1. Find the radius of convergence and interval of convergence of the series:

 (a) \[\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}} \]
 (b) \[\sum_{n=1}^{\infty} \frac{x^n}{5^n n^5} \]
 (c) \[\sum_{n=1}^{\infty} \frac{n(x+1)^n}{4^n} \]

2. Suppose that the radius of convergence of the power series \(\sum c_n x^n \) is \(R \). What is the radius of convergence of the power series \(\sum c_n x^{2n} \)?

3. Find a power series representation for the function and determine the radius of convergence:

 (a) \(f(x) = \frac{1+x}{1-x} \)
 (b) \(f(x) = \ln(5-x) \)
 (c) \(f(x) = \frac{x^3}{(x-2)^2} \)

4. Find the sums of the following series:

 (a) \[\sum_{n=1}^{\infty} nx^{n-1}, \ |x| < 1 \]
 (b) \[\sum_{n=1}^{\infty} nx^n, \ |x| < 1 \]
 (c) \[\sum_{n=1}^{\infty} \frac{n}{2^n} \]
 (d) \[\sum_{n=2}^{\infty} n(n-1)x^n, \ |x| < 1 \]
 (e) \[\sum_{n=2}^{\infty} \frac{n(n-1)}{2^n} \]
 (f) \[\sum_{n=1}^{\infty} \frac{n^2}{3^n} \]

5. Fix an integer \(k > 0 \), and let \(f(x) = \sum_{n=0}^{\infty} c_n x^n \), where \(c_{n+k} = c_n \) for all \(n \geq 0 \). Assume that \(f \) is not a constant function. Find the interval of convergence of the series, and a formula for \(f(x) \).