\lim _{N \rightarrow \infty} \mathbb{E} \circ \operatorname{tr} P\left(X_{N}, X_{N}^{*}\right)
$$

for all polynomial P in two noncommuting variables.

R-diagonality

Let (\mathcal{A}, ϕ) be a tracial $*$-probability space.
Definition (Nica and Speicher 97)
$a \in \mathcal{A}$ is R-diagonal if a has the same $*$-distribution as up where

1. u and p are $*$-free in some $*$-probability space $\left(\mathcal{A}^{\prime}, \tau\right)$,
2. u is a Haar unitary, i.e., $\tau\left(u^{n}\right)=\delta_{n=0}$.

Maximal alternating interval partition

Definition

Let $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{p}\right) \in\{1, *\}^{p}$. Then $\sigma(\epsilon)$ is the interval partition on $\{1, \ldots, p\}$ determined by

$$
j \stackrel{\sigma(\epsilon)}{\sim} j+1 \Longleftrightarrow \epsilon_{j} \neq \epsilon_{j+1} .
$$

If $\epsilon=(1,1, *, 1, *, *)$ then

$$
\sigma(\epsilon)=\{\{1\},\{2,3,4,5\},\{6\}\} .
$$

Equivalent definition

Lemma (Nica, Shlyakhtenko, Speicher 01)

a is R-diagonal if and only if

1. $\phi\left(a a^{*} a a^{*} \ldots a a^{*} a\right)=0$ and
2. $\forall \epsilon_{1}, \ldots, \epsilon_{p} \in\{1, *\}$,

$$
\phi\left(\prod_{B \in \sigma(\epsilon)}\left(\prod_{k \in B} a^{\epsilon_{k}}-\phi\left(\prod_{k \in B} a^{\epsilon_{k}}\right)\right)\right)=0 .
$$

Observations

1. R-diagonality completely determines the $*$-distribution of a in terms of the distribution of $a^{*} a$.
2. $a^{*} a$ and $a a^{*}$ are free.

Is Vandermonde R-diagonal

Question (Tucci)
Is the asymptotic $*$-distribution of $X_{N} R$-diagonal?

Affirmative reason: X_{N} has i.i.d. rows so

$$
X_{N} \sim H_{N} X_{N}
$$

where H_{N} is the $N \times N$ random permutation matrix independent of X_{N}.

Question
Are $X_{N}^{*} X_{N}$ and $X_{N} X_{N}^{*}$ asymptotically free?

By hand computation:

Low moments of $X_{N}^{*} X_{N}$ and $X_{N} X_{N}^{*}$ coincide as if they were asymptotically free.

By Matlab:

When $N=10,000$,
$\mid \mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{4}\left(X_{N} X_{N}^{*}\right)^{2}\left(X_{N}^{*} X_{N}\right)^{4}\left(X_{N} X_{N}^{*}\right)^{2}$

- Value computed as if they were asymptotically free $\mid<0.05$.

$X_{N}^{*} X_{N}$ and $X_{N} X_{N}^{*}$ are not asymptotically free

$\lim _{N \rightarrow \infty} \mathbb{E} \circ \operatorname{tr}\left(X_{N}^{*} X_{N}\right)^{4}\left(X_{N} X_{N}^{*}\right)^{2}\left(X_{N}^{*} X_{N}\right)^{4}\left(X_{N} X_{N}^{*}\right)^{2}$
-Value computed as if they were asymptotically free $=\frac{1}{270}$.

R-diagonality with amalgamation

Let \mathcal{A} be a unital $*$-algebra.
Let $\mathcal{E}: \mathcal{A} \rightarrow \mathcal{B}$ be a conditional expectation onto a $*$-subalgebra \mathcal{B}.
Definition (Śniady and Speicher 01)
$a \in \mathcal{A}$ is R-diagonal with amalgamation over \mathcal{B} if 1.

$$
\mathcal{E}\left(a b_{1} a^{*} b_{2} a b_{3} a^{*} \ldots b_{2 p} a\right)=0
$$

2. $\forall \epsilon_{1}, \ldots, \epsilon_{p} \in\{1, *\}$,

$$
\mathcal{E}\left(\prod_{B \in \sigma(\epsilon)}\left(\prod_{k \in B} b_{k} a^{\epsilon_{k}}-\mathcal{E}\left(\prod_{k \in B} b_{k} a^{\epsilon_{k}}\right)\right)\right)=0
$$

Main result

Theorem (B. and Dykema)

$\exists *$-algebra \mathcal{A} containing $C[0,1]$, a conditional expectation $\mathcal{E}: \mathcal{A} \rightarrow C[0,1]$ and $X \in \mathcal{A}$ such that

1. X is R-diagonal with amalgamation over $C[0,1]$ and
2. $\forall b_{1}, \ldots, b_{p} \in C[0,1]$ and $\epsilon_{1}, \ldots, \epsilon_{p} \in\{1, *\}$

$$
\lim _{N \rightarrow \infty} \mathbb{E} \circ \operatorname{tr}\left(\prod_{k=1}^{p} b_{k}^{(N)} X_{N}^{\epsilon_{k}}\right)=\int_{0}^{1} \mathcal{E}\left(\prod_{k=1}^{p} b_{k} X^{\epsilon_{k}}\right) d \lambda
$$

where λ is the Lebesgue measure on $[0,1]$ and

$$
b_{k}^{(N)}=\operatorname{diag}\left(b_{k}\left(\frac{1}{N}\right), b_{k}\left(\frac{2}{N}\right), \ldots, b_{k}\left(\frac{N}{N}\right)\right)
$$

Some $C[0,1]$-valued moments

$$
\begin{aligned}
& \mathcal{E}\left(X X^{*}\right)= 1, \mathcal{E}\left(X X^{*}\right)^{2}=2, \mathcal{E}\left(X X^{*}\right)^{3}=5 \\
& \mathcal{E}\left(X X^{*}\right)^{4}=14+\frac{2}{3} \\
& \mathcal{E}\left(X^{*} X\right)=1, \mathcal{E}\left(X^{*} X\right)^{2}=2, \mathcal{E}\left(X^{*} X\right)^{3}=5 \\
& \mathcal{E}\left(X^{*} X\right)^{4}= 14+\frac{3}{4}-\left(t-\frac{1}{2}\right)^{2}, \quad t \in[0,1] .
\end{aligned}
$$

THANK YOU

