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Here we deal with fitting a gaussian multivariate distribution N (µ,Σ) to data
X(1), X(2), . . . , X(k) ∈ Rn . This is generally done my maximizing the probability
of seeing the data over the (µ,Σ) in some subset of Rn⊕PDn, giving the solution
µ = X, and

(Σ∗)−1 = X∗ = argmax log(det[X])− 〈S,X〉 (1)

where X = 1
k

∑
i=1X

(i) and

S =
1

k

k∑
i=1

(X(i) −X)(X(i) −X)T .

Unfortunately, because of noisy data, this may not give a sparse (Σ∗)−1 even
if sparsity exists in the underlying unknown distribution. Sparsity can make
graphical models easier both for computation and interpretation. Dempster [2]
proposes setting a sparsity pattern of Σ−1 before data analysis. This problem,
called covariance selection, is the same optimization problem as (1) with the
constraints Xij = 0 for certain i 6= j.

Rather than imposing a sparse model prior to data analysis, we explore a
method of model selection proposed by Banerjee et. al. [1] which penalizes
non-sparsity. The true formulation of the problem is

X∗ = argmax log(det[X])− 〈S,X〉 − ρ · Card(X) (2)

with some penalization parameter ρ and Card(X) =
∑

ij 1{Xij 6=0}. To do this
convexly, [1] use the heuristic of penalizing the L1-norm of the inverse covariance
matrix instead, giving

X∗ = argmax log(det[X])− 〈S,X〉 − ρ ‖X‖1 . (3)

Goal:
I would like to analyze the properties and geometry of this optimization

problem. From an optimization standpoint, our goal is to describe a formula for



the optimal point as a piecewise algebraic function in ρ. While heuristics exist
for a choice of ρ, it is more desirable to be able to see the progression of solutions
as ρ increases. If using this only for model selection, we would like to describe
only the progression of sparsity patterns of the solution.

1 A Modified MLE problem:

Here we will examine a modified version of the problem proposed by [1]. The
first change I make is to not penalize diagonal elements of X. Since they cannot
be zero, they are not penalized in (2) and it seems better to not penalize them
in the relaxation. This also makes the relaxation more consistent. For example
if S is diagonal, penalizing the diagonal of X will result in a solution with the
same sparsity pattern as a solution to (1) but with lower likelihood.

The second altercation made here is to normalize S before data analysis so
that it has 1’s along it’s diagonal. This has the advantage that the solution will
be invariant under scaling certain dimensions of X(i). For example, changing the
units in which we measure a certain r.v. will not affect the sparsity pattern of
X∗. This also (slightly) reduces the problem size and makes analysis easier. So
let S = D1/2SD1/2 where D is a diagonal matrix with Dii = Sii. The model
selection problem resulting from these modifications is:

Y ∗ρ = argmax log(det[Y ])− 〈S, Y 〉 − ρ ‖Y ‖1 + ρ · tr(Y ). (4)

Taking the dual of this problem gives

max log(det[S + U ]) s.t. ‖U‖∞ ≤ ρ, Uii = 0. (5)

1.1 Some Properties:

1.1.1 Solving with S on the PD boundary

As noted in [1] for (3), for S not of full rank, the problem (4) has a solution for
ρ > 0 even though (1) does not. Since S � 0, we can always find U satisfying
the constraints of (4) so that S + U � 0.

1.1.2 Finding independence

By a classical result of Fischer, any n× n positive definite matrix A satisfies

det(A[1...j]) · det(A[j+1...n]) ≥ det(A).



Thus if for some subset B ⊂ [n], ρ ≥ sij for all i ∈ B and j ∈ [n]\B (where
sij = Sij), then (Y ∗ρ )ij = 0 for all such i, j. In the distribution given by Y ∗,
{Xi : i ∈ B} is independent of {Xj : j ∈ [n]\B}.

1.1.3 The gradient

An equivalent (though not convex) optimization problem to (5) is

max det(S + U) s.t. ‖U‖∞ ≤ ρ, Uii = 0, S + U � 0.

To solve this, we’ll need to analyze

f(x) = det

(
1 x12 . . . x1n

x12 1 . . . x2n
...

...
. . .

...
x1n x2n . . . 1


)
.

Then
∂f

∂xij
= 2(−1)i+jm[n\{i}][n\{j}],

where m[a][b] is the minor with rows a and columns b of the above matrix.

1.1.4 Conditional Independence

Because the partial derivatives of f are these almost-principal minors, we have
that for x with

∂f

∂xij
|(x) = 0,

the gaussian distribution given by x will satisfy i ⊥⊥ j| “rest”.

1.1.5 Piecewise algebraic solution

Because we’re optimizing a polynomial over a box, the optimal point x∗ will be
on some face defined by some xij = sij ± ρ and some ∂f/∂xij = 0. Thus the
components of x∗ will be algebraic in ρ with algebraic breakpoints. If we are
able to identify these break points, we could quickly calculate x∗ for any ρ.



2 Analysis of the 3× 3 problem

Here we will completely characterize the behavior of (5) for n = 3. Let

M(x, y, z) =

1 x y
x 1 z
y z 1

 ,
and

f(x, y, z) = det[M(x, y, z)] = 1− x2 − y2 − z2 + 2xyz

Then

∂f

∂x
= 2(yz − x),

∂f

∂y
= 2(xz − y), and

∂f

∂z
= 2(xy − z).

We are maximizing f over the intersection of M(x, y, z) � 0 with the box

Bρ = [s12 − ρ, s12 + ρ]× [s13 − ρ, s13 + ρ]× [s23 − ρ, s23 + ρ].

Note that f is invariant under changing the signs of any row and column. In
the 3 × 3 case, this reduces to being invariant under switching the signs of any
two of x, y, z. This reduces our analysis to two cases:|{s12, s13, s23} ∩R≥0| odd
and |{s12, s13, s23} ∩ R≥0| even. Also, because we also have symmetry among
x, y, z, we will do analysis only for |s12| ≤ |s13| ≤ |s23| and analysis for other
cases will follow by symmetry.

2.1 Case 1: |{s12, s13, s23} ∩R≥0| odd

Suppose that s12, s13, s23 ≥ 0. The other three cases are symmetric.

Claim 1 For x, y, z ≥ 0 and M(x, y, z) � 0, at most one of ∂f
∂x
, ∂f
∂y
, ∂f
∂z

can be
positive.

Without loss of generality, suppose∂f
∂x
, ∂f
∂y
≥ 0. Then

(yz)(xz) ≥ xy.

Since our M(x, y, z) � 0, we must have z < 1, giving xy = 0. Because both our
partials are non-negative, we have the x = 0 iff y = 0.

From this we see that the ∂f
∂x
, ∂f
∂y
≥ 0 implies 0 = x = y = ∂f

∂x
= ∂f

∂y
.



Claim 2 For ρ less than two of {s12, s13, s23}, the optimal point will be on one
of the three edges connected to c(ρ) = (s12−ρ, s13−ρ, s23−ρ) and we can identify
that edge by evaluating (∂f

∂x
, ∂f
∂y
, ∂f
∂z

) at this point.

Since the gradient (∂f
∂x
, ∂f
∂y
, ∂f
∂z

) must be tangent to Bρ at the optimal point

and at most one of these components can be non-negative (for x, y, z > 0), we
have that optimal point must lie on the corner closest to the origin or one of the
three edges connected to it.

If all the partial derivatives are negative at c(ρ), then c(ρ) is a critical point,
and thus our optimal point. If one of the partials of f is positive at the corner
c(ρ) (say ∂f

∂x
|c(ρ) > 0), then by fixing y and z and increasing x, we decrease ∂f

∂x
.

Either we reach the point ((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) at which ∂f
∂x

is

zero, giving us a critical point on this edge, or we will have ∂f
∂x
≥ 0 at the point

(s12 + ρ, s13 − ρ, s23 − ρ).
Thus we would like to look at (∂f

∂x
|c(ρ), ∂f∂y |c(ρ),

∂f
∂z
|c(ρ)). Note that each of these

are monic quadratics in ρ:

∂f

∂x
|c(ρ) = ρ2 + (1− s13 − s23) · ρ+ s13 · s23 − s12

∂f

∂y
|c(ρ) = ρ2 + (1− s12 − s23) · ρ+ s12 · s23 − s13

∂f

∂z
|c(ρ) = ρ2 + (1− s12 − s13) · ρ+ s12 · s13 − s23.

We’re now ready to analyze the behavior of the optimal point and corre-
sponding sparsity progressions as ρ→ 1.

2.1.1 Case 1a) : ∂f
∂x
|s, ∂f∂y |s,

∂f
∂z
|s < 0 for s = (s12, s13, s23)

For small ρ, the partial derivatives at c(ρ) will have the same sign patterns as at
s, meaning that c(ρ) will be the optimal point. As ρ approaches s12,

∂f
∂x
|c(ρ) will

become positive and remain positive for larger ρ. The optimal point will then
move to the edge ((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) and remain there until
ρ reaches s13. The optimal point will then move to (0, 0, s23−ρ) on the face of Bρ.



To summarize,

(x∗, y∗, z∗) =


(s12 − ρ, s13 − ρ, s23 − ρ) for ρ ∈ [0, a2]
((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) for ρ ∈ [a2, s13]
(0, 0, s23 − ρ) for ρ ∈ [s13, s23]
(0, 0, 0) for ρ ∈ [s23, 1)

where

a2 =
1

2
· [y + z − 1 +

√
(y + z − 1)2 − 4(yz − x)]

is the larger root of ∂f
∂x
|c(ρ) as a polynomial in ρ.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

!0.5

0.5

1.0

1.5

2.0

Fig. Above we have (right) a the z = y+ .1 plane along with the curves ∂f
∂x

=

0,∂f
∂y

= 0, and the trajectory of c(ρ) with starting point (s12, s13, s23) = (.3, .4, .5)

and a slice of Bρ. To the left is a plot of ∂f
∂x

and ∂f
∂y

evalutated at this point as ρ
increases.

2.1.2 Case 1b : ∂f
∂x
|s > 0 and ∂f

∂y
|s, ∂f∂z |s < 0

Note that ∂f/∂x|s > 0 implies s13 · s23 > s12. Since S � 0, we have s13, s23 < 1,
giving that s12 < s13, s23.

Let a1 ≤ a2 be the roots of ∂f
∂x
|c(ρ). If s13 ≤ a1 , then ∂f

∂x
|c(ρ) ≥ 0 for all

ρ ≤ s13, meaning that the optimal point lives on the edge (x, s13 − ρ, s23 − ρ).
Then for ρ small enough, the signs of the gradient at (s12 + ρ, s13− ρ, s23− ρ)

will match those at s, making this our optimal point. As ρ increases, ∂f
∂x

at this



corner will decrease and become negative, and the optimal point will live on the
relative interior of this edge. This continues until ρ reaches s13 and 1 ⊥⊥ {2, 3} is
available. Then the optimal point moves to the x = y = 0 face and then to the
origin.

To summarize,

(x∗, y∗, z∗) =


(s12 + ρ, s13 − ρ, s23 − ρ) for ρ ∈ [0, b2]
((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) for ρ ∈ [b2, s13]
(0, 0, s23 − ρ) for ρ ∈ [s13, s23]
(0, 0, 0) for ρ ∈ [s23, 1)

where

b2 =
1

2
· [y + z + 1−

√
(y + z + 1)2 − 4(yz − x)]

is the smaller root of ∂f/∂x at (s12 + ρ, s13 − ρ, s23 − ρ).
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Fig. Above we have (right) a the z = y + .1 plane along with the curves ∂f
∂x

=

0,∂f
∂y

= 0, and the trajectory of c(ρ) with starting point (s12, s13, s23) = (.2, .6, .7)

and a slice of Bρ. To the left is a plot of ∂f
∂x

and ∂f
∂y

evalutated at this point as ρ
increases.

On the other hand if a1 < s13, the behavior of the optimal point becomes
more complicated. As before it starts at (s12 + ρ, s13 − ρ, s23 − ρ) and moves to
the edge (x, s13 − ρ, s23 − ρ). It then reaches c(ρ) as ∂f

∂x
|c(ρ) dips below zero. As

ρ approaches s12,
∂f
∂x
|c(ρ) again becomes positive, and the optimal point comes

back to the edge. The behavior then continues as above, giving



(x∗, y∗, z∗) =



(s12 + ρ, s13 − ρ, s23 − ρ) for ρ ∈ [0, b2]
((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) for ρ ∈ [b2, a1]
(s12 − ρ, s13 − ρ, s23 − ρ) for ρ ∈ [a1, a2]
((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) for ρ ∈ [a2, s13]
(0, 0, s23 − ρ) for ρ ∈ [s13, s23]
(0, 0, 0) for ρ ∈ [s23, 1)
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Fig. Above we have (right) a the z = y + .1 plane along with the curves
∂f
∂x

= 0,∂f
∂y

= 0, and the trajectory of c(ρ) with starting point (s12, s13, s23) =

(.65, .8, .9) and a slice of Bρ. To the left is a plot of ∂f
∂x

and ∂f
∂y

evalutated at this
point as ρ increases.

2.2 Case 2 : |{s12, s13, s23} ∩R≥0| even

Suppose s12 < 0, s13, s23 > 0. The other cases can be described symmetrically.
Note that if x ≤ 0, y, z ≥ 0, then,

∂f

∂x
= 2(yz − x) ≤ 0

∂f

∂y
= 2(xz − y) ≤ 0

∂f

∂z
= 2(xy − z) ≥ 0,



Thus while ρ < |s12|, Bρ will be entirely contained is this octant and the
optimal point will be the corner of Bρ closest to the origin, (s12+ρ, s13−ρ, s23−ρ).
Since the signs of the partial derivatives don’t change as ρ passes |s12|, neither
does the optimal point.

As ρ approaches s13, we see that for ρ close enough to s13,
∂f
∂x

becomes neg-
ative. Then the optimal point resides on the edge (x∗, s13 − ρ, s23 − ρ), where
x∗ = (s13 − ρ) · (s23 − ρ), making ∂f

∂x
= 0.

Once ρ > |s13|, our optimal point moves to the face (0, 0, s23 − ρ). It resides
here until ρ ≥ |s23|, when (0, 0, 0) enters Bρ and becomes the optimal point.

To summarize,

(x∗, y∗, z∗) =


(s12 + ρ, s13 − ρ, s23 − ρ) for ρ ∈ [0, b1]
((s13 − ρ) · (s23 − ρ), s13 − ρ, s23 − ρ) for ρ ∈ [b1, s13]
(0, 0, s23 − ρ) for ρ ∈ [s13, s23]
(0, 0, 0) for ρ ∈ [s23, 1)

b1 smaller root of ∂f/∂x evaluated at (s12 + ρ, s13 − ρ, s23 − ρ).

0.0 0.2 0.4 0.6 0.8 1.0
!1.0

!0.8

!0.6

!0.4

!0.2

0.0

0.2 0.4 0.6 0.8 1.0

!1.0

!0.5

0.5

Fig. Above we have (right) a the z = y + .1 plane along with the curves
∂f
∂x

= 0,∂f
∂y

= 0, and the trajectory of (s12 + ρ, s13− ρ, s23− ρ) with starting point

(s12, s13, s23) = (−.2, .4, .5) and a slice of Bρ. To the left is a plot of ∂f
∂x

and ∂f
∂y

evalutated at this point as ρ increases.



2.3 Sparsity Patterns

The following are the possible progressions of sparsity patterns for |s12| ≤ |s13| ≤ |s23|:

Sparsity as ρ→ 1 (s12, s13, s23)

r r r (s12, s13, s23) = (0, 0, 0)

r r r�� , r r r s12 = s13 = 0

r r r�� , r r r ∂f
∂x
|s = 0 and s13 = s23 6= 0

r��r rAA , r r r s12 = s13 = s23 6= 0

r r r�� , r r r�� , r r r ∂f
∂x
|s = 0 and not (*)

r��r rAA , r r r�� , r r r s12 = s13 6= 0

r r r�� , r��r rAA , r r r�� , r r r�� , r r r ∂f
∂x
|s = 0 and (*)

r��r rAA , r r r�� , r r r�� , r r r not (*)

r��r rAA , r r r�� , r��r rAA , r r r�� , r r r�� , r r r (*)

where (*) denotes the following constraints:

• {s12, s13, s23} ∩R≥0| is odd

• ∂f
∂x
|s ≥ 0

• |s13| > 1−q
2

for q = |s23| − |s13|,

• |s12| > |s13| − 1−q2
4

Note that for |s12| ≤ |s13| ≤ |s23|, the only models that appear are

r��r rAA , r r r�� , r r r�� , r r r
If we use this technique only for model selection, the relative order |s12|, |s13|, |s23|
is all we need to characterize the solution.



3 Conclusion

(Tractability of analysis for larger cases)

We’ve seen that for small cases, it is possible to completely analyze the behav-
ior of the optimal points of (4) and (5). While not done here, it seems possible
that with further analysis, these techniques could be implemented on a much
larger scale. The number of breakpoints seems to “usually” be n though pos-
sibly more, many of which would have to be approximated using root finding
techniques. It’s unclear how tractable this analysis would be for many more
variables but seems worthy of study.

(Quality of the L1 penalization)

This technique maybe be useful for sparse model selection (finding the right
set of conditional independences), but does not seem to work well for finding the
actual covariance matrix to be used. While solution to (4) will be sparse for high
enough ρ, it will not be the “most likely” solution with this sparsity pattern. A
better technique would be to use (4) to find the desired sparse graphical model
and optimize likelihood over this model, as proposed by Dempster [2].

(Questions for further research)

• How many break points can there be in high dimensions? What proportion
will give have O(n) break points?

• When do the (3) and (4) give different sparsity answers?

• For n = 3 we saw that the set of possible sparsity patterns coming form
a point (s12, s13, s23) can be determined by the relative sizes of |s12|, |s13|,
and |s23|. Is this true for higher n?
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