1. True or false? Justify your answers.
 (a) If \(z \) is orthogonal to \(u_1 \) and to \(u_2 \) and if \(W = \text{Span}\{u_1, u_2\} \), then \(z \) must be in \(W^\perp \).
 (b) For each \(y \) and each subspace \(W \), the vector \(y - \text{proj}_W y \) is orthogonal to \(W \).
 (c) The orthogonal projection \(\hat{y} \) of \(y \) onto a subspace \(W \) can sometimes depend on the orthogonal basis for \(W \) used to compute \(\hat{y} \).
 (d) If \(y \) is in a subspace \(W \), then the orthogonal projection of \(y \) onto \(W \) is \(y \) itself.
 (e) If the columns of an \(n \times p \) matrix \(U \) are orthonormal, then \(U U^T y \) is the orthogonal projection of \(y \) onto the column space of \(U \).
 (f) If \(b \) is in the column space of \(A \), then every solution of \(A x = b \) is a least-squares solution.
 (g) The least-squares solution of \(A x = b \) is a list of weights that, when applied to the columns of \(A \), produces the orthogonal projection of \(b \) onto \(\text{Col} \ A \).
 (i) The normal equations always provide a reliable method for computing least-squares solutions.
 (j) If \(\hat{x} \) is a least-squares solution of \(A x = b \), then \(\hat{x} = (A^T A)^{-1} A^T b \).

2. Find the best approximation to \(z \) by vectors of the form \(c_1 v_1 + c_2 v_2 \):
 \[
 z = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}.
 \]

3. Suppose \(A \) is \(m \times n \) with linearly independent columns and \(b \) is in \(\mathbb{R}^m \). Use the normal equations to produce a formula for \(\hat{b} \), the projection of \(b \) onto \(\text{Col} \ A \).

4. Find a least-squares solution of
 \[
 \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} x = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}
 \]
 by constructing the normal equations for \(\hat{x} \) and solving for \(\hat{x} \).

5. Describe all least-squares solutions of the equation
 \[
 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}.
 \]

6. Find the orthogonal projection of \(b \) onto \(\text{Col} \ A \) and the least squares solution of \(A x = b \) for
 \[
 A = \begin{bmatrix} 4 & 0 & 1 \\ 1 & -5 & 1 \\ 6 & 1 & 0 \\ 1 & -1 & -5 \end{bmatrix}, \quad b = \begin{bmatrix} 9 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
 \]

7. Let \(A \) be an \(m \times n \) matrix such that \(A^T A \) is invertible. Show that the columns of \(A \) are linearly independent. (Note: We can’t assume that \(A \) is invertible; it may not even be square.)