Brian Krummel

October 5, 2016

Multivalues. Let $q, n \ge 1$ be integers. Informally, a *q*-value *a* consists of an unordered collection of values $a_1, a_2, \ldots, a_q \in \mathbb{R}^n$, possibly repeating. We can represent this as a 0-dimensional current

$$a = \sum_{i=1}^{q} \llbracket a_i \rrbracket$$

where $[a_i]$ denotes the Dirac point mass at a_i . For those familiar with geometric measure theory, q-values can be regarded as 0-dimensional integral currents. For those not familiar with geometric measure theory, we can just take this as notation. The sum here can be regarded as a "union" operator that takes the union of collections of points and adds their multiplicities. For example,

$$a = [\![7]\!] + [\![7]\!] + [\![10]\!] = 2[\![7]\!] + [\![10]\!]$$

as a union of the points 7, 7, 10 to form a 3-value *a* with multiplicity two at 7 and one at 10. This is useful for keeping track of multiplicities.

We let $\mathcal{A}_q(\mathbb{R}^n)$ denote the space of all q-values $a = \sum_{i=1}^q [\![a_i]\!]$ with $a_i \in \mathbb{R}^n$. Notice that when q = 1, we can identify $\mathcal{A}_1(\mathbb{R}^n) = \mathbb{R}^n$.

We equip $\mathcal{A}_q(\mathbb{R}^n)$ with a complete metric \mathcal{G} given by

$$\mathcal{G}(a,b) = \min_{\text{permutations } \sigma \text{ of } \{1,2,\ldots,q\}} \left(\sum_{i=1}^{q} |a_i - b_{\sigma(i)}|^2\right)^{1/2}.$$

for q-values $a = \sum_{i=1}^{q} [a_i]$ and $b = \sum_{i=1}^{q} [b_i]$. In words, we take the q-values a and b and order their values. Then we take the total distance between their respective values a_i and b_i . But recall that I said q-values are unordered! So we take the minimum of all the ways to order the values of a and b, giving us our metric. As notation, it is convenient to define

$$|a| = \mathcal{G}(a, q[[0]]) = \left(\sum_{i=1}^{q} |a_i|^2\right)^{1/2}$$

for every q-values $a = \sum_{i=1}^{q} [a_i]$.

Exercise 1. Suppose n = 1. Let $a = \sum_{i=1}^{q} [\![a_i]\!]$ and $b = \sum_{i=1}^{q} [\![b_i]\!]$ be q-values in $\mathcal{A}_q(\mathbb{R})$ and put their values in nondecreasing order $a_1 \leq a_2 \leq \cdots \leq a_q$ and $b_1 \leq b_2 \leq \cdots \leq b_q$. Show that

$$\mathcal{G}(a,b) = \left(\sum_{i=1}^{q} |a_i - b_i|^2\right)^{1/2}.$$

Exercise 2. Given a q-value $a = \sum_{i=1}^{q} [a_i], let$

$$a_{\text{avg}} = \frac{1}{q} \sum_{i=1}^{q} a_i \in \mathbb{R}^n, \quad a_{\text{sym}} = \sum_{i=1}^{q} \llbracket a_i - a_{\text{avg}} \rrbracket \in \mathcal{A}_q(\mathbb{R}^n)$$

so that a_{avg} is the average of the values of a and the average of the values of a_{sym} is zero. Verify that $|a|^2 = q |a_{\text{avg}}|^2 + |a_{\text{sym}}|^2$.

Multivalued functions. Let $q, m, n \ge 1$ be integers and $\Omega \subseteq \mathbb{R}^m$. A *q*-valued function is a map $u: \Omega \to \mathcal{A}_q(\mathbb{R}^n)$. We will represent a *q*-valued function *u* as

$$u(x) = \sum_{i=1}^{q} \llbracket u_i(x) \rrbracket$$

at $x \in \Omega$ unless stated otherwise.

Given a collection of q_i -valued functions $u_i : \Omega \to \mathcal{A}_{q_i}(\mathbb{R}^n)$ for i = 1, 2, ..., N, I can define a q-valued function $u : \Omega \to \mathcal{A}_q(\mathbb{R}^n)$, where $q = \sum_{i=1}^N q_i$, by

$$u(x) = \sum_{i=1}^{N} u_i(x) = \sum_{i=1}^{N} \sum_{j=1}^{q_i} \llbracket u_{ij}(x) \rrbracket \quad \text{where} \quad u_i(x) = \sum_{j=1}^{q_i} \llbracket u_{ij}(x) \rrbracket$$

for $x \in \Omega$. Recall that the sum $u(x) = \sum_{i=1}^{N} u_i(x)$ is taken as sums of Dirac masses. We are not adding the values of each $u_i(x)$ but rather letting u(x) consist of every point that is a value of some $u_i(x)$ and adding up the multiplicities at that point. To distinguish this "union" of u_i from the addition of values of u_i , we shall as a slight abuse of notation denote the "union" of the u_i by

$$u(x) = \sum_{i=1}^{N} [\![u_i(x)]\!].$$

As an example,

$$u(x) = [[(x_1 + ix_2)^{1/2}]] + 10[[(x_1 + ix_2)^{1/3}]]$$

is a $2 + 10 \cdot 3 = 32$ valued function. When $q_1 = q_2 = \cdots q_N = 1$, we say u_1, u_2, \ldots, u_q is a selection of u on Ω .

Measurable multivalued functions. Notice that since $\mathcal{A}_q(\mathbb{R}^n)$ is a metric space, it is clear what we mean by a *q*-valued function $u : \Omega \to \mathcal{A}_q(\mathbb{R}^n)$ is Lebesgue measurable. In particular, uis Lebesgue measurable, or measurable, if for every Borel set $B \subseteq \mathcal{A}_q(\mathbb{R}^n)$, $u^{-1}(B)$ is Lebesgue measurable.

The following result is useful in simplifying notation.

Proposition 1. Let $u : \Omega \to \mathcal{A}_q(\mathbb{R}^n)$ be a Lebesgue measurable q-valued function. Then, there exist a selection of Lebesgue measurable functions $u_i : \Omega \to \mathbb{R}^m$.

Proof. Let us proceed by induction on q. The case q = 1 is trivial. Assume that for some integer $q \ge 2$, for every $q' = 1, 2, \ldots, q - 1$ and every measurable q'-valued function has a measurable

selection. Let $u: \Omega \to \mathcal{A}_q$ be measurable. We want to show that u has a measurable selection on Ω .

Observe that if $\Omega = \bigcup_{i=1}^{\infty} \Omega_i$ for a countable collection of measurable subsets $\Omega_i \subset \mathbb{R}^n$ and each $u|_{\Omega_i}$ has a measurable selection, then u also has a measurable selection.

Let $A_0 = \{q[\![a_1]\!] : a_1 \in \mathbb{R}^m\} \subseteq \mathcal{A}_q(\mathbb{R}^n)$. Let $\Omega_0 = u^{-1}(A_0)$ be the set of points $x \in \Omega$ such that $u(x) = q[\![u_1(x)]\!]$ for some value $u_1(x) \in \mathbb{R}^m$. A_0 is closed, so Ω_0 is measurable. Obviously $u|_{\Omega_0}$ has a selection.

Fix $a \in \mathcal{A}_q \setminus A_0$ and write $a = \sum_{i=1}^q \llbracket a_i \rrbracket$ for an ordered collection of values a_i . Partition $\{1, 2, \ldots, q\}$ into nonempty sets I_K and I_L with cardinality K and L respectively such that

$$|a_i - a_j| > 0$$
 for all $i \in I_K, j \in I_L$.

Now for every $b \in \mathcal{A}_q$, there exists a permutation σ such that

$$\mathcal{G}(a,b) = \left(\sum_{i=1}^{q} |a_i - b_{\sigma(i)}|^2\right)^{1/2}$$

and for a sufficiently small open neighborhood V_a of a in \mathcal{A}_q the maps

$$b \in V_a \mapsto \sum_{i \in I_K} \llbracket b_{\sigma(i)} \rrbracket, \quad b \in V \mapsto \sum_{i \in I_L} \llbracket b_{\sigma(i)} \rrbracket$$

are continuous. Since V_a is open, $u^{-1}(V_a)$ is measurable. By the induction hypothesis, $u|_{V_a}$ has a measurable selection.

Notice that we can cover $\mathcal{A}_q \setminus A_0 = \bigcup_{i=1}^{\infty} V_{a^i}$ for a countable collection of $a^i \in \mathcal{A}_q \setminus A_0$. Since $u|_{A_0}$ and $u|_{V_{a^i}}$ all have measurable selections, so does u.