EXTENDING REDHEFFER’S MATRIX
TO ARBITRARY ARITHMETIC FUNCTIONS

BRYAN R. GILLESPIE
Spring 2011

A thesis
submitted in partial fulfillment
of the requirements
for baccalaureate degrees
in Mathematics and Computer Science
with honors in Mathematics

Reviewed and approved* by the following:

Robert C. Vaughan
Professor of Mathematics
Thesis Supervisor

Svetlana Katok
Professor of Mathematics
Honors Advisor

* Signatures are on file in the Schreyer Honors College.
ABSTRACT

The class of Redheffer matrices are distinctive for having determinants equal to the Mertens function. We describe an embedding of the arithmetic functions into the general linear group which allows a generalization of Redheffer’s matrices. This generalization exhibits determinants equal to the sum of the Dirichlet convolution inverse of a given invertible arithmetic function, and allows a more general analysis of the mechanisms at work behind Redheffer’s original matrices. Following past work by Robert Vaughan, we conduct a basic but general analysis of the Eigenvalues of these Redheffer-type matrices, and we conduct a more in-depth analysis on the matrices corresponding to non-principal Dirichlet characters. We additionally discuss an alternate geometric bound on an important class of coefficients encountered during the analysis, and present a natural generalization of the Eulerian polynomials which emerges when working with certain convolution inverses.
Contents

1 Introduction ... 1
2 An Embedding of Arithmetic Functions in \text{GL}(l, \mathbb{C}) .. 1
3 The Characteristic Polynomial of $\rho_l(f)$.. 4
4 Analysis on Non-principal Dirichlet Characters 6
5 An Alternate Geometric Bound for $S_k(l)$.. 8
6 A Natural Extension of the Eulerian Polynomials 10
ACKNOWLEDGMENTS

This thesis represents the symbolic denouement of my undergraduate studies, and I would like to take the opportunity to acknowledge some of the many positive influences which have touched my educational experience. Amongst my academic professors I’d like to acknowledge: Bob Vaughan for providing the fascinating topic of study and informing both my research and my search for a graduate level institution; Svetlana Katok for taking an interest in my early studies and pushing me forward; and Omri Sarig for demonstrating to me exactly what a teacher should be in the mathematical sciences. Amongst my friends and compatriots at Penn State: Brandon Curtis for being an influence for goodness and excellence in the lives of those around him; Brian Leyde for listening intently and conversing frankly on many things; and Ruth Mendum for helping me to find a more purposeful and meaningful outlook on my studies. And finally, to my family: My father for offering an unwavering source of stability and support; my mother for looking out for me with astonishing care; and my brother for being there when the night is dark and lonely. The past five years have been truly transformative, and I thank you all for everything you’ve done for me.
1 Introduction

In 1977, Raymond Redheffer studied a novel sequence \((R_l)\) of \(l \times l\) matrices, now known as the Redheffer matrices, defined by \(R_l = (r_{i,j})\), with
\[
r_{i,j} = \begin{cases}
1 & \text{if } i = j \text{ or } j = 1 \\
0 & \text{otherwise}.
\end{cases}
\] (1)

In [2], Redheffer showed that\[
\det R_l = M(l),
\] (2)
where \(M\) is the Mertens function\[
M(x) = \sum_{m \leq x} \mu(m),
\] (3)
and \(\mu\) is the classical Möbius function. That is to say, the Redheffer matrices draw a connection between the fundamentally number theoretic Mertens function and the area of linear algebra.

Redheffer and others in particular have uncovered the following pattern, here adapted from Robert Vaughan’s exposition in [3]:

Theorem 1.1. The matrix \(R_l\) has three classes of eigenvalues in the following proportions.

- \(l - (\lfloor \log_2 l \rfloor + 1)\) “trivial” eigenvalues \(\lambda = 1\).
- \(\lfloor \log_2 l \rfloor - 1\) “non-trivial” eigenvalues \(\lambda\) with\[
|\lambda - 1| \leq \frac{\log l}{\log 2} + c \frac{(\log l)^3}{l}.
\]
- 2 “dominant” eigenvalues \(\lambda_{\pm}\) with\[
|\lambda_{\pm} - \sqrt{l}| \leq c \log l, \quad |\lambda_{\pm} + \sqrt{l}| \leq c \log l.
\]

More precise asymptotic bounds than these have been determined for both the non-trivial and the dominant eigenvalues, and numerical evidence in fact suggests that the non-trivial eigenvalues each lie within the unit disc \(D = \{z : |z| < 1\}\). Proof of the latter fact would be sufficient to demonstrate the validity of the Riemann Hypothesis, but not unexpectedly such a proof has proven to be elusive.

To better understand the mechanisms which cause the Mertens function to appear in relation to this particular class of matrices, Vaughan suggested to the author to investigate the potential of a generalization of the Redheffer matrices which relates more broadly to sums of arithmetic functions. In fact such a generalization does exist, and the present exposition aims to describe the construction and present some analysis along the lines of Vaughan’s analysis in [3], but in the more generalized context. Additionally some related topics are presented which branch out from notions in that analysis.

2 An Embedding of Arithmetic Functions in \(\text{GL}(l, \mathbb{C})\)

The starting point of generalizing Redheffer’s matrices lies in an interesting way of embedding arithmetic functions into the general linear group. In order to do this, we make use of so-called finite truncations of arithmetic functions, which are put on solid footing by the following Definitions 2.1 to 2.3 and Proposition 2.4.
Definition 2.1. Denote by \(A \) the group of arithmetic functions \(f : \mathbb{N} \to \mathbb{C} \) such that \(f(1) \neq 0 \), with multiplication \(\ast \) defined for \(f, g \in A \) by

\[
f \ast g(n) := \sum_{uv=n} f(u)g(v).
\]

Denote by \(M \) the subgroup of \(A \) consisting of functions \(f \in A \) which are multiplicative.

Definition 2.2. Let \(l \in \mathbb{N} \) and let \(f : \mathbb{N} \to \mathbb{C} \). Denote by \(T_l \) the operator which maps \(f \) onto its restriction to the domain \{1, \ldots, l\}. We will call this operator the \(l \)-truncation operator, and for any arithmetic function \(f \), we will call \(T_l f \) the \(l \)-truncation, or just the truncation, of \(f \).

Definition 2.3. Let \(l \in \mathbb{N} \). Denote by \(A_l \) the set of functions \(f : \{1, \ldots, l\} \to \mathbb{C} \) such that \(f(1) \neq 0 \). \(f \in A_l \) is said to be multiplicative if \(f(ab) = f(a)f(b) \) whenever \(ab \leq l \) and \(a, b \) are relatively prime. Denote by \(M_l \) the set of functions in \(A_l \) which are multiplicative.

Proposition 2.4. \(A_l \) forms an abelian group with multiplication \(\ast \) defined for \(f, g \in A_l \) by

\[
f \ast g(n) := \sum_{uv=n} f(u)g(v).
\]

\(M_l \) forms a (strict) subgroup of \(A_l \), and \(T_l \) is a surjective homomorphism from \(A \) to \(A_l \) which maps \(M \) to \(M_l \).

Proof. First we show that \(T_l(A) = A_l \) and \(T_l(M) = M_l \). To see that \(T_l(A) \supseteq A_l \) and \(T_l(M) \supseteq M_l \), suppose that \(f \in A_l \). We construct a function \(f_0 \in A \) so that \(T_l f_0 = f \), and so that \(f_0 \in M \) when \(f \in M_l \). First we define \(\gamma_f \) for any prime power \(p^k \), \(k \geq 1 \) by

\[
\gamma_f(p^k) := \begin{cases} f(p^k) & \text{if } p^k \leq l \\ 0 & \text{otherwise} \end{cases}.
\]

Then for \(n = p_1^{k_1} \cdots p_m^{k_m} \) define

\[
f_0(n) := \begin{cases} f(n) & n \leq l \\ \prod_{i=1}^m \gamma_f(p_i^{k_i}) & n > l \end{cases}.
\]

The first line of this definition ensures that \(T_l f_0 = f \), while the second line ensures that \(f_0 \) is multiplicative when \(f \) is, by incorporating the values of \(f \) at prime powers into the definition of \(f_0 \). This is sufficient to prove the inclusion.

The reverse inclusion is simpler to see. \(T_l(A_l) \subseteq A_l \) because \(T_l f(1) \) is defined for each \(l \geq 1 \) and is equal to \(f(1) \neq 0 \), and \(T_l(M_l) \subseteq M \) because multiplicativity is preserved by truncation. Thus we see that the images of \(A \) and \(M \) under truncation are \(A_l \) and \(M_l \) respectively.

To see that \(A_l \) forms an abelian group with \(M_l \) as a subgroup, we take advantage of the known group properties of \(A \) by using the observation that for any \(f, g \in A \), we have

\[
T_l(f \ast g)(n) = (T_l f \ast T_l g)(n).
\]

Indeed, this is straightforward to see because the multiplications of \(A \) and \(A_l \) are defined in exactly the same way (over different domains), and because the product \(f \ast g(n) \) only makes use of the values \(f(u) \) and \(g(v) \) for \(u, v \leq n \). Notice that once we have proven that \(A_l \) is a group, this will be sufficient to show that \(T_l \) is a group homomorphism with the desired properties.
We can lift the functions in \(A_l \) to the group \(\mathcal{A} \) using the previous construction to prove the group axioms on \(A_l \). To see that \(A_l \) is associative, for instance, let \(f, g, h \in A_l \) with \(f_0, g_0, h_0 \in A \) constructed as above. We have
\[
(f \ast g) \ast h = (T_i f_0 \ast T_i g_0) \ast T_i h_0 = T_i((f_0 \ast g_0) \ast h_0) = T_i(f_0 \ast (g_0 \ast h_0)) = T_i f_0 \ast (T_i g_0 \ast T_i h_0) = f \ast (g \ast h).
\]

Similar arguments give commutativity, the existence of an identity function, and the existence of inverses, so we have that \(A_l \) is a commutative group as claimed. Closure of \(M_l \) under \(\ast \) follows from the fact that \(T_i(M) = M_l \), and the inclusion of \(M_l \) in \(A_l \) is strict because each function \(f \in M_l \) must have \(f(1) = 1 \), so any function \(g \in A_l \) with, say, \(g(1) = 2 \) is not a member of \(M_l \).

So we see that there is a natural correspondence between \(A \) and \(A_l \) and between \(\mathcal{M} \) and \(M_l \). In fact, we show in the following theorem that \(A_l \) is isomorphic to a subgroup of \(\text{GL}(l, \mathbb{C}) \), and \(M_l \) is isomorphic to a subgroup of \(\text{SL}(l, \mathbb{C}) \).

Theorem 2.5. \(A_l \) is isomorphic to a subgroup of \(\text{GL}(l, \mathbb{C}) \), and \(M_l \) is isomorphic to a subgroup of \(\text{SL}(l, \mathbb{C}) \).

Proof. We construct an explicit isomorphism. For \(f \in A_l \), and define \(\varphi_l : A_l \to \text{GL}(l, \mathbb{C}) \) by \(\varphi_l(f) := (\alpha_{i,j}(f)) \) where
\[
\alpha_{i,j}(f) = \begin{cases} f(j/i) & i \mid j \\ 0 & i \nmid j \end{cases}.
\]

To prove that \(\varphi_l(A_l) \) is a subgroup of \(\text{GL}(l, \mathbb{C}) \), and that \(\varphi_l \) is an isomorphism onto its image, it is sufficient to prove that \(\varphi_l \) is a homomorphism to \(\text{GL}(l, \mathbb{C}) \) with trivial kernel. Indeed, for \(f \in A_l \), we see that \(\phi_l(f) \) is upper-diagonal with diagonal entries identically equal to \(f(1) \), which implies in particular that the matrix is invertible, because it has determinant equal to \(f(1)^l \neq 0 \).

To see that \(\varphi_l \) is a homomorphism, we let \(f, g \in A_l \) and calculate \(\varphi_l(f) \cdot \varphi_l(g) = (\alpha_{i,j}) \) with
\[
a_{i,j} = \sum_{k=1}^{l} \alpha_{i,k}(f) \alpha_{k,j}(g) = \begin{cases} \sum_{uv=j/i} f(u)g(v) & i \mid j \\ 0 & i \nmid j \end{cases}.
\]

Noticing that this last expression is just \(\alpha_{i,j}(f \ast g) \), we conclude that \(\varphi_l(f) \cdot \varphi_l(g) = \varphi_l(f \ast g) \), and so \(\varphi_l \) is a homomorphism.

From the definition of \(\varphi_l \) it is clear that the kernel of \(\varphi_l \) is just \(T_l u \), where \(u \) is the identity element in \(\mathcal{A} \), so we see that \(\varphi_l \) is a homomorphism into its image, and hence is an isomorphism.

Additionally we notice that for \(f \in M_l \), the diagonal entries of \(\varphi_l(f) \) are identically equal to \(f(1) = 1 \), which implies that the matrix has determinant equal to \(f(1)^l = 1 \). Thus we also see that \(\varphi_l(M_l) \subseteq \text{SL}(l, \mathbb{C}) \).

This embedding suggests a natural method of extending Redheffer’s matrices to arbitrary functions in \(\mathcal{A} \), described by Definition 2.6.

Definition 2.6. Let \(f \in \mathcal{A} \), and define the \(l \times l \) matrix \(\rho_l(f) := (\beta_{i,j}(f)) \) where
\[
\beta_{i,j}(f) = \begin{cases} f(j/i) & i \mid j \\ 1 & j = 1, i > 1 \\ 0 & \text{otherwise} \end{cases}.
\]

We call \(\rho_l(f) \) the \(l \times l \) Redheffer-type matrix of \(f \).
We see that in particular, \(\rho_l(1) \) is equal to the original \(l \times l \) Redheffer matrix \(R_l \). The connection between the Redheffer matrices and the Mertens function is generalized by Theorem 2.7:

Theorem 2.7. Let \(f \in A \). Then

\[
\det \rho_l(f) = f(1)^l \left(1 + \sum_{k=2}^{l} f^{-1}(k) \right).
\]

Proof. Pre-multiply \(\rho_l(f) \) on the left by \(\varphi_l(f^{-1}) \), which has determinant \(f(1)^{-1} \). We have

\[
\varphi_l(f^{-1}) \rho_l(f) = \varphi_l(f^{-1})(\varphi_l(f) + A) = Id + \varphi_l(f^{-1})A,
\]

where \(A = (a_{i,j}) \) with

\[
a_{i,j} = \begin{cases} 1 & j = 1, i > 1 \\ 0 & \text{otherwise} \end{cases},
\]

and in particular, \(\varphi_l(f^{-1})A \) has a single non-zero entry in its upper triangle, which is in the upper-left corner, and which is equal to \(\sum_{k=2}^{l} f^{-1}(k) \). Thus \(\varphi_l(f^{-1}) \rho_l(f) \) is in fact diagonal, and a straightforward calculation proves the result.

As a special case, if \(f(1) = 1 \), or in particular if \(f \in M \), then the previous theorem implies that

\[
\det \rho_l(f) = \sum_{k=1}^{l} f^{-1}(k).
\]

(6)

3 The Characteristic Polynomial of \(\rho_l(f) \)

We now conduct analysis analogous to that of Vaughan in [3], now in the context of Redheffer-type matrices of a Dirichlet-invertible function \(f \in A \). For technical reasons we require additionally that the Dirichlet series \(L_f \) corresponding to \(f \) have non-empty domain of convergence.

We start by calculating the characteristic polynomial \(p_f^l(\lambda) = \det(\lambda \cdot Id - \rho_l(f)) \) of \(\rho_l(f) \). Define

\[
f_\lambda := f - \lambda u,
\]

(7)

where \(u \) is the identity function under convolution. Then for \(\lambda \neq f(1) \), \(f_\lambda \in A \), and \(p_f^l(\lambda) = \det(-\rho_l(f_\lambda)) \) can be calculated via Theorem 2.7 to find

\[
p_f^l(\lambda) = (-1)^l \det(\rho_l(f_\lambda)) = (\lambda - f(1))^l \left(1 + \sum_{k=2}^{l} f_\lambda^{-1}(k) \right).
\]

To allow for a simpler calculation of the convolution inverse in this representation, we use a technique employed by Vaughan to normalize \(f_\lambda \) before inversion. Denote \(w = f(1)/(\lambda - f(1)) \), and define the normalized function \(g_\lambda \) by

\[
g_\lambda := -wf_\lambda = (1 + w)f(1)u - wf.
\]

We have in particular that \(g_\lambda^{-1} = (-1/w)f_\lambda^{-1} \), which gives

\[
p_f^l(\lambda) = (\lambda - f(1))^l - f(1)(\lambda - f(1))^{l-1} \sum_{k=2}^{l} g_\lambda^{-1}(k).
\]

(9)
To compute g^{-1}_λ, we observe that the Dirichlet series corresponding to g_λ is given by

$$L_{g_\lambda}(s) = (1 + w)f(1) - wL_f(s) = (1 - w(L_f(s) - f(1))).$$

For Re(s) sufficiently large, $L_f(s)$ is absolutely convergent and $|L_f(s) - f(1)| < 1/w$. So for such s we have

$$L_{g^{-1}_\lambda}(s) = (1 - w(L_f(s) - f(1)))^{-1} = \sum_{k=1}^\infty w^k(L_f(s) - f(1))^k = 1 + \sum_{m=2}^\infty m^{-s} \sum_{k=1}^{[\log_2 m]} w^k D_l^f(m),$$

where

$$D_l^f(m) := \sum_{m_1, \ldots, m_k = m, m_j \geq 2}^k \left(\prod_{i=1}^k f(m_i) \right). \quad (10)$$

Thus we find that for $m \geq 2$,

$$g^{-1}_\lambda(m) = \sum_{k=1}^{[\log_2 m]} f(1)^k(\lambda - f(1))^{-k} D_l^f(m),$$

and the characteristic polynomial we are looking for is given by

$$p_l^f(\lambda) = (\lambda - f(1))^l - \sum_{k=1}^{[\log_2 m]} (\lambda - f(1))^{l-1-k} \left(f(1)^k + 1 \right) S_k^f(l),$$

with

$$S_k^f(l) := \sum_{m=1}^l D_k^f(m). \quad (11)$$

Rewriting this, we have

$$p_l^f(\lambda) = (\lambda - f(1))^{l-N} P_l^f(\lambda),$$

where

$$P_l^f(\lambda) = (\lambda - f(1))^N - \sum_{k=1}^l (\lambda - f(1))^{L-k} S_k^f(l), \quad (12)$$

$$L = [\log_2 l], N = L + 1. \quad (13)$$

In particular, we have shown the following.

Theorem 3.1. For $f \in A$ with Dirichlet series convergent in a non-empty domain, $\rho_l(f)$ has at least $l - ([\log_2 l] + 1)$ of its eigenvalues equal to $f(1)$.

4 Analysis on Non-principal Dirichlet Characters

We now consider the more specific case where the function f is chosen to be a non-principal Dirichlet character $\chi \mod q$. In particular we prove the following result on the eigenvalues of $\rho_l(\chi)$.

Theorem 4.1. Let χ be a non-principal Dirichlet character. Then $\rho_l(\chi)$ has at least $l - (\lfloor \log_2 l \rfloor + 1)$ “trivial” eigenvalues $\lambda = 1$, and for sufficiently large l, each other eigenvalue satisfies

$$|\lambda - 1| < (l \log l)^{1/3} + \log l.$$

This contrasts with Vaughan’s findings in [3] on the eigenvalues of $\rho_l(1)$ in that in Vaughan’s case, two eigenvalues dominated with magnitudes close to $\pm \sqrt{l}$, while logarithmic bounds held on all other eigenvalues. In the case of non-principal characters, we see that there are no dominant eigenvalues with magnitude on the order of \sqrt{l}.

A first step in proving this theorem is to notice a simplification that can be made with the coefficients D^χ_k. Because Dirichlet characters are totally multiplicative, we have

$$D^\chi_k(m) = \sum_{m_1 \cdots m_k = m} \left(\prod_{i=1}^k \chi(m_i) \right) = \chi(m) \cdot \sum_{m_1 \cdots m_k = m} 1 = \chi(m)D^1_k(m),$$

and as a result,

$$|S^\chi_k(l)| \leq \sum_{m=1}^l |\chi(m)| D^1_k(m) \leq \sum_{m=1}^l D^1_k(m) = S^1_k(l).$$

Denoting $D_k(m) := D^1_k(m)$, and $S_k(m) := S^1_k(m)$, these points can be rewritten as $D^\chi_k(m) = \chi(m)D_k(m)$, and $|S^\chi_k(l)| \leq S_k(l)$.

In [3], Vaughan demonstrates the following bound on the coefficients $S_k(l)$, which we will use here without proof.

Lemma 4.2. Suppose that k is a natural number and $l \geq 1$. Then

$$S_k(l) \leq \frac{l((\log l)^{k-1}}{(k-1)!).$$

We now partition the nontrivial portion of the characteristic polynomial $P_l^f(\lambda)$ into two significant portions by defining polynomials f and g by

$$f(z) = z^N, \quad g(z) = \sum_{k=1}^L z^{L-k}S^\chi_k(l),$$

noting that $P^N_1(\lambda) = f(\lambda - 1) - g(\lambda - 1)$. Then using the bound on $S_k(l)$, we see that

$$|g(z)| < |z|^{N-2} \left(|S^\chi_1(l)| + n \sum_{k=2}^\infty \frac{1}{(k-1)!} \left(\frac{\log l}{|z|} \right)^{k-1} \right),$$

or that

$$|g(z)| < |z|^{N-2} \left(|S^\chi_1(l)| + n \left(\exp \left(\frac{\log n}{|z|} \right) - 1 \right) \right).$$

(14)
We leave the term $S^χ_1(l)$ out of the simplified estimate because we can calculate its value directly, mainly

$$|S^χ_1(l)| = \left| \sum_{m=1}^{l} D^χ(m) \right| = \left| \sum_{m=1}^{l} \chi(m) \right| \leq C_q,$$

where C_q is constant with respect to l, with $C_q = O(\sqrt{q} \log q)$ by the Pólya-Vinogradov inequality.

Then if ρ satisfies

$$l \left(\exp \left(\frac{\log l}{\rho} \right) - 1 \right) + C_q < \rho^2 \tag{15}$$

and $|z| = \rho$, then

$$|g(z)| < |f(z)|,$$

and this implies by Rouché’s theorem that $f(z)$ and $f(z) - g(z)$ have the same number of zeros in the open disc $|z| < \rho$. The following lemma provides a bound on the values of ρ which satisfy inequality (15).

Lemma 4.3. For $l \geq \max(C_q^3/8, e)$, if

$$\rho \geq (l \log l)^{1/3} + \log l,$$

then ρ satisfies inequality (15).

Proof. The crux of the proof is the following inequality, which holds for $l > 1$.

$$\frac{\log l}{\log \left(1 + \frac{(l \log l)^{2/3}}{l} \right)} < (l \log l)^{1/3} + \log l. \tag{16}$$

This inequality follows by rearranging the left side to form a difference quotient, and estimating using the mean value theorem. First

$$\frac{\log l}{\log \left(1 + \frac{(l \log l)^{2/3}}{l} \right)} = \frac{\log l}{\log(l + (l \log l)^{2/3}) - \log(l)} = \frac{\log l}{(l \log l)^{2/3} \Delta(l)},$$

where

$$\Delta(l) := \frac{\log(l + (l \log l)^{2/3}) - \log(l)}{(l \log l)^{2/3}}. \tag{17}$$

The mean value theorem gives us that $\Delta(l) = \left(\frac{d}{dx} \log x \right)_{x=c} = 1/c$ for some $c \in (l, l + (l \log l)^{2/3})$, so in particular

$$\Delta(l) > \frac{1}{l + (l \log l)^{2/3}}.$$

Applying this to our original expression, we have

$$\frac{\log l}{\log \left(1 + \frac{(l \log l)^{2/3}}{l} \right)} < \frac{(l \log l)(l + (l \log l)^{2/3})}{(l \log l)^{2/3}} = (l \log l)^{1/3} + \log l,$$
demonstrating inequality (16). Thus if \(\rho \geq (l \log l)^{1/3} + \log l \), then \(\rho > \log l / \log(1 + (l \log l)^{2/3}/l) \), and we have that
\[
\rho^2 \geq l^{2/3}(\log l)^{2/3} + 2l^{1/3}(\log l)^{4/3} + (\log l)^2
\]
and
\[
l \left(\exp \left(\frac{\log l}{\rho} \right) - 1 \right) + C_q < l^{2/3}(\log l)^{2/3} + C_q,
\]
and from these the lemma follows directly. \(\square \)

This lemma implies that for large enough \(l \), all \(N \) complex roots of the degree \(N \) polynomial \(f(z) - g(z) \) are contained in the domain \(|z| < (l \log l)^{1/3} + \log l \). Using the characterization of \(\rho_l(\chi) \) derived in general in section 3, theorem 4.1 follows directly from this analysis.

5 An Alternate Geometric Bound for \(S_k(l) \)

In the process of investigating bounds on the size of \(S_k(l) \), geometric interpretations of the coefficients immediately stood out as promising avenues of attack, and inquiry along these lines produced a bound mainly similar, but slightly distinct, to that employed by Vaughan in [3].

Theorem 5.1. Suppose that \(k \in \mathbb{N} \) and \(l \in \mathbb{R} \) with \(l \geq 1 \). Then
\[
S_k(l) < \frac{l(\log l)^k}{k!}.
\]

The proof of this bound relies on the following interesting calculation of the volume of a \(k \)-dimensional solid.

Lemma 5.2. Suppose that \(k \in \mathbb{N} \) and \(l \in \mathbb{R} \) with \(l \geq 1 \). Define the \(k \)-dimensional solid
\[
H(k, l) := \left\{ (x_1, \ldots, x_k) \in \mathbb{R}^k : x_1 \cdots x_k \leq l \text{ and } x_1, \ldots, x_k \geq 1 \right\},
\]
and let \(V_k(l) := \int_{H(k, l)} dV \) be the volume of \(H(k, l) \). Then we have
\[
V_k(l) = (-1)^k \cdot \left(1 - l \cdot \sum_{i=0}^{k-1} \frac{(-\log l)^i}{i!} \right),
\]
and moreover, for each \(k \geq 1 \) (taking \(V_0(l) = 1 \) for each \(l \))
\[
V_k(l) = \frac{l(\log l)^{k-1}}{(k-1)!} - V_{k-1}(l).
\]

Proof. We proceed by induction on \(k \). For \(k = 1 \), the calculation is straightforward:
\[
V_1(l) = \int_{x_1 \leq 1} dV = \int_1^l dx_1 = l - 1 = (-1)^1 \cdot \left(1 - l \cdot \sum_{i=0}^{1-1} \frac{(-\log l)^i}{i!} \right).
\]
Now suppose by way of induction that the calculation holds for $k \leq m - 1$. Then we have

$$V_m(l) = \int_{H(m, l)} dV = \int_{x_1 \cdots x_m \leq l}^{x_1 \cdots x_m \geq 1} dV = \int_{1}^{l} \int_{x_1 \cdots x_{m-1} \leq l/x_m}^{x_1 \cdots x_{m-1} \geq 1} dV dx_m$$

$$= \int_{1}^{l} V_{m-1}(l/x_m) dx_m = \int_{1}^{l} (-1)^{m-1} \cdot \left(1 - (l/x_m) \cdot \sum_{i=0}^{m-2} \frac{(-\log(l/x_m))^i}{i!}\right) dx_m$$

$$= (-1)^{m-1} \left(\int_{1}^{l} dx_m - l \cdot \sum_{i=0}^{m-2} \int_{1}^{l} \frac{(-\log(l/x_m))^i}{x_m \cdot i!} dx_m \right).$$

Splitting this into pieces, we see that

$$\int_{1}^{l} dx_m = l - 1,$$

and that

$$\int_{1}^{l} \frac{(-\log(l/x_m))^i}{x_m \cdot i!} dx_m = \int_{1}^{l} \frac{\log(x/m)^i}{x \cdot i!} dx = \int_{1/l}^{1} \frac{(\log x)^i}{x \cdot i!} dx$$

$$= \int_{-\log l}^{0} \frac{u^i}{i!} du = \left[\frac{u^{i+1}}{(i+1)!} \right]_{-\log l}^{0} = -\frac{(-\log l)^{i+1}}{(i+1)!.}$$

Thus,

$$V_m(l) = (-1)^{m-1} \left(-(1-l) - l \cdot \sum_{i=0}^{m-2} \frac{(-\log l)^{i+1}}{(i+1)!}\right)$$

$$= (-1)^{m} \left(1 - l - l \cdot \sum_{i=1}^{m-1} \frac{(-\log l)^i}{i!}\right) = (-1)^{m} \left(1 - l \cdot \sum_{i=0}^{m-1} \frac{(-\log l)^i}{i!}\right),$$

and we see by induction that the identity holds for all k. In particular, the recursion relation follows immediately from this identity.

Proof of Theorem. It is a straightforward exercise to see that $S_k(l)$ counts the number of whole unit-hypercubes contained in the solid $H(k, l)$ defined in the lemma, and so we can see that the volume $V_k(l)$ is in fact a strict upper bound for $S_k(l)$.

To prove the desired upper bound on $V_k(l)$, we apply Taylor’s theorem to an inner term of the value computed in the lemma. Taking the estimate over the domain $[0, x]$, we have

$$e^{-x} = \sum_{i=0}^{k-1} \frac{(-x)^i}{i!} + R_{k-1}(x),$$

with

$$R_{k-1}(x) = \frac{(-1)^k \xi e^{-\xi} x^k}{k!}$$
for some \(\xi \in [0, x] \). In particular, \(|R_{k-1}(x)| \leq |x^k/k!|\), which gives us that

\[
V_k(l) = \left| (-1)^k \left(1 - l \cdot \sum_{i=0}^{k-1} \frac{(-\log l)^i}{i!} \right) \right|
\]

\[
= \left| 1 - l \cdot (e^{-\log l} - R_{k-1}(\log l)) \right|
\]

\[
= |l \cdot R_{k-1}(\log l)| \leq \frac{l(\log l)^k}{k!}.
\]

Along with the previous observation that \(S_k(l) < V_k(l) \), this proves the bound. \(\square \)

6 A Natural Extension of the Eulerian Polynomials

As introduced in [1], the Eulerian Polynomials are a sequence of polynomials \(P_n(\lambda) \) original defined by Euler, and described by the relation

\[
\sum_{k=0}^{\infty} (k+1)^n \lambda^k = \frac{P_n(\lambda)}{(1-\lambda)^{n+1}},
\]

the first several such polynomials being

\[
P_0(\lambda) = P_1(\lambda) = 1,
\]

\[
P_2(\lambda) = 1 + \lambda,
\]

\[
P_3(\lambda) = 1 + 4\lambda + \lambda^2,
\]

\[
P_4(\lambda) = 1 + 11\lambda + 11\lambda^2 + \lambda^3,
\]

\[
P_5(\lambda) = 1 + 26\lambda + 66\lambda^2 + 26\lambda^3 + \lambda^4.
\]

When considering the function \(1^{-1}_\lambda = (1 - \lambda u)^{-1} \), it is natural to notice that the Eulerian polynomials appear as the value of \(1^{-1}_\lambda \) when it is evaluated at square-free numbers. That is, for distinct primes \(p_1, \ldots, p_n \),

\[
1^{-1}_\lambda(p_1 \cdots p_n) = \frac{(-1)^n P_n(\lambda)}{(1-\lambda)^{n+1}} = (-1)^n \sum_{k=0}^{\infty} (k+1)^n \lambda^k.
\]

This natural connection between convolution inversion and power series naturally led to an investigation of analogues for square-containing numbers, which led to the following elegant identity.

Theorem 6.1. Let \(\alpha = (\alpha_1, \ldots, \alpha_m) \) be a partition of a natural number, and let \(n = p_1^{\alpha_1} \cdots p_m^{\alpha_m} \), where the \(p_i \) are distinct primes. Then

\[
1^{-1}_\lambda(n) = (-1)^{\left| \alpha \right|} \sum_{k=0}^{\infty} \prod_{i=1}^{m} \left(\frac{k+1}{\alpha_i} \right) \lambda^k.
\]

To prove this theorem, we make use of the following lemma, adopting the notation that for \(\alpha = (\alpha_1, \ldots, \alpha_m) \) a partition of a natural number, \(\beta \leq \alpha \) denotes that \(\beta = (\beta_1, \ldots, \beta_m) \) is a partition of a natural number with \(\beta_i \leq \alpha_i \) for each \(i \), and \(\beta < \alpha \) denotes that \(\beta \leq \alpha \) and \(\beta_i < \alpha_i \) for at least one \(i \).
Lemma 6.2. Let $\alpha = (\alpha_1, \ldots, \alpha_m)$ be a partition of a natural number. Then

$$- \sum_{j=0}^{k} \sum_{\beta < \alpha} (-1)^{|\beta|} \prod_{i=1}^{m} \left(\frac{j + 1}{\beta_i} \right) = (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k + 1}{\alpha_i} \right).$$

Proof. We proceed by induction on k. For $k = 0$, we need to show

$$- \sum_{\beta < \alpha} (-1)^{|\beta|} \prod_{i=1}^{m} \left(\frac{1}{\beta_i} \right) = (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{1}{\alpha_i} \right),$$

or

$$\sum_{\beta \leq \alpha} (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k + 1}{\beta_i} \right) = 0.$$

Assuming without loss of generality that $\alpha_i \geq 1$ for each i, we see that the non-zero summands are exactly those for which $\beta_i \in \{0, 1\}$ for each i. Summing over the number of parts β_i which are equal to 1 gives

$$\sum_{\beta \leq \alpha} (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{1}{\beta_i} \right) = m \sum_{j=0}^{m} (-1)^j \left(\sum_{\beta \leq \alpha} \prod_{i=1}^{m} \left(\frac{k + 1}{\beta_i} \right) \right) = 0.$$

To prove the inductive step for $k > 0$, we make use of the identity

$$(-1)^i \binom{k}{i} = \sum_{j=0}^{i} (-1)^j \binom{k + 1}{j}$$

to find

$$(-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k}{\alpha_i} \right) = \prod_{i=1}^{m} (-1)^{\alpha_i} \left(\frac{k}{\alpha_i} \right) = \prod_{i=1}^{m} \sum_{j=0}^{\alpha_i} (-1)^j \binom{k + 1}{j}$$

$$= \sum_{\beta \leq \alpha} (-1)^{|\beta|} \prod_{i=1}^{m} \left(\frac{k + 1}{\beta_i} \right) = (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k + 1}{\alpha_i} \right) + \sum_{\beta < \alpha} (-1)^{|\beta|} \prod_{i=1}^{m} \left(\frac{k + 1}{\beta_i} \right).$$

Making use of the inductive hypothesis, we have

$$- \sum_{j=0}^{k} \sum_{\beta < \alpha} (-1)^{|\beta|} \prod_{i=1}^{m} \left(\frac{j + 1}{\beta_i} \right) = (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k}{\alpha_i} \right) - \sum_{\beta < \alpha} (-1)^{|\beta|} \prod_{i=1}^{m} \left(\frac{k + 1}{\beta_i} \right) = (-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k + 1}{\alpha_i} \right),$$

and this proves the lemma. \qed

Proof of Theorem. We again proceed by induction, this time on $|\alpha|$. As a base case, suppose $|\alpha| = 0$. Then $n = 1$, and we have

$$1_{\lambda}^{-1}(1) = \frac{1}{1 - \lambda} = \sum_{k=0}^{\infty} \lambda^k = (-1)^0 \sum_{k=0}^{\infty} \prod_{i=1}^{m} \left(\frac{k + 1}{\alpha_i} \right) \lambda^k.$$
Now for the inductive step suppose that $|\alpha| > 0$. We have

$$1^{-1}_\lambda(p_{\alpha}^1 \cdots p_{\alpha}^m) = \frac{-1}{1 - \lambda} \sum_{\beta < \alpha} 1^{-1}_\lambda(p_{\beta}^1 \cdots p_{\beta}^m) 1^\lambda(p_{\alpha}^1-\beta \cdots p_{\alpha}^m-\beta)$$

$$= - \sum_{\beta < \alpha} \left(\sum_{j=0}^{\infty} \lambda^j \right) \left(\sum_{k=0}^{\infty} \prod_{i=1}^{m} \left(\frac{k+1}{\beta_i} \right) \lambda^k \right) = - \sum_{\beta < \alpha} \sum_{j=0}^{k} \sum_{k=0}^{\infty} \prod_{i=1}^{m} \left(\frac{j+1}{\beta_i} \right) \lambda^k$$

$$= \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} \sum_{\beta < \alpha} \prod_{i=1}^{m} \left(\frac{j+1}{\beta_i} \right) \lambda^k \right) = \sum_{k=0}^{\infty} \left((-1)^{|\alpha|} \prod_{i=1}^{m} \left(\frac{k+1}{\beta_i} \right) \right) \lambda^k = (-1)^{|\alpha|} \sum_{k=0}^{\infty} \prod_{i=1}^{m} \left(\frac{k+1}{\alpha_i} \right) \lambda^k.$$
Bryan R. Gillespie
Apartment A3
472 East College Avenue
State College, PA 16801
bgillespie@epsilonsmall.com

Education:
 The Pennsylvania State University, Spring 2011
 Bachelor of Science in Mathematics
 Bachelor of Science in Computer Science
 Honors in Mathematics
 Thesis Title: Extending Redheffer’s Matrix to Arbitrary Arithmetic Functions
 Thesis Advisor: Robert C. Vaughan

Research Experience:
 University of Georgia NSF REU in Mathematics, Summer 2010
 Independent Research Project, Spring 2010
 Pennsylvania State University NSF REU in Mathematics, Summers 2007 & 2008

Employment:
 Software Development Intern, IBM Corporation, Spring & Summer 2011
 Tutor, PSU Know How, Fall 2008
 Grader, Pennsylvania State University Math Department, Spring 2008

Activities and Honors:
 Recipient, Evan Pugh Scholar Award, Spring 2011
 Recipient, Leonhard Euler Memorial Scholarship, Spring 2010
 Member, Phi Beta Kappa Honors Society, 2010 – 2011
 Participant, Budapest Semesters in Mathematics, Spring 2009
 Participant, Pennsylvania State University MASS Program, Fall 2007
 Recipient, Mathematics Advanced Study Semesters Performance Award, 2007
 Presenter, Ohio State University Young Mathematicians Conference, August 2007
 Recipient, Schreyer Academic Excellence Scholarship and Dean’s List, 2006 – 2010