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Lebesgue functions. For 1 ≤ p ≤ ∞ and Ω ⊆ Rn Lebesgue measurable, we define Lp(Ω,Aq(Rn))
to be the space of all Lebesgue measurable u : Ω→ Aq(Rn) such that

‖u‖Lp(Ω) = ‖G(u, qJ0K)‖Lp(Ω) =

(ˆ
Ω
|u|p
)1/p

<∞

when 1 ≤ p <∞ and
‖u‖L∞(Ω) = ‖G(u, qJ0K)‖L∞(Ω) = sup

Ω
|u| <∞

when p =∞.

Continuous multivalued functions. Again notice that since Aq(Rn) is a metric space, it is
clear what we mean by a q-valued function u is continuous, Hölder continuous, or Lipschitz. In
particular, u : Ω→ Aq(Rn) is continuous if at each y ∈ Ω

lim
x→y
G(u(x), u(y)) = 0.

We let C0(Ω,Aq(Rn)) denote the set of continuous q-valued functions u : Ω→ Aq(Rn). We equip
C0(Ω,Aq(Rn)) with the metric

distC0(u, v) = sup
x∈Ω
G(u(x), v(x))

for u, v : Ω→ Aq(Rn). Thus for uk, u : Ω→ Aq(Rn), we say that uk → u in C0(Ω,Aq(Rn)) if

lim
k→∞

sup
x∈Ω
G(uk(x), u(x)) = 0.

Moreover, it is clear what is meant by Hölder and Lipschitz q-valued functions. For α ∈ (0, 1], we
say the q-valued function u : Ω→ Aq(Rn) is Hölder continuous with exponent α if

[u]α,Ω = sup
x,y∈Ω, x 6=y

G(u(x), u(y))

|x− y|α
<∞

and we let C0,α(Ω,Aq(Rn)) denote the set of all such q-valued functions u. We say u is Lipschitz
when α = 1 and we let Lipu = [u]1,Ω. We have the following special case of Arzela-Ascoli:

Theorem 1 (Arzela-Ascoli). Let Ω be a compact subset of Rm. If uk : Ω→ Aq(Rn) is a sequence
of q-valued functions with

sup
k

(
sup

Ω
|uk|+ [uk]α,Ω

)
<∞
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then there exists a subsequence uk′ and q-valued function u : Ω → Aq(Rn) such that uk′ → u in
C0(Ω,Aq(Rn)) and

[u]α,Ω ≤ lim inf
k→∞

[uk]α,Ω.

We also have the following Lipschitz extension lemma:

Lemma 2 (Lipschitz extension). Let Ω ⊆ Rm and u : Ω → Aq(Rn) be any Lipschitz q-valued
function. There exists an extension u : Rn → Aq(Rn) such that

u|Ω = u, Lipu ≤ C(m, q) Lipu.

When u is bounded, we also have

sup
x∈Ω
G(u(x), a) ≤ C(m, q) sup

x∈Ω
G(u(x), a) for all a ∈ Aq(Rn).

Sketch of proof. Proceed by induction on q. In the case q = 1 and n = 1, we can define

u(x) = sup
y∈Ω

(u(y)− Lipu |x− y|) for x ∈ Rn

and Lipu ≤ Lipu. It is then very easy to deduce for n > 1 the existence of a Lipschitz extension
with Lipu ≤

√
n Lipu. The existence of an extension with the same Lipschitz constant is a

classical, but subtle, result of Kirszbraun, see 2.10.43 in Federer.
In the induction step where q > 1, decompose Rm \ Ω into a Whitney decomposition of cubes

Cj with the following properties:

(i) each Cj is a closed cube whose side length `j = 2kj for some kj ∈ Z and whose vertices are
integer multiples of 2k,

(ii) distinct cubes have disjoint interiors, and

(iii) 1
c(m) dist(Ck,Ω) ≤ `k ≤ c(m) dist(Ck,Ω) for some constant c(m) ∈ (0,∞).

For each vertex x of some Cj , let u(x) = u(y) where y ∈ Ω is the closest point to x. We then
proceed to inductively extend u to each edge, face,..., k-cell, etc. For each k-cell F , to extend u|∂F
to u|F , after a Lipschitz change of coordinates we can take F to be a ball. Fix x0 ∈ ∂F . If values
ui(x0), uj(x0) are relatively far apart for some i, j in the sense that

G(ui(x0), uj(x0)) > 3 Lipu diam(F ),

then u decomposes into two simpler multivalued functions on ∂F each of which have a Lipschitz
extension to F by the induction hypothesis on q. Otherwise, we can extend u by

u(x) =

q∑
i=1

J|x|ui(x) + (1− |x|)u1(x0)K for x ∈ F.

One then at each stage on checks the estimates, e.g. Lip(u|F ) ≤ C(m, q) Lip(u|∂F ).
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Derivatives. A q-valued function L : Rm → Aq(Rn) is affine if L takes the form

L(x) =

q∑
i=1

Jai +BixK

for all x ∈ Rm for some ai ∈ Rn and real-valued n×m matrices Bi.
Let Ω ⊆ Rm and u : Ω→ Aq(Rn) be a q-valued function. We say that u is affine approximable

at x0 ∈ Ω if there exists an affine q-valued function

L(x) =

q∑
i=1

Jui(x0) +BixK

such that

lim
x→x0

G(u(x), u(x0))

|x− x0|
= 0.

We say that u is strongly affine approximable at x0 ∈ Ω if additionally Bi = Bj whenever ui(x0) =
uj(x0). The concept of strongly affine approximable will help simplify proofs (see for instance
Rademacher’s theorem below). We call L the affine approximation of u at x0. Shall denote the
derivative Du(x0) and affine approximation L of u by

Du(x) =

q∑
i=1

JDui(x0)K, L(x) =

q∑
i=1

Jui(x0) +Dui(x0) · (x− x0)K,

for m× n matrices Dui(x0) with the convention that Dui(x0) is paired with ui(x0).
As an example, u : R→ Aq(R) given by

u(x) = JxK + J−xK

for x ∈ R is affine approximable at the origin and is its own affine approximation but u is not
strongly affine approximable at the origin.

Theorem 3 (Rademacher). Let u : Ω → Aq(Rn) be a Lipschitz q-valued function. Then u is
strongly affine approximable almost everywhere.

Sketch of proof. Argue by induction on q. For the induction step, let

Ω0 = {x ∈ Ω : u(x) = qJu1(x)K for some value u1(x) ∈ Rm}.

On sufficiently small relatively open neighborhoods U ⊆ Ω \ Ω0, u = JuKK + JuLK for two simpler
Lipschitz multivalued functions uK , uL and by the induction hypothesis uK , uL are strongly affine
approximable a.e. Let u1 : Ω0 → Rn be the function such that u(x) = qJu1(x)K for all x ∈ Ω0.
Then u1 is Lipschitz and extends to a Lipschitz function on all of Rm and so u1 is differentiable
a.e. One can show that u is strongly affine approximable at points where Ω0 has density one and
u1 is differentiable.

Warning! One cannot in general add, subtract, or multiply q-valued functions!
Since there is no canonical ordering of the values of q-values, it is not clear how to add, subtract,
or multiply a pair of them in order to obtain a q-valued result. For instance, should(

J(1, 0)K + J(0, 1)K
)

+
(
J(−1, 0)K + J(0,−1)K

)
= J(0, 0)K + J(0, 0)K or J(1,−1)K + J(−1, 1)K ?

3



More importantly, multivalued harmonic functions have branching behavior. Consider u(x) =
±Re(x1 + ix2)3/2 and v(x) = ±Re(x1 + ix2 − 1)3/2 as two-valued harmonic functions. (These
functions are not Dirichlet minimizing but are C1,1/2 and thus are important to understanding
stable minimal hypersurfaces. We could also consider u(x) = ±(x1 + ix2)3/2 and v(x) = ±(x1 +
ix2 − 1)3/2, which are C1,1/2 and Dirichlet minimizing.) What should u + v be? Well, if we want
u+v to be C1 harmonic, we have precisely two options far away from the origin, say on R2 \B2(0).
If we extend these continuous sums u + v to a neighborhood of the origin, then there is clearly
some ambiguity and whatever sum u+ v we decide on will not be C1 or harmonic. Thus in adding
u and v we lost regularity/structure.

Now I am fibbing a bit. If a pair of q-valued harmonic functions u and v are close together,
one could use elliptic estimates to define u − v. I do this with Neshan in our joint work. But
one needs to be very careful and precise in doing this! Also, in the case that codimension m = 1,
there is a canonical ordering for a q-value a =

∑q
i=1JaiK in Aq(R) given by putting the values ai

in nondecreasing order a1 ≤ a2 ≤ · · · ≤ aq. This ordering behaves nicely relative to the metric
G and induces sums, products, and selections of multivalued functions. However, this fails for
m > 1. And as the example u(x) = ±(x1 + ix2)3/2 above indicates, if u is C1 and/or harmonic
and u(x) =

∑q
i=1Jui(x)K with ui in increasing order, then the graphs of the functions ui can have

“corners” and cease to be C1 and/or harmonic. Hence one tends not to want to use this sort of
ordering when working with multivalued harmonic functions.
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