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Self-maps of the upper half-plane

We let C+ = {z ∈ C : =z > 0} and f : C+ → C+ be analytic.

Theorem (The Julia-Carathéodory Theorem)
If α ∈ R is such that

lim inf
z→α

=f (z)

=z
= c <∞,

then
lim

z−→α
^

f (z) = f (α) ∈ R, and

lim
z−→α
^

f (z)− f (α)

z − α
= lim

z−→α
^

f ′(z) = c.

(Guarantees identification of a Fatou point - P. Mellon)
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Noncommutative (nc) functions

Let M,N be operator spaces. An nc set is a family Ω = (Ωn)n∈N such
that Ωn ⊆ Mn(M) and Ωm ⊕ Ωn ⊆ Ωm+n.

Definition (J. L. Taylor - after Kaliuzhnyi-Verbovetskii & Vinnikov)
An nc function defined on an nc set Ω is a family f = (fn)n∈N such that
fn : Ωn → Mn(N) and whenever m,n ∈ N,

1 fm+n(a⊕ c) = fm(a)⊕ fn(c) for all a ∈ Ωm, c ∈ Ωn, and
2 Tfn(c)T−1 = fn(TcT−1) for all c ∈ Ωn, T ∈ GLn(C) such that

TcT−1 ∈ Ωn.

We restrict ourselves to M = N = A - von Neumann algebra. We let
Ω = H+(A), Ωn = H+

n (A) = {a ∈ Mn(A) : =a := (a− a∗)/2i > 0}. Fix

f = (fn)n∈N, fn : H+
n (A)→ H+

n (A).
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Derivatives

For any a ∈ H+
m (A), c ∈ H+

n (A), there exists a linear operator

∆fm,n(a, c) : Mm×n(A)→ Mm×n(A)

such that

fm+n

([
a b
0 c

])
=

[
fm(a) ∆fm,n(a, c)(b)

0 fn(c)

]
, b ∈ Mm×n(A).

If m = n, then
∆fn,n(a,a) = f ′n(a), the Fréchet derivative of fn at a, and
∆fn,n(a, c)(a− c) = fn(a)− fn(c).

With these notions, we can state:
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The Julia-Carathéodory Theorem for nc functions

Theorem (2015)
Let f : H+(A)→ H+(A) be an nc analytic function and let α = α∗ ∈ A.
Assume that for any v ∈ A, v > 0 and any state ϕ : A → C, we have

lim inf
z→0,z∈C+

ϕ(=f1(α + zv))

=z
<∞.

Then
(i) lim

z−→0
^

fn(α⊗ 1n + zv) = f1(α)⊗ 1n ∈ A exists in norm and is

selfadjoint for any n ∈ N, v ∈ Mn(A), v > 0, and
(ii) lim

z−→0
^

∆fn,n(α⊗ 1n + zv , α⊗ 1n + zv ′)(b) exists in the weak operator

topology for any fixed v , v ′ > 0, b ∈ Mn(A).
Moreover, if v = v ′ = b > 0, then the above limit equals the so-limit
limy→0=fn(α⊗ 1n + iyv)/y .
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The Julia-Carathéodory Theorem for nc functions

Important: statement (ii) of the main theorem does NOT mean that
f ′(α) = limy→0 f ′(α + iyv) exists, in the sense that the limit operator
would not depend on v . (Counterexamples from Rudin, Abate, Agler -
Tully-Doyle - Young.) However, IF the limit is independent of v , then it
is completely positive.
There are many results generalizing the Julia-Carathéodory Theorem
for

1 functions of several complex variables (Rudin, Abate, Agler -
Tully-Doyle - Young);

2 functions on C+ with values in spaces of operators (Ky Fan);
3 functions between domains in Banach spaces, operator spaces,

operator algebras (Jafari, Włodarczyk, Mackey - Mellon), etc.
Beyond its noncommutative nature, the result above seems to be new
in the sense that it guarantees the existence of the limits of operators
evaluated in any direction b, and it requires, as hypothesis, only a very
weak initial condition.
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Using the definition of the domain

Let a, c ∈ H+
n (A). Then

=
[
a b
0 c

]
> 0 ⇐⇒ 4=a > b(=c)−1b∗ ⇐⇒ 4=c > b∗(=a)−1b

⇐⇒
∥∥∥(=a)−1/2b(=c)−1/2

∥∥∥ < 2.

So given b ∈ Mn(A), =
[
a εb
0 c

]
> 0 for any 0 < ε < 2

‖(=a)−1/2b(=c)−1/2‖ .

Since f maps H+(A) into itself and ∆f (a, c) is linear,
ε
∥∥(=f (a))−1/2∆f (a, c)(b)(=f (c))−1/2

∥∥ < 2 for any such ε. Get∥∥∥(=f (a))−1/2∆f (a, c)(b)(=f (c))−1/2
∥∥∥ ≤ ∥∥∥(=a)−1/2b(=c)−1/2

∥∥∥ , or

∆f (a, c)(b)(=f (c))−1∆f (a, c)(b)∗ ≤
∥∥∥(=a)−

1
2 b (=c)−

1
2

∥∥∥2
· =f (a).
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Aside (not used in this proof)

If A = C, a = c = z, get |f ′(z)| ≤ =f (z)/=z, the Schwarz-Pick ineq.
It is natural to define

B+
n (c, r) =

{
a ∈ H+

n (A) :
∥∥∥(=a)−1/2(a− c)(=c)−1/2

∥∥∥ ≤ r
}
.

B+
n (c, r) is convex, norm-closed, noncommutative;

If f (c) = c, then fn(B+
n (c, r)) ⊆ B+

n (c, r);
If a ∈ B+

n (c, r), then

‖a‖ ≤ ‖<c‖+‖=c‖

 r2 + 2 + r
√

r2 + 4
2

+ r

√
r2 + 2 + r

√
r2 + 4

2

 ,
=a ≥ 1

2 + r2=c.
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Aside (not used in this proof)

Note similarity with [Agler, Operator theory and the Carathéodory
metric] - description of pseudo-Carathéodory metric on U ⊂ Cd as
d(z,w) = inf sin θM , θM being the angle between the eigenvectors of a
d-tuple M of commuting 2× 2 matrices for which the joint spectrum is
in U and U is a spectral domain for M. (Thanks to V. Paulsen)

Pseudo-Carathéodory metric: if z,w ∈ U, then

d(z,w) = sup{|f (z)− f (w)|/|1− f (w)f (z)| : f : U → D holo}.

Spectral domain: set containing the joint spectrum of M s.t.
Π: H∞(U)→ B(C2), Π(h) = h(M) is a contraction.
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Some steps in the proof

∆f (a, c)(b)(=f (c))−1∆f (a, c)(b)∗ ≤
∥∥∥(=a)−1/2 b (=c)−1/2

∥∥∥2
· =f (a).

lim inf ϕ(=f (α+zv))
=z <∞ =⇒ c(v) = lim =f (α+iyv)

y > 0 and the family
is unif. bounded in y ;
Then

‖f (α+iyv)−f (α+iy ′1)‖2 ≤
∥∥v−1

∥∥ ‖yv − y ′‖2
∥∥∥∥=f (α + iyv)

y

∥∥∥∥∥∥∥∥=f (α + iy ′1)

y ′

∥∥∥∥ ,
providing norm-convergence to f (α).
‖∆f (α+ iyv , α+ iyv ′)(w)‖ bdd, unif. in y ∈ (0,1),w ∈ A, ‖w‖ < 1;

lim inf
y→0

1
y

∥∥∥∥∥=f

([
α + iyv1

iyb
2

iyb∗
2 α + iyv2

])∥∥∥∥∥ <∞;

Finally, for any ε > 0, there exists a dε ∈ A such that any wo
cluster point of ∆f (α + iyv , α + iyv ′)(b) is at norm-distance ∼

√
ε

from dε.
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Example

Consider an nc map h : H+(A)→ H+(A) and the functional equation

ω(a) = a + h(ω(a)), ω : H+(A)→ H+(A) nc map.

Equivalently, ω(a) is the unique fixed point of fa : H+(A)→ H+(A),
fa(w) = a + h(w). We have fa(B+

n (ω(a), r)) ⊆ B+
n (ω(a), r) ∀r > 0.

If α = α∗ ∈ A, {yn}n∈N ⊂ (0,+∞) and v > 0 in A are such that
limn→∞

ω(α+iynv)
‖ω(α+iynv)‖ = ` > 0 and limn→∞ ω(α + iynv) = ω(α) ∈ A, then

automatically
h(H1(ω(α), `)) ⊆ H̄1(ω(α)− α, `),

where

H1(ω(α), `) =
{

w ∈ H+
1 (A) : (w − ω(α))∗(=w)−1(w − ω(α)) < `

}
.

In particular,

lim inf
z→0

ϕ(h(ω(α) + zv))

=z
<∞,

for all v > 0 in A.
Result applies to operator valued free convolution semigroups.
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Thank you!
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