Tensors are higher dimensional analogs of matrices. We will see that one way
to view a symmetric tensor is as a homogeneous polynomial. Basic attributes
of matrices, like eigenvectors, can be defined for tensors. This talk is split in
2 sections– symmetric and non symmetric tensors. For each, we review some
familiar aspects of matrices in preparation for the analogous concept for tensors.

Definition 1. A tensor is a \(d \)-dimensional array \(T = (t_{i_1, \ldots, i_d}) \). The entries are
elements of the ground field \(K \). The set of all tensors of format \(n_1 \times \cdots \times n_d \) form
a vector space of dimension \(n_1 \cdots n_d \) over \(K \).

1 Symmetric Tensors, Homogeneous Polynomials, Eigenvectors

1.1 Square Symmetric Matrices (d = 2)

Let \(K \) be a field. Recall that symmetric matrices correspond to quadratic forms.

Example 2. Let \(Q = 2x^2 + 7y^2 + 23z^2 + 6xy + 10xz + 22yz \). This is represented as
a symmetric \(3 \times 3 \)-matrix as follows:

\[
Q = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 2 & 3 & 5 \\ 3 & 7 & 11 \\ 5 & 11 & 23 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\]

The gradient of a quadratic form is the vector of its partial derivatives. So, it
is a vector of linear forms, giving a map \(K^n \to K^n \).
Example 3. For the quadratic form we have from before, this is given by
\[\nabla Q = \begin{pmatrix} \frac{\partial Q}{\partial x} \\ \frac{\partial Q}{\partial y} \\ \frac{\partial Q}{\partial z} \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 & 3 & 5 \\ 3 & 7 & 11 \\ 5 & 11 & 23 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \]

Then, a vector \(v \in \mathbb{K}^n \) is an \textbf{eigenvector} of \(Q \) if \(v \) is mapped to a scalar multiple of \(v \): \(\nabla Q v = \lambda v \), \(\lambda \in \mathbb{K} \). Replacing \(\mathbb{K}^n \) by projective space \(\mathbb{P}^{n-1} \), we obtain a rational self-map of projective space:
\[\nabla Q : \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}. \]

If \(Q \) is rank-deficient then the linear map has a kernel. These are places where the gradient \(\nabla Q \) vanishes. These are called \textbf{base points} of the map. If \(Q \) has full rank then \(\nabla Q \) is a regular map \(\mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1} \) so it is defined on all of \(\mathbb{P}^{n-1} \).

Question 4. If you are interested in trying an example, do Question 1.

Remark 5. The eigenvectors of \(Q \) are the fixed points \((\lambda \neq 0)\) and base points \((\lambda = 0)\) of the gradient map \(\nabla Q \).

1.2 Symmetric Tensors

An \(n \times \cdots \times n \) tensor \(T = (t_{i_1, \ldots, i_d}) \) is called \textbf{symmetric} if it is unchanged after permuting the indices. Symmetric tensors correspond to homogeneous polynomials of degree \(d \) in \(n \) variables:
\[T = \sum_{i_1, \ldots, i_d=1}^{n} t_{i_1, \ldots, i_d} \cdot x_{i_1} \cdots x_{i_d}. \]

Remark 6. For the rest of this section, it is more convenient to think of a tensor as a polynomial, NOT as an array.

As with matrices, the gradient of \(T \) defines a map \(\nabla T : \mathbb{K}^n \rightarrow \mathbb{K}^n \) (\(T \) is a homogeneous polynomial in \(n \) variables of degree \(d \)).

Definition 7. A vector \(v \in \mathbb{K}^n \) is an \textbf{eigenvector} of \(T \) if \((\nabla T)(v) = \lambda v \) for \(\lambda \in \mathbb{K} \).

Question 8. If you would like to compute an example, do Question 4.
If we again think of this map instead as a map on \(\mathbb{P}^{n-1} \), then the gradient map is a rational map from projective space to itself:

\[
\nabla T : \mathbb{P}^{n-1} \to \mathbb{P}^{n-1}.
\]

The eigenvectors of \(T \) are fixed points \((\lambda \neq 0)\) and base points \((\lambda = 0)\) of \(\nabla T \).

Theorem 9 (Cartwright-Sturmfels). If \(K \) is algebraically closed, then the number of eigenvectors of a general \(d \)-dimensional \(n \times \cdots \times n \) symmetric tensor \(T \) is

\[
\frac{(d-1)^n - 1}{d-2} = \sum_{i=0}^{n-1} (d-1)^i.
\]

Proof. The proof is Question 5. \(\square \)

Example 10. \((n = d = 3)\) Consider the Fermat Cubic \(T = x^3 + y^3 + z^3 \). Its gradient map is the regular map that squares each coordinate:

\[
\nabla T : \mathbb{P}^2 \to \mathbb{P}^2, \ (x : y : z) \mapsto (x^2 : y^2 : z^2).
\]

This has \(7 = 1 + 2 + 2^2 \) fixed points (all combinations of 1,0 minus all 0’s):

\[
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1), (1 : 1 : 1).
\]

Therefore, \(T \) has 7 eigenvectors, as the theorem predicts.

2 Rectangular Tensors, Multilinear Forms, Singular Vectors

2.1 Rectangular matrices \((d = 2)\)

For a rectangular matrix, one instead considers singular vectors. The number of singular vectors is equal to the smaller of the two matrix dimensions. Each rectangular matrix represents a bilinear form.

Example 11. Consider the following bilinear form.

\[
B = 2ux + 3uy + 5uz + 3vx + 7vy + 11vz = (u \ v) \left(\begin{array}{ccc}
2 & 3 & 5 \\
3 & 7 & 11 \\
\end{array} \right) \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\]
Its gradient defines an endomorphism on the direct sum of the row space and the column space. We get a map $\nabla B : \mathbb{K}^2 \oplus \mathbb{K}^3 \to \mathbb{K}^2 \oplus \mathbb{K}^3$ sending the pair

$$((u,v),(x,y,z)) \mapsto \left(\left(\frac{\partial B}{\partial u}, \frac{\partial B}{\partial v}\right), \left(\frac{\partial B}{\partial x}, \frac{\partial B}{\partial y}, \frac{\partial B}{\partial z}\right)\right) = \left(\left(2x + 3y + 5z, 3x + 7y + 11z\right), \left(2u + 3v, 3u + 7v, 5u + 11v\right)\right)$$

Let B be an $m \times n$ matrix over \mathbb{K}. Consider the equations $Bx = \lambda y$, $B^t y = \lambda x$ for $\lambda \in \mathbb{K}$, $x \in \mathbb{K}^n$, $y \in \mathbb{K}^m$. Given a solution to these equations, we see that x is an eigenvector of $B^t B$, y is an eigenvector of BB^t, and λ^2 is a common eigenvalue. We call x, y the right and left singular vector.

Remark 12. The singular pairs (x, y) of a rectangular matrix B are fixed points of the gradient map ∇B of the associated bilinear form. This is now a self-map on the product of projective spaces:

$$\nabla B : \mathbb{P}^{m-1} \times \mathbb{P}^{n-1} \to \mathbb{P}^{m-1} \times \mathbb{P}^{n-1}$$

Question 13. For those interested in computing an example, do Question 2.

2.2 Rectangular Tensors

Consider now a d-dimensional tensor T in $\mathbb{K}^{n_1 \times \cdots \times n_d}$. It corresponds to a multi-linear form.

Definition 14. The singular vector tuples of T are the fixed points of the gradient map

$$\nabla T : \mathbb{P}^{n_1-2} \times \cdots \times \mathbb{P}^{n_d-2} \to \mathbb{P}^{n_1-2} \times \cdots \times \mathbb{P}^{n_d-2}.$$

Example 15. The trilinear form $T = x_1y_1z_1 + x_2y_2z_2$ is interpreted as a $2 \times 2 \times 2$ tensor. The gradient ∇T of this trilinear form is the rational map

$$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

$$((x_1 : x_2), (y_1 : y_2), (z_1 : z_2)) \mapsto ((y_1z_1 : y_2z_2), (x_1z_1 : x_2z_2), (x_1y_1 : x_2y_2)).$$

This map has six fixed points, for example $((1 : 0), (1 : 0), (1 : 0))$, and others. These are the singular vector triples of the tensor T.

4
The expected number of singular vector triples is predicted by the following theorem.

Theorem 16 (Friedland and Ottaviani). For a general $n_1 \times \cdots \times n_d$-tensor T over an algebraically closed field K, the number of singular vector tuples is the coefficient of the monomial $z_1^{n_1-1} \cdots z_d^{n_d-1}$ in the polynomial

$$
\prod_{i=1}^d \frac{(\hat{z}_i)^{n_i} - z_i^{n_i}}{\hat{z}_i - z_i},
$$

where $\hat{z}_i = z_1 + \cdots + z_{i-1} + z_{i+1} + \cdots + z_d$.

Example 17. (Question 3) Consider the $3 \times 3 \times 2 \times 2$ tensor defined by the multilinear form $T = x_1 y_1 z_1 w_1 + x_2 y_2 z_2 w_2$.

Computing the polynomial in the above theorem and examining the coefficient of the monomial $x_1^2 y_1^2 z_1 w_1$, we expect that there are 98 singular vector tuples for T.

We will now determine all singular vectors of T. The gradient map sends

$$
((x_1 : x_2 : x_3), (y_1 : y_2 : y_3), (z_1 : z_2), (w_1 : w_2)) \mapsto
((y_1 z_1 w_1 : y_2 z_2 w_2 : 0), (x_1 z_1 w_1 : x_2 z_2 w_2 : 0), (x_1 y_1 w_1 : x_2 y_2 w_2), (x_1 y_1 z_1 : x_2 y_2 z_2)).
$$

What are the fixed points of this map? First, we observe that $x_3, y_3 = 0$.

If $x_1 = 0$: Then $y_1 = z_1 = w_1 = 0$, so the only solution is $((0, 1, 0), (0, 1, 0), (0, 1), (0, 1))$.

If $x_1 \neq 0$: Then $y_1 z_1 w_1 \neq 0$. So, we may set $x_1 = y_1 = z_1 = w_1 = 1$. Then we obtain:

$$
((1 : x_2 : 0), (1 : y_2 : 0), (1 : z_2), (1 : w_2))
= ((1 : y_2 z_2 w_2 : 0), (1 : x_2 z_2 w_2 : 0), (1 : x_2 y_2 w_2), (1 : x_2 y_2 z_2)).
$$

Macaulay2 (degree + primary decomposition) reveals that there are 17 solutions, and 9 of them are real. So in total, we have 18 singular vector tuples.