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Every real algebraic variety determines a Voronoi decomposition of its ambient Euclidean
space. Each Voronoi cell is a convex semialgebraic set in the normal space of the variety at a
point. We here study these Voronoi cells, with primary focus on their algebraic boundaries.

We begin with the familiar case when X is a finite subset of the Euclidean space Rn. The
Voronoi cell of a point y ∈ X consists of all points whose closest point in X is y, i.e.

VorX(y) :=
{
u ∈ Rn : y ∈ argmin

x∈X
∥x− u∥2

}
. (1)

This is a convex polyhedron with at most |X| − 1 facets. The study of these cells, and how
they depend on X, is ubiquitous in computational geometry and its numerous applications.

Proposition 1. The Voronoi cell of a point y in the finite set X ⊂ Rn is the polyhedron

VorX(y) =
{
u ∈ Rn : u · (x− y) ≤ 1

2

(
||x||2 − ||y||2

)
for all x ∈ X\{y}

}
. (2)

Proof. By definition, VorX(y) consists of all points u such that ||x − u||2 − ||y − u||2 is
nonnegative for all x ∈ X\{y}. But, this expression is equal to ||x||2 − ||y2|| − 2u · (x− y).
The main point is that the quadratic term drops out, so the expression is linear in u.

The collection of all Voronoi cells, as y ranges over X, is known as the Voronoi diagram
of X. The Voronoi diagram is a polyhedral subdivision of Rn into finitely many convex cells.

We now shift gears, and we replace the finite set X by a real algebraic variety of positive
dimension. As before, the ambient space is Rn with its standard Euclidean metric. We seek
the Voronoi diagram {VorX(y)}y∈X in Rn where y runs over all (infinitely many) points in X.

One approach is to take a large but finite sample from X and to consider the Voronoi
diagram of that sample. This is a finite approximation to the desired limit object. By taking
finer and finer samples, the Voronoi diagram should converge nicely to a subdivision with
infinitely many regions. The Voronoi cells in the limit are convex sets. However, for n ≥ 3,
they are generally not polyhedra. This process was studied by Brandt and Weinstein in [3]
for the case when n = 2 and X is a curve. In [3, Figure 1] we see this for a quartic curve. The
authors posted a delightful YouTube video, called Mathemaddies’ Ice Cream Map. Please
do watch that movie! Their curve X is the shoreline that separates the city of Berkeley from
the San Francisco Bay. One hopes to find many ice cream shops at the shore.

Let X be a real algebraic variety of codimension c in Rn, and y ∈ X. The Voronoi cell
VorX(y) is defined as before. It consists of all points u in Rn such that y is closer or equal
to u than any other point x ∈ X. The equation (2) still holds, so VorX(y) is a convex set.
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Proposition 2. Suppose that y is a smooth point in X. The Voronoi cell VorX(y) is a
convex semialgebraic set of dimension c. It is contained in the normal space

NX(y) =
{
u ∈ Rn : u− y is perpendicular to the tangent space of X at y

}
≃ Rc.

Proof. Fix u ∈ VorX(y). Consider any point x in X that is close to y, and set v = x−y. The
inequality in (2) implies u ·v ≤ 1

2
(||y+v||2−||y||2) = y ·v+ 1

2
||v||2. For any w in the tangent

space of X at y, there exists v = ϵw+O(ϵ2) such that x = y+v is in X. The inequality above
yields u ·w ≤ y ·w, and the same with −w instead of w. Then (u− y) ·w = 0, and hence u is
in the normal space NX(y). We already argued that VorX(y) is convex. It is semialgebraic,
by Tarski’s Theorem on Quantifier Elimination, which allows us to eliminate x from the
formula (2). Finally, the Voronoi cell VorX(y) is full-dimensional in the c-dimensional space
NX(y) because every point u in an ϵ-neighborhood of y has a unique closest point in X. If
u ∈ NX(y) then that closest point must be y, by the same inequality as above.

The topological boundary of VorX(y) in NX(y) is denoted by ∂ VorX(y). It consists of
points in NX(y) that have at least two closest points in X, including y. We are interested
in the algebraic boundary ∂algVorX(y). This is the hypersurface in the complex affine space
NX(y)C ≃ Cc obtained as the Zariski closure of ∂ VorX(y) over the field of definition of X.
The degree of this hypersurface is denoted δX(y) and called the Voronoi degree of X at y. If
X is irreducible and y is a general point on X, then this degree does not depend on y.

Example 3 (Surfaces in 3-space). Fix a general inhomogeneous polynomial f ∈ Q[x1, x2, x3]
of degree d ≥ 2 and let X = V (f) be its surface in R3. The normal space at a general point
y ∈ X is the line NX(y) = {y+λ(∇f)(y) : λ ∈ R}. The Voronoi cell VorX(y) is a (possibly
unbounded) line segment in NX(y) that contains the point y. The boundary ∂ VorX(y)
consists of at most two points from among the zeros of an irreducible polynomial in Q[λ].
We shall see that this univariate polynomial has degree d3 + d − 7. Its complex zeros form
the algebraic boundary ∂algVorX(y). Thus, the Voronoi degree of the surface X is d3+d−7.

Note that, in this example, our hypothesis “over the field of definition” becomes impor-
tant. The Q-Zariski closure of one boundary point is the collection of all d3 + d− 7 points.

For a numerical example, let d = 2 and fix y = (0, 0, 0) and f = x2
1 + x2

2 + x2
3 − 3x1x2 −

5x1x3 − 7x2x3 + x1 + x2 + x3. Let r0 ≈ −0.209, r1 ≈ −0.107, r2 ≈ 0.122 be the roots of
the cubic polynomial 368λ3 + 71λ2 − 6λ − 1. The Voronoi cell VorX(y) is the line segment
connecting the points (r1, r1, r1) and (r2, r2, r2). The topological boundary ∂ VorX(y) consists
of (r1, r1, r1), (r2, r2, r2), whereas the algebraic boundary ∂alg VorX(y) also contains (r0, r0, r0).

The cubic polynomial in λ was found with the algebraic method that is described below.
Namely, the Voronoi ideal in (3) equals VorI(0) =

〈
u1−u3, u2−u3, 368u

3
3+71u2

3−6u3−1
〉
.

This is a maximal ideal in Q[u1, u2, u3], which defines a field extension of degree 3 over Q.

Example 4 (Curves in 3-space). Let X be a general algebraic curve in R3. For y ∈ X, the
Voronoi cell VorX(y) is a convex set in the normal plane NX(y) ≃ R2. Its algebraic boundary
∂algVorX(y) is a plane curve of degree δX(y). This Voronoi degree can be expressed in terms
of the degree and genus of X. Specifically, if X is the intersection of two general quadrics
in R3, then the Voronoi degree is 12. Figure 1 shows one such quartic space curve X together
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Figure 1: A quartic space curve, shown with the Voronoi cell in one of its normal planes.

with the normal plane at a point y ∈ X. The Voronoi cell VorX(y) is the planar convex region
highlighted on the right. Its algebraic boundary ∂algVorX(y) is a curve of degree δX(y) = 12.
The topological boundary ∂ VorX(y) is only a very small subset of that algebraic boundary.

Metric algebraic geometry is concerned with properties of real algebraic varieties that
depend on a distance metric. Key concepts include the Euclidean distance degree [8], distance
function [14], bottlenecks [7, 10], reach, offset hypersurfaces, medial axis [13], and cut locus
[5]. Voronoi cells are also an important topic in metric algebraic geometry. We here consider
them only for the Euclidean metric, but it also makes much sense to study Voronoi cells with
respect to Kullback-Leibler divergence [1] or Wasserstein distance [2].

We study the Voronoi decomposition to answer the question for any point in ambient
space, “What point on the variety X am I closest to?” Another question one might ask is,
“How far do we have to get away from X before there is more than one answer to the closest
point question?” The union of the boundaries of the Voronoi cells is the locus of points in
Rn that have more than one closest point on X. This set is called the medial axis (or cut
locus) of the variety. The distance from the variety to its medial axis, which is the answer
to the “how far” question, is called the reach of X. This quantity is of interest, for example,
in topological data analysis, as it is the main quantity determining the density of sample
points needed to compute the persistent homology of X. We refer to [4, 9] for studies on
sampling at the interface of topological data analysis with metric algebraic geometry. The
distance from a point y on X to the variety’s medial axis could be considered the local reach
of X. Equivalently, this is the distance from y to the boundary of its Voronoi cell VorX(y).

The material that follows is based on the article [6]. We begin with the exact symbolic
computation of the Voronoi boundary at y from the equations that define X. This uses a
Gröbner-based algorithm whose input is y and the ideal of X and whose output is the ideal
defining ∂algVorX(y). This is followed by formulas for the Voronoi degree δX(y) when X, y
are sufficiently general and dim(X) ≤ 2. Thereafter we study the case when y is a low rank
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matrix and X is the variety of these matrices. This relies on the Eckart-Young Theorem.
We now describe Gröbner basis methods for finding the Voronoi boundaries of a given

variety. We start with an ideal I = ⟨f1, f2, . . . , fm⟩ in Q[x1, . . . , xn] whose real variety
X = V (I) ⊂ Rn is assumed to be nonempty. We assume that I is real radical and prime,
so that XC is an irreducible variety in Cn whose real points are Zariski dense. Our aim is
to compute the Voronoi boundary of a given point y ∈ X. In our examples, the coordinates
of the point y and the coefficients of the polynomials fi are rational numbers. Under these
assumptions, the following computations can be done in polynomial rings over Q.

Fix the polynomial ring R = Q[x1, . . . , xn, u1, . . . , un] where u = (u1, . . . , un) is an ad-
ditional unknown point. The augmented Jacobian of X at x is the following matrix of size
(m+1)× n with entries in R. It contains the n partial derivatives of the m generators of I:

JI(x, u) :=


u− x

(∇f1)(x)
...

(∇fm)(x)


Let NI denote the ideal in R generated by I and the (c+1)×(c+1) minors of the augmented
Jacobian JI(x, u), where c is the codimension of the given variety X ⊂ Rn. The ideal NI in
R defines a subvariety of dimension n in R2n, namely the Euclidean normal bundle of X. Its
points are pairs (x, u) where x is a point in X and u lies in the normal space of X at x.

Example 5 (Cuspidal cubic). Let n = 2 and I = ⟨x3
1 − x2

2 ⟩, so X = V (I) ⊂ R2 is a cubic
curve with a cusp at the origin. The ideal of the Euclidean normal bundle of X is

NI =
〈
x3
1 − x2

2 , det
(

u1−x1 u2−x2

3x2
1 −2x2

) 〉
.

For y ∈ R2, let NI(y) denote the linear ideal that is obtained from NI by replacing the
unknown point x by the given point y. For instance, for y = (4, 8) we obtain NI(y) =
⟨u1 + 3u2 − 28⟩. We now define the critical ideal of the variety X at the point y as

CI(y) = NI + NI(y) + ⟨ ∥x−u∥2 − ∥y−u∥2⟩ ⊂ R.

The variety of CI(y) consists of pairs (u, x) such that x and y are equidistant from u and both
are critical points of the distance function from u to X. The Voronoi ideal is the following
ideal in Q[u1, . . . , un]. It is obtained from the critical ideal by saturation and elimination:

VorI(y) =
(
CI(y) : ⟨x− y⟩∞

)
∩ Q[u1, . . . , un]. (3)

The geometric interpretation of each step in our construction implies the following result:

Proposition 6. The affine variety in Cn defined by the Voronoi ideal VorI(y) contains the
algebraic Voronoi boundary ∂algVorX(y) of the given real variety X at its point y.

Remark 7. The verb “contains” sounds a bit weak, but it is stronger than it may seem. In
generic situations, the ideal VorI(y) will be prime, and it defines an irreducible hypersurface
in the normal space NI(y). This hypersurface equals the algebraic Voronoi boundary, so
containment is an equality. We saw this in Example 3. For special data, VorI(y) usually
defines a hypersurface in NI(y), but it can have extraneous components, which we remove.

4



Example 8. For the point y = (4, 8) on the cuspidal cubic X in Example 5, we have
NI(y) = ⟨u1 + 3u2 − 28⟩. Going through the steps above, we find that the Voronoi ideal is

VorI(y) = ⟨u1 − 28, u2⟩ ∩ ⟨u1 + 26, u2 − 18⟩ ∩ ⟨u1 + 3u2 − 28, 27u2
2 − 486u2 + 2197⟩.

The third component has no real roots and is hence extraneous. The Voronoi boundary
consists of two points: ∂ VorX(y) = {(28, 0), (−26, 18)}. The Voronoi cell VorX(y) is the
line segment connecting these points. This segment is shown in green in Figure 2. Its right
endpoint (28, 0) is equidistant from y and the point (4,−8). Its left endpoint (−26, 18) is
equidistant from y and the point (0, 0), whose Voronoi cell is discussed in Remark 9.

The cuspidal cubic X is very special. If we replace X by a general cubic (defined over Q)
in the affine plane, then VorI(y) is generated modulo NI(y) by an irreducible polynomial of
degree eight in Q[u2]. Thus, the expected Voronoi degree of (affine) plane cubics is δX(y) = 8.

-40 -20 20 40
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Figure 2: The cuspidal cubic is shown in red. The Voronoi cell of a smooth point is a green
line segment. The Voronoi cell of the cusp is the convex region bounded by the blue curve.

Remark 9 (Singularities). Voronoi cells at singular points can be computed with the same
procedure as above. However, these Voronoi cells generally have higher dimensions. For an
illustration, consider the cuspidal cubic, and let y = (0, 0) be the cusp. A Gröbner basis
computation yields the Voronoi boundary 27u4

2 + 128u3
1 + 72u1u

2
2 + 32u2

1 + u2
2 + 2u1. The

Voronoi cell is the two-dimensional convex region bounded by this quartic, shown in blue in
Figure 2. The Voronoi cell might also be empty at a singularity. This happens for instance
for V (x3

1 + x2
1 − x2

2), which has an ordinary double point at y = (0, 0). In general, the cell
dimension depends on both the embedding dimension and the branches of the singularity.

Proposition 6 gives an algorithm for computing the Voronoi ideal VorI(y) when y is a
smooth point in X = V (I). Experiments with Macaulay2 [12] are reported in [6]. For small
enough instances, the computation terminates and we obtain the defining polynomial of the
Voronoi boundary ∂algVorX(y). This polynomial is unique modulo the linear ideal of the
normal space NI(y). For larger instances, we can only compute the degree of ∂algVorX(y)
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but not its equation. This is done by working over a finite field and adding c − 1 random
linear equations in u1, . . . , un in order to get a zero-dimensional polynomial system.

Computations are easiest to set up for the case of hypersurfaces (c = 1). We explore
random polynomials f of degree d in Q[x1, . . . , xn], both inhomogeneous and homogeneous.
These are chosen among those that vanish at a preselected point y in Qn. In each iteration,
the Voronoi ideal VorI(y) from (3) was found to be zero-dimensional. In fact, VorI(y) is a
maximal ideal in Q[u1, . . . , un], and δX(y) is the degree of the associated field extension.

We summarize our results in Tables 1 and 2, and we extract conjectural formulas.

n\d 2 3 4 5 6 7 8 δX(y) = degree(Vor⟨f⟩(y))
1 1 2 3 4 5 6 7 d−1
2 2 8 16 26 38 52 68 d2+d−4
3 3 23 61 123 215 343 d3+d−7
4 4 56 202 520 1112 d4−d3+d2+d−10
5 5 125 631 d5−2d4+2d3+d−13
6 6 266 1924 d6−3d5+4d4−2d3+d2+d−16
7 7 551 d7−4d6+7d5−6d4+3d3+d−19

Table 1: The Voronoi degree of an inhomogeneous polynomial f of degree d in Rn.

n\d 2 3 4 5 6 7 8 δX(y) = degree(Vor⟨f⟩(y))
2 2 4 6 8 10 12 14 2d−2
3 3 13 27 45 67 93 123 2d2−5
4 4 34 96 202 2d3−2d2+2d−8
5 5 79 309 2d4−4d3+4d2−11
6 6 172 2d5−6d4 + 8d3−4d2+2d−14
7 7 361 2d6−8d5+14d4−12d3+6d2−17

Table 2: The Voronoi degree of a homogeneous polynomial f of degree d in Rn.

Conjecture 10. The Voronoi degree of a generic hypersurface of degree d in Rn equals

(d−1)n + 3(d−1)n−1 + 4
d−2

((d−1)n−1 − 1)− 3n.

The Voronoi degree of the cone of a generic homogeneous polynomial of degree d in Rn is

2(d−1)n−1 + 4
d−2

((d−1)n−1 − 1)− 3n+ 2.

Both parts of this conjecture are proved for n ≤ 3 in [6, Section 4], where the geometric
theory of Voronoi degrees of low-dimensional varieties is developed. The case d = 2 was
analyzed in [5, Proposition 5.8]. In general, for n ≥ 4 and d ≥ 3, the problem is open.

To recap, the algebraic boundary of the Voronoi cell VorX(y) is a hypersurface in the
normal space to a variety X ⊂ Rn at a point y ∈ X. We shall present formulas for the degree
δX(y) of that hypersurface when X is a curve or a surface. All proofs appear in [6, Section 6].
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We identify X and ∂algVorX(y) with their Zariski closures in complex projective space Pn, so
there is a natural assigned hyperplane at infinity. We say that X is in general position in Pn

if the hyperplane at infinity intersects X transversally, i.e. that the intersection is smooth.

Theorem 11. Let X ⊂ Pn be a curve of degree d and geometric genus g with at most
ordinary multiple points as singularities. The Voronoi degree at a general point y ∈ X equals

δX(y) = 4d+ 2g − 6,

provided X is in general position in Pn.

Example 12. If X is a smooth curve of degree d in the plane, then 2g − 2 = d(d− 3), so

δX(y) = d2 + d− 4.

This confirms our experimental results in the row n = 2 of Table 1.

Example 13. If X is a rational curve of degree d, then g = 0 and hence δX(y) = 4d− 6. If
X is an elliptic curve, so the genus is g = 1, then we have δX(y) = 4d − 4. A space curve
with d = 4 and g = 1 was studied in Example 4. Its Voronoi degree equals δX(y) = 12.

Theorem 11 is [6, Theorem 5.1]. The general position assumption is essential. For an
example, let X be the twisted cubic curve in P3, with affine parameterization t 7→ (t, t2, t3).
Here g = 0 and d = 3, so the expected Voronoi degree is 6. However, a computation shows
that δX(y) = 4. This drop is explained by the fact that the plane at infinity in P3 intersects
the curve X in a triple point. After a general linear change of coordinates in P3, which
amounts to a linear fractional transformation in R3, we correctly find δX(y) = 6.

We next present a formula for the Voronoi degree of a surface X which is smooth and
irreducible in Pn. Our formula is in terms of its degree d and two further invariants. The first,
denoted χ(X) := c2(X), is the topological Euler characteristic. This is equal to the degree
of the second Chern class of the tangent bundle. The second invariant, denoted g(X), is the
genus of the curve obtained by intersecting X with a general smooth quadratic hypersurface
in Pn. Thus, g(X) is the quadratic analogue to the usual sectional genus of the surface X.

Theorem 14 (Theorem 5.4 in [6]). Let X ⊂ Pn be a smooth surface of degree d. Then

δX(y) = 3d+ χ(X) + 4g(X)− 11,

provided the surface X is in general position in Pn and y is a general point on X.

Example 15. If X is a smooth surface in P3 of degree d, then χ(X) = d(d2−4d+6), by [11,
Ex 3.2.12]. A smooth quadratic hypersurface section of X is an irreducible curve of degree
(d, d) in P1 × P1. The genus of such a curve is g(X) = (d− 1)2. We conclude that

δX(y) = 3d + d(d2 − 4d+ 6) + 4(d− 1)2 − 11 = d3 + d− 7.

This confirms our experimental results in the row n = 3 of Table 1.
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Example 16. Let X be the Veronese surface of order e in P(
e+1
2 )−1, taken after a general

linear change of coordinates in that ambient space. The degree of X equals d = e2. We have
χ(X) = χ(P2) = 3 , and the general quadratic hypersurface section of X is a curve of genus
g(X) =

(
2e−1
2

)
. We conclude that the Voronoi degree of X at a general point y equals

δX(y) = 3e2 + 3 + 2(2e−1)(2e−2) − 11 = 11e2 − 12e− 4.

For instance, for the quadratic Veronese surface in P5 we have e = 2 and hence δX(y) = 16.
This is smaller than the number 18 found in Example 22, since back then we were dealing
with the cone over the Veronese surface in R6, and not with the Veronese surface in R5 ⊂ P5.

We finally consider affine surfaces defined by homogeneous polynomials. Namely, let
X ⊂ Rn be the affine cone over a general smooth curve of degree d and genus g in Pn−1.

Theorem 17 (Theorem 5.7 in [6]). If X ⊂ Rn is the cone over a smooth curve in Pn−1 then

δX(y) = 6d+ 4g − 9,

provided that the curve is in general position and y is a general point.

Example 18. If X ⊂ R3 is the cone over a smooth curve of degree d in P2, then 2g − 2 =
d(d− 3). Hence the Voronoi degree of X is

δX(y) = 2d2 − 5.

This confirms our experimental results in the row n = 3 of Table 2.

To conclude, we comment on the assumptions made in our theorems. We assumed that
the variety X is in general position in Pn. If this is not satisfied, then the Voronoi degree
may drop. The point here is that the Voronoi ideal VorI(y) depends polynomially on the
description of X, and the degree of this zero-dimensional ideal can only go down – and not up
– when that description specializes. Making this statement precise would require a technical
discussion of families in algebraic geometry, a topic best left to the experts on foundations.
Nonetheless, the technique introduced in the next section can be adapted to determine the
correct value. As an illustration, we consider the affine Veronese surface (Example 16).

Example 19. Let X ⊂ P5 be the Veronese surface with affine parametrization (s, t) 7→
(s, t, s2, st, t2). The hyperplane at infinity intersects X in a double conic, so X is not in
general position. In the next section, we will show that the true Voronoi degree is δX(y) = 10.
For the Frobenius norm, the Voronoi degree drops further. For this, we shall derive δX(y) = 4.

We now turn to the case of great interest in applications. Let X be the variety of real
m×n matrices of rank ≤ r. We consider two natural norms on the space Rm×n of real m×n

matrices. First, we have the Frobenius norm ∥U∥F :=
√∑

ij U
2
ij. And second, we have the

spectral norm ∥U∥2 := maxi σi(U) which extracts the largest singular value of the matrix U .
Fix a rank r matrix V in X. This is a nonsingular point in X. We consider the Voronoi

cell VorX(V ) with respect to the Frobenius norm. This is consistent with our setting because
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the Frobenius norm agrees with the Euclidean norm on Rm×n. This identification will no
longer be valid when we restrict to the subspace of symmetric matrices.

Let U ∈ VorX(V ), i.e. the closest point to U in the rank r variety X is the matrix V . By
the Eckart-Young Theorem, the matrix V is derived from U by computing the singular value
decomposition U = Σ1DΣ2. Here Σ1 and Σ2 are orthogonal matrices of size m × m and
n × n respectively, and D is a nonnegative diagonal matrix whose entries are the singular
values. Let D[r] be the matrix that is obtained from D by replacing all singular values except
for the r largest ones by zero. Then, according to Eckart-Young, we have V = Σ1 ·D[r] ·Σ2.

Remark 20. The Eckart-Young Theorem works for both the Frobenius norm and the spec-
tral norm. This means that VorX(V ) is also the Voronoi cell for the spectral norm.

The following theorem describes the Voronoi cells for low-rank matrix approximation.

Theorem 21. Let V be an m×n-matrix of rank r. The Voronoi cell VorX(V ) is congruent
up to scaling to the unit ball in the spectral norm on the space of (m− r)× (n− r)-matrices.

Before we present the proof, let us first see why the statement makes sense. The deter-
minantal variety X has dimension rm+ rn− r2 in an ambient space of dimension mn. The
dimension of the normal space at a point is the difference of these two numbers, so it equals
(m − r)(n − r). Every Voronoi cell is a full-dimensional convex body in the normal space.
Next consider the case m = n and restrict to the space of diagonal matrices. Now X is the
set of vectors in Rn having at most r nonzero coordinates. This is a reducible variety with(
n
r

)
components, each a coordinate subspace. For a general point y in such a subspace, the

Voronoi cell VorX(y) is a convex polytope. It is congruent to a regular cube of dimension
n− r, which is the unit ball in the L∞-norm on Rn−r. Theorem 21 describes the orbit of this
picture under the action of the two orthogonal groups on Rm×n. For example, consider the
special case n = 3, r = 1. Here, X consists of the three coordinate axes in R3. The Voronoi
decomposition of this curve decomposes R3 into squares, each normal to a different point on
the three lines. The image of this picture under orthogonal transformations is the Voronoi
decomposition of R3×3 associated with the affine variety of rank 1 matrices. That variety
has dimension 5, and each Voronoi cell is a 4-dimensional convex body in the normal space.

Proof of Theorem 21. The Voronoi cell is invariant under orthogonal transformations. We
may therefore assume that the matrix V = (vij) satisfies v11 ≥ v22 ≥ · · · ≥ vrr = u > 0 and
vij = 0 for all other entries. The Voronoi cell of the diagonal matrix V consists of matrices
U whose block-decomposition into r + (m− r) rows and r + (n− r) columns satisfies(

I 0
0 T1

)
·
(
U11 U12

U21 U22

)
·
(
I 0
0 T2

)
=

(
V11 0
0 V22

)
.

Here V11 = diag(v11, . . . , vrr) agrees with the upper r × r-block of V , and V22 is a diagonal
matrix whose entries are bounded above by u in absolute value. This implies U11 = V11,
U12 = 0, U21 = 0, and U22 is an arbitrary (m − r) × (n − r) matrix with spectral norm at
most u. Hence the Voronoi cell of V is congruent to the set of all such matrices U22. This
convex body equals u times the unit ball in R(m−r)×(n−r) under the spectral norm.
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Our problem becomes even more interesting when we restrict to matrices in a linear
subspace. To see this, let X denote the variety of symmetric n×n matrices of rank ≤ r. We

can regard X either as a variety in the ambient matrix space Rn×n, or in the space R(
n+1
2 )

whose coordinates are the upper triangular entries of a symmetric matrix. On the latter
space we have both the Euclidean norm and the Frobenius norm. These are now different!

The Frobenius norm on R(
n+1
2 ) is the restriction of the Frobenius norm on Rn×n to the

subspace of symmetric matrices. For instance, if n = 2, we identify the vector (a, b, c) with
the symmetric matrix

(
a b
b c

)
. The Frobenius norm is

√
a2+2b2+c2, whereas the Euclidean

norm is
√
a2+b2+c2. The two norms have dramatically different properties with respect to

low rank approximation. The Eckart-Young Theorem remains valid for the Frobenius norm

on R(
n+1
2 ), but this is not valid for the Euclidean norm (cf. [8, Example 3.2]). In what follows

we elucidate this point by comparing the Voronoi cells with respect to the two norms.

Figure 3: The Voronoi cell of a symmetric 3×3 matrix of rank 1 is a convex body of
dimension 3. It is shown for the Frobenius norm (left) and for the Euclidean norm (right).

Example 22. Let X be the variety of symmetric 3 × 3 matrices of rank ≤ 1. For the
Euclidean metric, X lives in R6. For the Frobenius metric, X lives in a 6-dimensional
subspace of R3×3. Let V be a regular point in X, i.e. a symmetric 3×3 matrix of rank 1. The
normal space to X at V has dimension 3. Hence, in either norm, the Voronoi cell VorX(V )
is a 3-dimensional convex body. Figure 3 illustrates these bodies for our two metrics.

For the Frobenius metric, the Voronoi cell is congruent to the set of matrices ( a b
b c ) with

eigenvalues between −1 and 1. This semialgebraic set is bounded by the surfaces defined
by the singular quadrics det

(
a+1 b
b c+1

)
and det

(
a−1 b
b c−1

)
. The Voronoi ideal is of degree 4,

defined by the product of these two determinants (modulo the normal space). The Voronoi
cell is shown on the left in Figure 3. It is the intersection of two quadratic cones. The cell is
the convex hull of the circle in which the two quadrics meet, together with the two vertices.

For the Euclidean metric, the Voronoi boundary at a generic point V in X is defined by
an irreducible polynomial of degree 18 in a, b, c. In some cases, the Voronoi degree can drop.

For instance, consider the special rank 1 matrix V =
(

1 0 0
0 0 0
0 0 0

)
. For this point, the degree
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of the Voronoi boundary is only 12. This particular Voronoi cell is shown on the right in
Figure 3. This cell is the convex hull of two ellipses, which are shown in red in the diagram.
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