Packing Polynomials on Sectors of \mathbb{R}^2

Madeline Brandt

Reed College, Portland, OR
mbrandt@reed.edu

January 11, 2015
Let $I \subset \mathbb{Z}^2$. A **packing polynomial** on I is a polynomial $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f \mid_I$ is a bijection from I to \mathbb{N}.

Introduction
Let \(I \subset \mathbb{Z}^2 \). A **packing polynomial** on \(I \) is a polynomial \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) such that \(f \mid_I \) is a bijection from \(I \) to \(\mathbb{N} \).

The **Cantor Polynomials**:

\[
\begin{align*}
 f(x, y) &= \frac{(x+y)^2}{2} + \frac{x+3y}{2}, \\
 g(x, y) &= \frac{(x+y)^2}{2} + \frac{3x+y}{2}.
\end{align*}
\]

Fueter and Pólya proved that these are the only quadratic packing polynomials on \(\mathbb{N}^2 \).
For all $\alpha \in \mathbb{R}_{\geq 0}$, let

$I(\alpha) =$

$I(\alpha)$ is called a sector.
For all $\alpha \in \mathbb{R}_{\geq 0}$, let

$I(\alpha) =$ \hspace{2cm} $y = \alpha x$

$I(\alpha)$ is called a sector.

- $\alpha \in \mathbb{N}$: Solved by Stanton.
- $\alpha \not\in \mathbb{Q}$: Nathanson conjectured that there are no packing polynomials on $I(\alpha)$.
- $\alpha \in \mathbb{Q}$: we solved.
Example:
This is a packing polynomial on $I(8/5)$, and

$$p(x, y) = 4 \left(x - \frac{y}{2} \right)^2 - x + y.$$
Example:
This is a packing polynomial on \(I(8/5) \), and

\[p(x, y) = 4 \left(x - \frac{y}{2} \right)^2 - x + y. \]

Definition: Let \(p \) be a quadratic packing polynomial on \(I\left(\frac{n}{m}\right) \). Then \(p \) is a \textit{k-stair} polynomial if for any two consecutive integral points \(r, s \) along a line with slope \(\frac{n}{m-1} \), we have \(p(r) - p(s) = \pm k \).
Theorem (Stanton)

Let $n/m \geq 1$, and $(n, m) = 1$. If $I(n/m)$ has a quadratic packing polynomial p, then $n | (m - 1)^2$ and

$$p(x, y) = \frac{n}{2} \left(x - \frac{m-1}{n} y \right)^2 + \text{linear terms.}$$
Theorem (Stanton)

Let $n/m \geq 1$, and $(n, m) = 1$. If $I(n/m)$ has a quadratic packing polynomial p, then $n|(m - 1)^2$ and

$$p(x, y) = \frac{n}{2} \left(x - \frac{m-1}{n} y \right)^2 + \text{linear terms}.$$

This implies that all packing polynomials on sectors $I(n/m)$ are k-stair polynomials for some k.

PREVIOUS RESULT
We will say that two packing polynomials \(p \) on \(I(\alpha) \) and \(q \) on \(I(\beta) \) are \textbf{equivalent} if there exists a linear bijection \(T \) from \(I(\alpha) \) to \(I(\beta) \) such that

\[
p = q \circ T.
\]
We will say that two packing polynomials \(p \) on \(I(\alpha) \) and \(q \) on \(I(\beta) \) are equivalent if there exists a linear bijection \(T \) from \(I(\alpha) \) to \(I(\beta) \) such that

\[
p = q \circ T.
\]

\(k \)-stair to \(-k\)-stair
Equivalence

We will say that two packing polynomials \(p \) on \(I(\alpha) \) and \(q \) on \(I(\beta) \) are **equivalent** if there exists a linear bijection \(T \) from \(I(\alpha) \) to \(I(\beta) \) such that

\[
p = q \circ T.
\]

\(n/m < 1 \) to \(n/m \geq 1 \):
Properties of k-Stair Polynomials

A 3-stair packing polynomial on $I(12/7)$:
Main Result: Necessary Form

Let \(l = \gcd(n, m-1) \).

Theorem (Brandt)

Let \(p \) be a \(k \)-stair packing polynomial on \(I(n/m) \), where \(m \neq 1 \). Then (up to equivalence) \(k \equiv \frac{m-1}{l} \mod \frac{n}{l} \), and

\[
p(x, y) = \frac{n}{2} \left(x - \frac{m-1}{n} y \right)^2 + \left(1 - \frac{kl}{2} \right) x + \frac{2(1-m)+kl(m+1)}{2n} y + c.
\]

The expression for \(p(x, y) \) only depends on \(n, m, \) and \(k \).
Theorem (Brandt)

The following results give the k-stair packing polynomials on sectors $I(\frac{n}{m})$ for all k (up to equivalence).
Theorem (Brandt)

The following results give the k-stair packing polynomials on sectors $I\left(\frac{n}{m}\right)$ for all k (up to equivalence).

1. 1-stair polynomials: $n \mid (m - 1)^2$ and either $m = 1$ or $m - 1 \mid n$.
Main Result: Sufficient Conditions

Theorem (Brandt)
The following results give the k-stair packing polynomials on sectors $I(\frac{n}{m})$ for all k (up to equivalence).

1. 1-stair polynomials: $n \mid (m - 1)^2$ and either $m = 1$ or $m - 1 \mid n$.
2. 2-stair polynomials: $m \equiv 9 \mod 16$ and $n = \frac{1}{16}(m - 1)^2$.

Main Result: Sufficient Conditions

Theorem (Brandt)

The following results give the k-stair packing polynomials on sectors $I\left(\frac{n}{m}\right)$ for all k (up to equivalence).

1. 1-stair polynomials: $n \mid (m - 1)^2$ and either $m = 1$ or $m - 1 \mid n$.
2. 2-stair polynomials: $m \equiv 9 \mod 16$ and $n = \frac{1}{16} (m - 1)^2$.
3. 3-stair polynomials: $m \equiv 10 \mod 27$ or $m \equiv 19 \mod 27$ and $n = \frac{1}{27} (m - 1)^2$.
Main Result: Sufficient Conditions

Theorem (Brandt)
The following results give the k-stair packing polynomials on sectors $I(\frac{n}{m})$ for all k (up to equivalence).

1. 1-stair polynomials: $n \mid (m - 1)^2$ and either $m = 1$ or $m - 1 \mid n$.
2. 2-stair polynomials: $m \equiv 9 \mod 16$ and $n = \frac{1}{16}(m - 1)^2$.
3. 3-stair polynomials: $m \equiv 10 \mod 27$ or $m \equiv 19 \mod 27$ and $n = \frac{1}{27}(m - 1)^2$.
4. There are no k-stair packing polynomials for $k \geq 4$.
1. Prove that there are no packing polynomials of degree greater than 2 on sectors of \mathbb{R}^2.

 • Fueter and Pólya conjectured that this was true on \mathbb{N}^2.

 • Lew and Rosenberg have proved that there are no degree 3 or 4 packing polynomials on \mathbb{N}^2.
1. Prove that there are no packing polynomials of degree greater than 2 on sectors of \mathbb{R}^2.
 - Fueter and Pólya conjectured that this was true on \mathbb{N}^2.
 - Lew and Rosenberg have proved that there are no degree 3 or 4 packing polynomials on \mathbb{N}^2.

2. Prove that there are no packing polynomials on irrational sectors. (Nathanson)
 Acknowledgments

• Joseph Gallian
• The University of Minnesota Duluth Research Experience for Undergraduates in Mathematics Program, including the advisors and visitors to the program.
• This research was supported by the National Science Foundation (grant number DSF 1358659) and the National Security Agency (NSA grant H98230-13-1-0273).
• This presentation was supported by a Reed College Undergraduate Research Opportunity Grant.