1. Solve the differential equation or initial value problem using the method of undertermined coefficients.
 (a) \(y'' + 3y' + 2y = x^2 \)
 (b) \(y'' + 9y = e^{3x} \)
 (c) \(y'' - 4y = e^x \cos x, \quad y(0) = 1, \quad y'(0) = 2 \)

2. Find all solutions to the equation \(x^4 = 1 \).

3. Write a trial solution for the method of undertermined coefficients for the differential equation
 \[y'' + 3y' - 4y = (x^3 + x)e^x \]
 Do not determine the coefficients.

4. Use de Moivre’s Theorem with \(n = 3 \) to express \(\cos 3\theta \) and \(\sin 3\theta \) in terms of \(\cos \theta \) and \(\sin \theta \).

5. Prove the following properties of complex numbers, where a line over a complex number indicates its complex conjugate.
 (a) \(\bar{z} + ar{w} = \bar{z + w} \)
 (b) \(\bar{zw} = \bar{z}\bar{w} \)
 (c) \(\bar{z^n} = \bar{z}^n \)