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A smooth submanifold M is stationary if for every family {φt}t∈(−1,1) of
diffeomorphisms generated by X ∈ C∞c (U;Rn+m) with K = sptX ,

d

dt
Area(φt(M) ∩ K )

����
t=0

=

Z
M
divM X = 0.

More generally consider stationary integral varifolds.

singM is the set of points where M is not locally a union of smooth
immersions.

M is stable on M \ singM if whenever sptX ⊂ U \ singM and X is
normal to M,

d2

dt2
Area(φt(M) ∩ K )

����
t=0

≥ 0.

In codim = 1, letting X = ζ· unit normal to M,Z
M
|∇Mζ|2 ≤

Z
M
|AM |2ζ2 ζ ∈ C 1

c (M \ singM).
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A branch point of a stationary integral n-varifold is a singular point where
at least one tangent cone is an n-D plane with integer multiplicity ≥ 2.

Example in codim ≥ 2: V = {(z ,w) ∈ C2 : w 2 = z3}

Codim = 1: Area minimizers do not carry branch points (De Giorgi).
However, stable hypersurfaces can carry branch points.

Example: Bour’s surface¦�
x1 − 1

2 (x2
1 − x2

2 ),−x2 − x1x2,
4
3 Re(x1 + ix2)3/2

�
: x1, x2 ∈ R

©

More elaborate constructions of branched q-valued minimal graphs in
arbitrary dimension (Simon-Wickramasekera 2007, Krummel 2011).

Brian Krummel (Joint work with Neshan Wickramasekera) Structure of branch sets



Little is known about branch points in general.

(For instance, it is possible that dim singM = n.)

However, we now have a detailed description (size, local structure,...) in
the simplest case of multiplicity two tangent planes.
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Theorem (Wickramasekera (2008))

∃ε = ε(n, δ) ∈ (0, 1) for any orientable immersed stable minimal
hypersurface M ⊂ Bn+1

2 (0) with 0 ∈ M s.t.

Hn−2(singM) <∞, Hn(M)

ωn2n
≤ 3− δ,

Z
M∩B1(0)×R

|xn+1|2 ≤ ε.

The component of M ∩ Bn+1
1 (0)× R containing 0 is the graph of a C 1,µ

single-valued or 2-valued function in Bn+1
1/2 (0), where µ = µ(n, δ) ∈ (0, 1).

(Wickramasekera (unpublished): Hn−2(singM) <∞ not needed.)
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Theorem (Simon-Wickramasekera (2011))

If V is a stationary integral n-varifold with arbitrary codimension and V
is the graph of a C 1,µ two-valued function, then the branch set has
Hausdorff dimension at most n − 2.

Theorem (K-Wickramasekera)

If V is a stationary integral n-varifold with arbitrary codimension and V
is the graph of a C 1,µ two-valued function, then the branch set is
countably (n − 2)-rectifiable, i.e. is contained in the countable union of a
set of (n − 2)-D Hausdorff measure zero and images of Lipschitz maps
Fj : Rn−2 → Rn. (on going)
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A q-valued function u on a subset Ω ⊆ Rn takes an unordered q-tuple
u(X ) = {u1(X ), u2(X ), ..., uq(X )} at each X ∈ Ω.

We can not add/multiply general multivalued functions.
Example: Is {−1, 1}+ {3,−3} equal to {2,−2} or {−4, 4}?

Singular set Bu: set of all points X0 ∈ Ω s.t. there is no ball BR(X0) s.t.
u = {u1, . . . , uq} on BR(X0) for C 1 single-valued functions u1, . . . , uq.
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Have metric G on unordered q-tuples

G(u, v) = inf
σ permutation

�
qX

j=1

|uj − vσ(j)|2
�1/2

Can use this to define continuity, derivatives by affine approximation,
Hölder continuity, and limits.
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For simplicity, we will first consider as a model case:

C 1,µ two-valued harmonic functions: u ∈ C 1,µ(Ω) for µ ∈ (0, 1] such
that for every ball BR(X0) ⊂ Ω \ Bu, u(X ) = {u1(X ), u2(X )} on BR(X0)
for single-valued harmonic functions u1 and u2.

Arise as approximations of branched solutions to minimal surface system.

By replacing u(X ) = {u1(X ), u2(X )} with {±(u1(X )− u2(X ))/2}, may
suppose u is symmetric, i.e. u(X ) = {u1(X ),−u1(X )} at each X ∈ Ω.

Will look at

Ku = {X ∈ B1(0) : u(X ) = {0, 0},Du(X ) = {0, 0}}.

Observe Bu ⊆ Ku.
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Theorem (Simon-Wickramasekera (2011))

If u ∈ C 1,µ(Ω) is a two-valued function that is harmonic on Ω \ Bu, then
dimKu ≤ n − 2.

Theorem (K-Wickramasekera (preprint))

If u ∈ C 1,µ(Ω) is a two-valued function that is harmonic on Ω \ Bu, then
Ku is countably (n − 2)-rectifiable, i.e. is contained in the countable
union of a set of (n − 2)-D Hausdorff measure zero and images of
Lipschitz maps Fj : Rn−2 → Rn.
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To each two-valued harmonic function u ∈ C 1,µ(B1(0)) and Y ∈ Ku,
define frequency function

Nu,Y (ρ) =
Du,Y (ρ)

Hu,Y (ρ)
=
ρ2−n R

Bρ(Y ) |Du|2

ρ1−n R
∂Bρ(Y ) |u|2

.

Nu,Y (ρ) is monotone nondecreasing because

dNu,Y

dρ
(ρ) =

2ρ1−n

Hu,Y (ρ)

Z
∂Bρ(Y )

|RDRu − Nu,Y (R)u|2 ≥ 0

for R = |X − Y |.

Nu,Y (ρ) ≡ α constant if and only if u is homogeneous degree α.

May define the frequency Nu(Y ) = limρ↓0 Nu,Y (ρ).
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Define blow-ups

ϕ = lim
j→∞

u(Y + ρjX )

‖G(u(Y + ρjX ), {0, 0})‖L2(B1(0))

in C 1 and W 1,2 topologies for appropriate ρj → 0+.

ϕ ∈ C 1,1/2(B1(0)) is a nonzero, homogeneous degree Nu(Y ), symmetric,
harmonic two-valued function.

Note that ϕ may not be unique independent of the sequence ρj .

Simon and Wickramasekera showed by a dimension reduction argument
using blow-ups that dimKu ≤ n − 2.

ϕ is translation invariant along S(ϕ) = {X ∈ Kϕ : Nϕ(X ) = Nϕ(0)}.

Obtain stratification

S0 ⊆ S1 ⊆ S2 ⊆ · · · Sn−3 ⊆ Sn−2 = Ku, dimSj ≤ j ,

where Sj is the set Y ∈ Ku at which every blow-up ϕ has dim S(ϕ) ≤ j .
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Will use a method due to Simon (1993), which was originally applied to
multiplicity one classes of minimal submanifolds.

Consider cylindrical two-valued harmonic functions ϕ of the form

ϕ(X1,X2,X3, . . . ,Xn) = {±Re c(X1 + iX2)α}

after a rotation of Rn for c ∈ Cm and α = k/2, k ≥ 3 an integer.

Fix a cylindrical two-valued function ϕ(0) = ϕ(0)(X1,X2).

Use coordinates X = (x , y) where x = (X1,X2) and y = (X3, . . . ,Xn).

Let u ∈ C 1,µ(B1(0)) be a harmonic two-valued function.

Let ϕ ∈ C 1,µ(B1(0)) be cylindrical two-valued function near ϕ(0) in L2.

Assume for ε ∈ (0, 1) to be determined the excess

E =

�Z
B1(0)
G(u(X ), ϕ(X ))2dX

�1/2

< ε.
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Want to show for ϑ ∈ (0, 1) fixed and δ = δ(ϑ) ∈ (0, 1/8) that one of the
two alternatives hold: either

1 there is a small δ-gap, i.e. for some y0 ∈ Bn−2
1/2 (0) ⊆ Rn−2

Bδ(0, y0) ∩ {X ∈ Ku : Nu(X ) ≥ α} = ∅, or

2 for some cylindrical two-valued function eϕ near ϕ(0) in L2,

ϑ−2α−n
Z
Bϑ(0)

G(u(X ), eϕ(X ))2dX ≤ Cϑ2µ

Z
B1(0)
G(u(X ), ϕ(X ))2dX

for some constants C > 0, µ ∈ (0, 1).
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Consider sequence of uj and ϕj (in place of u and ϕ) converging to ϕ(0)

in L2 with no δj -gaps for δj ↓ 0 (so Alternative 1 fails) and

Ej =

�Z
B1(0)
G(uj , ϕj)

2

�1/2

→ 0.

On B1(0) ∩ {|x | > τj}, for τj ↓ 0, we can write

vj =
uj − ϕj

Ej
,

regarded as a function on graph of ϕ(0) and show:

By elliptic estimates, vj → v smoothly away from Kϕ(0) = {0}×Rn−2.

How to control convergence of vj near Kϕ(0) = {0} × Rn−2.

v satisfies a decay estimate (similar to one in Alternative 2).
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By direct computation using the fact that u is harmonic, we obtain the
following new identity:

Lemma

Let u ∈ C 1,µ(B1(0)) two-valued harmonic, Y ∈ B1(0), and α ∈ R. Then

d

dρ
(ρ−2α(Du,Y (ρ)− αHu,Y (ρ))) = 2ρ−n

Z
∂Bρ(Y )

|RDRu − αu|2,

where R = |X − Y | and

Du,Y (ρ) = ρ2−n
Z
Bρ(Y )

|Du|2, Hu,Y (ρ) = ρ1−n
Z
∂Bρ(Y )

|u|2.
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Using the lemma on the previous slide, we prove our main estimate, from
which the other L2 estimates follow.

Lemma (Main Estimate)

Given γ ∈ (0, 1), if u and ϕ = ϕ(X1,X2) are sufficiently close to ϕ(0) in
L2 and 0 ∈ Ku with Nu(0) ≥ α, thenZ

Bγ(0)
R2−n

����∂(u/Rα)

∂R

����2 ≤ C

Z
B1(0)
G(u, ϕ)2

for C = C (n, ϕ(0), α, γ) > 0.
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Theorem

Given γ, τ, σ ∈ (0, 1), if u and ϕ = ϕ(X1,X2) are sufficiently close to ϕ(0)

in L2 and Z = (ξ, η) ∈ Ku ∩ B1/2(0) with Nu(Z ) ≥ α, then

|ξ|2 +

Z
Bγ(0)

|Dyu|2 +

Z
Bγ(0)

R2−n
Z

����∂(u/Rα
Z )

∂RZ

����2 ≤ C

Z
B1(0)
G(u, ϕ)2

for C = C (n, ϕ(0), α, γ) > 0, where RZ = |X − Z |, andZ
Bγ(0)

G(u, ϕ)2

|X − Z |n−1−σ +

Z
Bγ(0)∩{|x|>τ}

|u(X )− ϕ(X )− Dxϕ(X ) · ξ|2

|X − Z |n+2α−σ

≤ C

Z
B1(0)
G(u, ϕ)2

for C = C (n, ϕ(0), α, γ, σ) > 0.
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One of the L2 estimates easily implies when δ > 0, u, ϕ are close to ϕ(0)

in L2, and there are no δ-gaps,Z
B1/4(0)

G(u, ϕ)2

r 1−σ
δ

≤ C

Z
B1(0)
G(u, ϕ)2,

where rδ = max{|x |, δ} and C = C (n, ϕ(0), α, γ, σ) > 0.

Hence u does not concentrate near {0} × Rn−2: if τ is small, τ > δ,Z
B1/4(0)∩{|x|<τ}

G(u, ϕ)2 ≤ Cτ 1−σ
Z
B1(0)
G(u, ϕ)2.

Follows that vj → v in L2(B1/4(0)).
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By dividing by E 2
j in the L2 estimates for uj and ϕj and letting j →∞,

we obtain similar estimates for the blow-ups v in terms of
R
B1(0) |v |2.

Let ψρ be the L2(Bρ(0)) projection of v onto homogeneous degree α
functions.

Here L2(Bρ(0)) makes sense since v is a function on graphϕ(0).

Using the estimates on v we can characterize ψρ and show thatZ
Bρ/4(0)

R2−n
����∂(v/Rα)

∂R

����2 ≤ Cρ−2α−n
Z
Bρ(0)

|v − ψρ|2,

ρ−2α−n
Z
Bρ(0)

|v − ψρ|2 ≤ C

Z
Bρ(0)\Bρ/4(0)

R2−n
����∂(v/Rα)

∂R

����2 .
The decay estimate for v will follow.
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Recall thatZ
Bρ/4(0)

R2−n
����∂(v/Rα)

∂R

����2 ≤ Cρ−2α−n
Z
Bρ(0)

|v − ψρ|2,

ρ−2α−n
Z
Bρ(0)

|v − ψρ|2 ≤ C

Z
Bρ(0)\Bρ/4(0)

R2−n
����∂(v/Rα)

∂R

����2 ,
ψρ = L2(Bρ(0)) projection of v onto homo. deg. α functions.

Combining and using “hole-filling” (add integral over Bρ/4 to fill in
Bρ \ Bρ/4)Z

Bρ/4(0)
R2−n

����∂(v/Rα)

∂R

����2 ≤ γ Z
Bρ(0)

R2−n
����∂(v/Rα)

∂R

����2 .
for some γ ∈ (0, 1). Iterate to get for some µ ∈ (0, 1),

ϑ−n−2α

Z
Bϑ(0)

|v − ψϑ|2 ≤ Cϑ2µ

Z
B1(0)
|v − ψ1|2.
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We showed for ϑ ∈ (0, 1) and δ = δ(ϑ) ∈ (0, 1/8) that either

1 there is a small gap, i.e. for some y0 ∈ Rn−2

Bδ(0, y0) ∩ {X ∈ Ku : Nu(X ) ≥ α} = ∅, or

2 for some cylindrical homogeneous two-valued function eϕ near ϕ(0),

ϑ−2α−n
Z
Bϑ(0)

G(u(X ), eϕ(X ))2dX ≤ Cϑ2µ

Z
B1(0)
G(u(X ), ϕ(X ))2dX

for some constants C > 0, µ ∈ (0, 1).

If no small gap, would get Ku is a C 1,µ (n − 2)-D submanifold.

In general we get (n − 2)-rectifiability of Ku together with locally
finiteness properties of measure.
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Special cases where no small gaps occur:

Points locally Nu ≡ 1/2 + k constant for k ∈ Z+.

Points where Nu = 3/2.

Theorem

If u ∈ C 1,µ(B1(0)) is a nonzero, symmetric two-valued function such that
u is harmonic on B1(0) \ Bu and Nu(Y ) ≡ 1/2 + k for all Y ∈ Bu and
some constant integer k ≥ 1, then not only is Bu a C 1,τ submanifold but
Bu is real analytic. (on going)

Idea of proof: Reduce to Nu ≡ 3/2. Straighten out Bu via a
Legendre-type transformation and inductively apply a Schauder estimate
for transformed functions. Need rate of convergence to blow-ups for this.

Future work: Show we cannot have Bu 6= ∅ and locally Nu ≡ k on Bu
constant for k ∈ Z+.
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Dirichlet minimizing two-valued functions: u ∈W 1,2(Ω) such thatZ
Ω
|Du|2 ≤

Z
Ω
|Dv |2

whenever v ∈W 1,2(Ω) two-valued with {X : u(X ) 6= v(X )} compact
and u = v on ∂Ω.

Arise as approximations of area minimizers in Almgren’s and De
Lellis-Sparado’s proof that dim singT ≤ n − 2 for an area minimizing
n-current T .

W 1,2 Dirichlet minimizing, C 1,µ harmonic are not equivalent:

u(z) = {±Re z3/2} is C 1,1/2 harmonic but not minimizing.

u(z) = {±z1/2} is minimizing but not C 1.

(Here we use C ∼= R2.)
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Theorem (K-Wickramasekera)

If u ∈W 1,2(Ω) is Dirichlet-minimizing, then Bu is countably
(n − 2)-rectifiable.

Proof uses the same blow-up method.

As before we assume u is nonzero and symmetric, i.e.
u(X ) = {±u1(X )}. We replace Ku with Σu = {X : u(X ) = {0, 0}}.

Now have additionally α = 1/2, 1. To characterize homogeneous
projections of blow-ups v for α = 1/2 need to show that

lim
r↓0

∂2

∂r∂y

Z
S1

rv(re iθ, y , ϕ(0)(re iθ, y))Djϕ
(0)(re iθ, y)dθ = 0

for j = 1, 2.
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Recall that we wanted to prove:

Theorem (K-Wickramasekera)

If V is a stationary integral n-varifold with arbitrary codimension and V
is the graph of a C 1,µ two-valued function, then the branch set is
countably (n − 2)-rectifiable.
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At a branch point Y , write V as the graph of ũ(X ) = {ũ1(X ), ũ2(X )}
over the tangent plane of V at Y . Compute frequency and blow-ups ϕ at
Y relative to ũs(X ) = {±(ũ1(X )− ũ2(X ))/2}.

Need to control the rotation of tangent planes so that we can compute
writing M as the graph of u over a fixed plane.

Also need to control that the minimal surface system is quasilinear, so
∆us = f for some function f and us/Λ ≈ ϕ for scaling factor Λ.

Therefore we use

Excess =

Z
B1(0)
G(us/Λ, ϕ)2 + Λ−2

Z
B7/8(0)

R4−n−2α+2ε1 |f |2

+ Λ−2 sup
Y∈Ku

|Du(Y )|
Z
B7/8(0)

|us |2

Use modified blow-up method to prove branch set of V is countably
(n − 2)-rectifiable.
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Let V be a stationary, stable integral n-varifold in B1(0) ⊂ Rn+1

associated with a current T with ∂T = 0. {p ∈ sptV : Θ(‖V ‖, p) < 3}
is a relatively open set in sptV that stratifies as follows:

1 Regular set: Points where sptV is smooth embedded.

2 Self-intersections: (n − 1)-D C 1 submanifold. Tangent cones of V
are pairs of transverse planes.

3 Top-dim part of singular set : Countably (n − 2)-rectifiable set.

V locally like the graph of Re czα, α ∈ {3/2, 2, 5/2, 3, 7/2, . . .}.
4 Low-dim part of singular set (black spots): Dimension ≤ (n − 3).
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Future work will consider Dirichlet energy minimizing q-valued function
and C 1,µ harmonic q-valued functions, q ≥ 3.

For C 1,µ harmonic q-valued functions: We can prove a C 1,1/q regularity
theory and countably (n − 2)-rectifiability of the branch set via an
inductive argument on q.

For this we need to extend the Liousville-type result and Schauder
estimate of Simon-Wickramasekera from q = 2; for this we assume the
set of branch points Y where u(Y ) 6= qJ0K is rectifiable and thus has
zero 2-capacity.
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