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Lebesgue functions. For 1 < p < oo and 2 C R" Lebesgue measurable, we define LP(£2, A,(R™))
to be the space of all Lebesgue measurable u : Q — A, (R"™) such that

1/p
ull e () = 11G(u, ¢[0]D)|Lr(0) = (/QIUI”> < o0

when 1 < p < oo and
[ull Lo (@) = 1G(w, q[OD)]| Lo (0) = SUp u| < oo

when p = oco.

Continuous multivalued functions. Again notice that since A,(R") is a metric space, it is
clear what we mean by a g-valued function « is continuous, Holder continuous, or Lipschitz. In
particular, u : @ — A, (R") is continuous if at each y € €2

lim G(u(x),u(y)) = 0.
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We let C9(Q, A,(R™)) denote the set of continuous g-valued functions u : Q — A, (R™). We equip
C%(Q, A,(R"™)) with the metric

disto (u, v) = sup G(u(z), v(x))
e

for u,v: Q — A (R"™). Thus for ug,u: Q — A,(R"), we say that uy — u in C°(Q, A,(R")) if

lim sup G(ug(z),u(x)) =0.
k—00 2cQ

Moreover, it is clear what is meant by Holder and Lipschitz g-valued functions. For « € (0, 1], we
say the g-valued function u : Q — A,(R"™) is Holder continuous with exponent « if

G(u(z), uly))

U= sup —— - <00
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and we let C%%(Q, A,(R™)) denote the set of all such g-valued functions u. We say u is Lipschitz
when a = 1 and we let Lipu = [u]; o. We have the following special case of Arzela-Ascoli:

Theorem 1 (Arzela-Ascoli). Let Q2 be a compact subset of R™. If up : @ — A, (R™) is a sequence
of q-valued functions with

sup <sup lug| + [uk]ag) < 00
k Q



then there exists a subsequence uy and q-valued function u : Q — A (R™) such that upy — u in
C%(Q, A,(R"™)) and

[u]o,0 < liminflug)q.o.
k—o00
We also have the following Lipschitz extension lemma:

Lemma 2 (Lipschitz extension). Let Q@ C R™ and u : Q@ — Ay (R™) be any Lipschitz g-valued
function. There exists an extension u : R™ — A, (R™) such that

ulg =u, Lipu < C(m,q) Lipu.
When u is bounded, we also have

sup G(u(z),a) < C(m,q) supG(u(x),a) for all a € A (R™).
e z€e)

Sketch of proof. Proceed by induction on ¢. In the case ¢ =1 and n = 1, we can define

u(z) = sup(u(y) — Lipu |z —y|) for z € R"
yeN
and Lipw < Lipu. It is then very easy to deduce for n > 1 the existence of a Lipschitz extension
with Lipu < y/n Lipu. The existence of an extension with the same Lipschitz constant is a
classical, but subtle, result of Kirszbraun, see 2.10.43 in Federer.
In the induction step where ¢ > 1, decompose R™ \ Q into a Whitney decomposition of cubes
C; with the following properties:

(i) each Cj is a closed cube whose side length £; = 2% for some k; € Z and whose vertices are
integer multiples of 2%,

(ii) distinct cubes have disjoint interiors, and
(iii) c(—}n) dist(Ck, Q) <l < c¢(m) dist(Cy, Q) for some constant ¢(m) € (0, 00).

For each vertex x of some Cj, let u(z) = u(y) where y € Q is the closest point to . We then
proceed to inductively extend @ to each edge, face,..., k-cell, etc. For each k-cell F, to extend u|gp
to u|p, after a Lipschitz change of coordinates we can take F' to be a ball. Fix xg € OF. If values
w;i(xo),uj(zo) are relatively far apart for some ¢, j in the sense that

G(ui(xo0),uj(zo)) > 3 Lipu diam(F),

then @ decomposes into two simpler multivalued functions on 0F each of which have a Lipschitz
extension to F' by the induction hypothesis on ¢. Otherwise, we can extend @ by

u(xr) = Z[[|x| ui(x) + (1 — |z|) u1(xo)] for z € F.
i=1

One then at each stage on checks the estimates, e.g. Lip(u|p) < C(m, q) Lip(t|sr). O



Derivatives. A g-valued function L : R™ — A,(R") is affine if L takes the form

L(z) = _[ai + Bl

i=1

for all z € R™ for some a; € R™ and real-valued n x m matrices B;.
Let @ CR™ and u: 2 — A, (R"™) be a g-valued function. We say that w is affine approximable
at xg € Q if there exists an affine g-valued function

L(z) = [ui(zo) + Bjx]
1=1

such that
L G(u(), u(w0))
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=0.

We say that v is strongly affine approximable at zg € Q if additionally B; = B; whenever u;(zo) =
uj(xg). The concept of strongly affine approximable will help simplify proofs (see for instance
Rademacher’s theorem below). We call L the affine approximation of u at xg. Shall denote the
derivative Du(xg) and affine approximation L of u by

q q

Du(z) =Y [Dui(xo)], L(z) =Y [ui(wo) + Dui(o) - (z — x0)],

i=1 =1

for m x n matrices Du;(xg) with the convention that Du;(z¢) is paired with w;(z¢).
As an example, u : R — A,(R) given by

u(z) = 2] + [-2]

for x € R is affine approximable at the origin and is its own affine approximation but u is not
strongly affine approximable at the origin.

Theorem 3 (Rademacher). Let u : @ — A (R™) be a Lipschitz q-valued function. Then u is
strongly affine approrimable almost everywhere.

Sketch of proof. Argue by induction on ¢. For the induction step, let
Qo = {z € Q:u(zr) = qui(z)] for some value u;(z) € R™}.

On sufficiently small relatively open neighborhoods U C Q\ Qq, u = Jug] + [ur] for two simpler
Lipschitz multivalued functions ug,uy, and by the induction hypothesis ug,us are strongly affine
approximable a.e. Let uj : Qy — R™ be the function such that u(z) = qui(z)] for all z € Q.
Then wy is Lipschitz and extends to a Lipschitz function on all of R™ and so wu; is differentiable
a.e. One can show that u is strongly affine approximable at points where €y has density one and
uy is differentiable. O

Warning! One cannot in general add, subtract, or multiply ¢-valued functions!
Since there is no canonical ordering of the values of g-values, it is not clear how to add, subtract,
or multiply a pair of them in order to obtain a g-valued result. For instance, should

(11,01 + 10, 1)]) + (11,0 + [0, =] ) = [(0,0] + [(0,0)]] or [(1,~1)] +[(~1,1)]?



More importantly, multivalued harmonic functions have branching behavior. Consider u(z) =
+ Re(z1 + ix2)%? and v(z) = £Re(x; + izg — 1)3/2 as two-valued harmonic functions. (These
functions are not Dirichlet minimizing but are C'/2 and thus are important to understanding
stable minimal hypersurfaces. We could also consider u(z) = %(z1 + i29)%/? and v(z) = +(x; +
izy — 1)%/2, which are C%'/2 and Dirichlet minimizing.) What should u + v be? Well, if we want
u+v to be C! harmonic, we have precisely two options far away from the origin, say on R?\ By(0).
If we extend these continuous sums u + v to a neighborhood of the origin, then there is clearly
some ambiguity and whatever sum u + v we decide on will not be C' or harmonic. Thus in adding
u and v we lost regularity /structure.

Now I am fibbing a bit. If a pair of g-valued harmonic functions v and v are close together,
one could use elliptic estimates to define v — v. 1 do this with Neshan in our joint work. But
one needs to be very careful and precise in doing this! Also, in the case that codimension m = 1,
there is a canonical ordering for a g-value a = Y 7_,[a;] in A4(R) given by putting the values a;
in nondecreasing order a; < as < --- < aq. This ordering behaves nicely relative to the metric
G and induces sums, products, and selections of multivalued functions. However, this fails for
m > 1. And as the example u(z) = +(z; + iz9)*/? above indicates, if u is C' and/or harmonic
and u(z) = 37 ;[u;(z)] with u; in increasing order, then the graphs of the functions u; can have
“corners” and cease to be C' and/or harmonic. Hence one tends not to want to use this sort of
ordering when working with multivalued harmonic functions.



