
Machine Learning & Algebraic Geometry

Vahid Shahverdi

March 2023

Disclaimer: This lecture note is not intended to be a comprehensive overview
of algebraic geometry and machine learning. Rather, it represents my perspec-
tive on these areas based on my reading of various articles and papers. As such,
it may not cover all aspects of these fields and some details may be oversim-
plified or omitted. I encourage the reader to explore these topics further and
consult additional resources for a more complete understanding.

1 Introduction to Machine Learning

Have you ever wondered how your phone can recognize your face or how vir-
tual assistants like Siri or Alexa can understand what you’re saying? Machine
learning is the technology behind these amazing feats. It’s a subset of artificial
intelligence that involves creating algorithms capable of making predictions or
decisions based on data. By analyzing vast amounts of data, machine learning
algorithms can identify patterns and relationships to produce accurate predic-
tions or decisions.

There are three main types of machine learning techniques: supervised, un-
supervised, and reinforcement learning. Supervised learning involves training
an algorithm on labeled data to make predictions on new data. This technique
is commonly used in applications such as spam detection or fraud detection.
Unsupervised learning, on the other hand, involves identifying patterns and re-
lationships within an unlabeled dataset. This technique is useful for clustering
similar data points or identifying anomalies. Reinforcement learning is a type
of machine learning where an agent learns to interact with an environment to
maximize a reward signal. This technique is commonly used in game playing or
robotics.

In this note, we’ll be focusing on supervised learning and its potential relation
to algebraic geometry.

1.1 Machine Learning as an Optimization Problem

Many machine learning tasks can be formulated as optimization problems. Here
is a general framework:

Given a set of input-output pairs, {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi

is the input and yi is the corresponding output, the goal is to find a function fθ

1

that maps input x to an output y, where θ is a set of parameters belongs to a set
P that the function fθ depends on. The set of all such functions fθ considered
in this setting is called function space M. The function fθ is typically chosen
to minimize a loss function l(y, fθ(x)), which measures the difference between
the predicted output fθ(x) and the true output y.

Thus, the machine learning task can be expressed as the following optimiza-
tion problems:

1. Over function space: minfθ∈M l(y, fθ(x)).

2. Over parameter space: minθ∈P l(y, fθ(x)).

In some cases, regularization terms may be added to the loss function to
avoid overfitting and improve the generalization ability of the model. The opti-
mization problem can then be modified to:

min
θ∈P

l(y, fθ(x)) + λR(θ),

where R(θ) is a regularization term and λ is a hyperparameter that controls the
strength of regularization.

Example 1.1. Let us consider a parameter space P that is defined as R2.
Further, suppose we have a function space M that encompasses linear functions
fθ : R2 → R that map each data point z ∈ R2 to θT · z. Our goal is to find
fθ (or θ) such that it minimizes the expression

∑n
i=1 |fθ(zi)− yi|2 =

∑n
i=1 |θT ·

zi− yi|2 = ||θTZ−Y ||2, where n is the number of data points, zi and yi are the
i-th input and output data points, respectively, and || · ||2 denotes the Euclidean
norm squared. We can derive a unique solution for θT when ZZT is invertible,
and this solution is given by Y ZT (ZZT)−1. Notably, this solution provides the
minimizer of the above expression for θT . To illustrate the concept of binary
classification via a linear function, we present an example in Figure 1.

1.2 From Linear to Non-linear via Kernel Method

The kernel method is a popular machine learning technique used for nonlinear
classification and regression problems. In many real-world applications, the
relationship between the input variables and the target variable is not linear. In
such cases, traditional linear models like linear regression or logistic regression
may not perform well.

The kernel method allows us to transform the input variables into a higher-
dimensional feature space, where the relationship between the input variables
and the target variable may be linear. This transformation is done using a
kernel function, which is a mathematical function that measures the similarity
between pairs of input data points.

By mapping the input data to a higher-dimensional feature space, the ker-
nel method can effectively capture complex nonlinear relationships between the
input variables and the target variable. Additionally, the kernel method can be

2

Figure 1: Linearly separable data presented in a plane

used with a variety of machine learning algorithms, including support vector
machines (SVMs), ridge regression, and principal component analysis (PCA);
see [SV08].

In the mathematical setting, the kernel method involves mapping the input
data points, represented as vectors x in a d-dimensional input space, to a higher-
dimensional feature space F using a kernel function K.

The kernel function takes a pair of input vectors x and x′, and computes the
dot product of their corresponding feature representations in F . Mathemati-
cally, the kernel function can be defined as:

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩

where ϕ(x) and ϕ(x′) are the feature representations of x and x′ in F , re-
spectively.

The choice of kernel function depends on the specific problem and the char-
acteristics of the input data. Some common kernel functions include:

• Linear kernel: K(x, x′) = xTx′.

• Polynomial kernel: K(x, x′) = (xTx′ + c)d, where c is a constant and d is
the degree of the polynomial.

• Gaussian (RBF) kernel: K(x, x′) = exp(−||x− x′||2/(2σ2)), where σ is a
parameter that controls the width of the Gaussian function.

Once the input data has been mapped to the feature space F , a linear
algorithm such as SVMs or ridge regression can be used to perform classification
or regression. The decision boundary in F is a hyperplane, which corresponds
to a nonlinear decision boundary in the original input space.

3

Figure 2: Binary classification of data points with non-linear boundary through
kernel from [Gra23].

In practice, the feature representations ϕ(x) in F are often not explicitly
computed, as the kernel function allows us to compute the dot product without
ever explicitly representing the feature vectors. This is known as the “kernel
trick” and allows the kernel method to be computationally efficient even in
high-dimensional feature spaces.

Example 1.2. Given the labeled data displayed in Figure 2, employing the
feature mapping ϕ : R2 → R3 that maps z = (z1, z2) to (z21 , z1z2, z

2
2) enables us

to achieve linear separability of the data.

While the kernel method has the capability to capture non-linearity in data,
the selection of a suitable feature function can be a complex and daunting task,
and in some cases, it may be impractical. To address this issue, a clever solution
has been devised known as a neural network, which is specifically designed to
automatically identify and capture non-linearity in data.

2 Neural Network

As a mathematician, you can think of a neural network as a function that takes
in some input data, processes it through a series of interconnected layers, and
produces an output. Each layer in the network is composed of nodes (also called
neurons), which perform mathematical operations on the input data.

These mathematical operations typically involve multiplying the input data
by weights (which the network learns through a process called training), adding
a bias term, and passing the result through a non-linear activation function;
see Figure 3. The activation function helps to introduce non-linearity into the
network, which allows it to model complex relationships between inputs and
outputs.

2.1 Feedforward Neural Network

Feedforward neural networks are a commonly used type of artificial neural net-
work where information flows in only one direction, from input to output lay-
ers, without feedback loops, and are used in various applications such as image

4

Figure 3: A single hidden layer neural network comprising of a single neuron
from [Aji23].

recognition, speech recognition, natural language processing, and regression and
classification problems; see [Saz06].

A feedforward neural network is a family of functions M that every function
can be written as

f : Rd0 → RdL ; x → (αL ◦ ρ ◦ αL−1 ◦ ρ · · · ◦ ρ ◦ α1)(x), (1)

where αi are affine maps and ρ is an activation function.

Goal: The goal of this endeavor is to acquire a comprehensive understanding
of the geometric characteristics of the function space M, with the aim of ef-
fectively minimizing the discrepancy between the true output vector Y and the
predicted output vector f(X) through the solution of an optimization problem
minf∈M ||f(X)− Y ||.

2.2 Universal Approximation Theorem

Although the structure of neural networks is inspired by the human brain, the
reason “why” this structure works is governed by the following theorem:

Theorem 2.1. The Universal Approximation Theorem: Let F (x) be a contin-
uous function defined on a compact set K in n-dimensional Euclidean space.
Then, for any ϵ > 0 and δ > 0, there exists a single hidden layer neural net-
work with finite number of hidden units, and a non-constant, bounded, and
monotonically-increasing activation function ρ(x), such that:

|f(x)− F (x)| < ϵ for all x in K

where f(x) is the output of the neural network with weights and biases chosen
appropriately, and ||.|| denotes the Euclidean norm.

5

Figure 4: The model depicted by the green line is overfitted, whereas the model
represented by the black line is regularized. Although the green line closely
adheres to the training data, it is excessively reliant on that data, rendering it
susceptible to higher error rates when evaluated on fresh, unseen data compared
to the black line; image from [Ch23].

Several variations of this theorem have been developed to deal with different
types of networks. For instance, in [LLPS93], it is demonstrated that this struc-
ture also applies to networks with multiple hidden layers and non-polynomial
activation functions.

One additional contention posits that the ultimate objective of a neural net-
work bears strong resemblance to interpolation, as referred in Theorem 2.1. In
light of this, a pertinent inquiry would be the outcome of utilizing polynomial
interpolation. To satisfactorily address this query, a comprehensive comprehen-
sion of overfitting is imperative.

Overfitting: Overfitting can cause a problem in machine learning where a
model is trained too well on a particular dataset. Specifically, overfitting occurs
when a model is too complex and begins to fit not only the underlying patterns
in the data, but also the noise or random fluctuations in the data. As a result,
an overfit model may perform well on the training data but perform poorly on
new, unseen data; see Figure 4.

2.3 Geometric questions in the theory of machine learning

Many goals in the theory of machine learning with neural networks are of geo-
metric nature, such as

1. Expressivity [GRK20] refers to understanding the set of functions that
a given neural network can learn or appoximate, i.e., understanding the
function space M and its geometric properties.

2. The study of the loss landscape [LXT+18] of a given neural network and

6

a given loss function refers to analyzing the critical points in function
space and in parameter space, e.g., distinguishing local / global minima
from saddle points, or investigating the sharpness / flatness around critical
points. The loss landscape encodes the static properties of the optimiza-
tion problem that do not depend on a choice of optimization algorithm
such a gradient descent.

3. The dynamic optimization properties of a given network, loss, and opti-
mization algorithm entail for instance the convergence behavior to critical
points or understanding the curves traced by the optimization algorithm
[NRT21].

In the upcoming section, we will exhibit how these goals can be approached
with techniques from algebraic or tropical geometry.

3 Algebraic Geometry for Machine Learning

In the realm of deep learning, the choice of activation function is a critical com-
ponent of neural network design. The choice of activation function has impli-
cations for the underlying mathematical structure of the optimization problem.
For instance, if the activation function is polynomial, the neural network func-
tion in (1) is polynomial and the set M of all such functions is semi-algebraic.
Hence, we can employ tools from (real) algebraic geometry and commutative
algebra to study the questions in Section 2.3. If the activation function is recti-
fied linear units (ReLU), the function space M consists of tropical rational maps
[ZNL18], and tropical geometry can provide insights for the goals in Section 2.3.

3.1 Linear Neural Networks

The simplest choice of activation function is the identity. Such networks are
called linear neural networks. There is a large body of theoretical work studying
their behaviour, e.g., [NRT21, ACGH18, KMMT22, TFHV21, VZH22, LB18,
BH89, Kaw16, CLC22, BRTW22] to name a few. Two of the earliest studies of
the expressivity and loss landscape of linear neural networks from the algebro-
geometric perspective are [TKB19] and [MCTH21].

Definition 3.1. A linear network is a mapping Φ : Rdθ ×Rdx → Rdy that takes
the form

Φ(θ, x) = WL · · ·W1x, θ = (WL, . . . ,W1) ∈ Rθ, (2)

where Wi ∈ Rdi × Rdi−1 , and thus dθ = d0d1 + · · ·+ dL−1dL.

Definition 3.2. Let (dL, d0) be a fixed size, and consider the vector space of
matrices with this size, denoted byMdL×d0

. We define the determinantal variety
Mr to be a subset of MdL×d0 that contains matrices of rank at most r, where
r ≤ min(d0, dL).

7

In the linear setting, the function space MΦ consists of matrices W of size
(dL, d0) that can be factorized as WL · · ·W1 according to Definition 3.1. It can
be easily verified that MΦ = Mr for r = min(d0, . . . , dL).

Remark 3.3. The Eckart-Young Theorem tells us that the ED degree of the
determinantal variety Mr is

(
m
r

)
, where m = min(d0, dL). Furthermore, it can

be shown that the singular locus of Mr is precisely Mr−1 ⊂ Mr.

The square loss: Given data X ∈ Rd0×N and Y ∈ RdL×N (where N is the
number of data samples), and assuming that XXT has full rank, we write the
quadratic loss as:

l(w) = lX,Y (W) = ||WX − Y ||2 = ⟨Y, Y ⟩ − 2⟨WX,Y ⟩+ ⟨WX,WX⟩
= const.− 2⟨W (XXT), Y XT (XXT)−1 + ⟨WX,WX⟩
= const.− 2⟨W,U⟩XXT + ⟨W,W ⟩XXT

= const.+ ||W − U ||2XXT ,

where U is the unconstrained optimizer of this quadratic problem, over the set
of all matrices:

U = argminV ∈RdL×d0 ||V X − Y ||2 = Y XT (XXT)−1.

Therefore, the optimization over the function space can be obtained by

min
W∈Mr

||W − U ||2XXT .

Remark 3.4. Despite the potential challenges posed by the utilization of the
weighted Frobenius norm ||.||XXT , it is important to bear in mind that if our
samples adhere to the independent and identically distributed (i.i.d.) Gaussian
random variable criteria, then E[XXT] would represent a scalar multiple of the
identity matrix.

Loss landscape via the parameterization map: Based on Definition 3.1,
the loss function L on the parameter space factors through the parameterization
map µ as follows:

L : Rdθ
µ−→ MΦ

l|MΦ−→ R

(WL, . . . ,W1)
µ−→ W := WL · · ·W1

l|MΦ−→ ||WX − Y ||2.
A machine learning algorithm like gradient descent aims to find critical

points of L in parameter space. However, the meaningful critical points (for
instance, the best function explaining the data) live in the function space M
and are critical points of l|M. Hence, [TKB19] distinguishes between pure criti-
cal points of L (those that actually come from critical points of l|M) and spurious
critical points (that are only caused by the parametrization map µ); see Figure
5.

8

Figure 5: Pure and spurious critical points: θ1 is a pure critical point, while θ2
is a spurious critical point (the level curves on the manifold MΦ describe the
landscape in functional space). Note that θ3 is mapped to the same function as
θ2, but it is not a critical point; image from [TKB19].

Proposition 3.5. [TKB19, Proposition 6] Let θ ∈ Crit(L) be such that dµ(θ)
has maximal rank. Then θ is a pure critical point, i.e., µ(θ) ∈ Crit(l|Mr

).
Moreover, θ is a minimum (resp., saddle, maximum) for L if and only if µ(θ)
is a minimum (resp., saddle, maximum) for l|Mr .

Proposition 3.6. [TKB19, Proposition 7] If θ ∈ Crit(L) with rank(W) =
e ≤ r, then W ∈ Crit(l|Me). In other words, if rank(W) < r, then θ ∈ Crit(L)
implies that W is critical point for the restriction of l to a smaller determinantal
variety Me (which is in the singular locus of the functional space Mr).

Proposition 3.7. [TKB19] Let l be smooth and convex. Then L has a non-
global local minimum if and only if l|M has a non-global local minimum.

The latter result immediately implies classical results on the loss landscape
of linear networks, such as that all local minima of L are global if either l is the
quadratic loss [BH89, Kaw16], or if l is an arbitrary smooth convex functional
and r = min(d0, dL) [LB18]. Note that the latter condition r = min(d0, dL) is
equivalent to that the function space M is equal to its ambient vector space
MdL×d0

.
Under suitable conditions, gradient descent converges to “nice” critical points

of L [NRT21]. An important ingredient in that analysis are the algebraic in-
variants of gradient flow. Although the curves traced out by gradient flow are
generically not algebraic, the following algebraic map is constant under gradient
flow:

(WL, . . . ,W1) 7→ (WT
L WL −WL−1W

T
L−1, . . . ,W

T
2 W2 −W1W

T
1);

9

see [CLC22, Lemma 2.3] or [ACGH18, BRTW22].
The discussion so far was restricted to fully-connected / dense linear networks

where every neuron in a layer is connected to all neurons in the next layer and all
weights are independent of each other. There are other types of architectures
that play an important role in practice, e.g., convolutional networks. A first
geometric study on the expressivity, loss landscape, and algebraic invariants of
gradient flow in linear convolutional networks is [KMMT22].

3.2 Neural Networks with Polynomial Activation func-
tions

According to the Stone-Weierstrass theorem, any function can be approximated
by a polynomial over a compact set. A Polynomial Neural Network (PNN) ap-
plies polynomial approximations of activation functions in a feedforward neural
network. One immediate implication is that the function space M becomes a
semi-algebraic set, which can be studied using tools from algebraic geometry.
A first study of polynomial networks from the algebro-geometric perspective is
[KTB19]. In particular, they estimate the dimension of the function space as a
measure of the expressivity of polynomial networks and provide conditions for
when the function space is a linear vector space.

3.3 Neural Networks with ReLU Activation functions

The ReLU activation function is piecewise linear and thus the functions in the
function space M of a ReLU neural network are piecewise linear as well. Hence,
the expressivity of a ReLU network is largely governed by the number (and
shape) of the linear regions of the functions in M. It was shown in [ZNL18]
that ReLU neural networks parametrize tropical rational maps. That tropical
perspective has enabled the establishment of sharp bounds on the number of
linear regions of the functions parametrized by ReLU networks [MRZ22]. The
topological and geometric shape of the linear decision regions was studied in
terms of bent hyperplane arrangements in [GL22]. A geometric study of the dy-
namic optimization properties of ReLU networks, including algebraic invariants
of gradient flow, can be found in [WTP+19].

4 Machine Learning for Algebraic Geometry

Thus far, we have observed that algebraic geometry can provide insights into
the workings of machine learning. Furthermore, in this section, we will explore
how machine learning can be a potent tool in algebraic geometry.

There is a growing body of research exploring the use of machine learning
techniques in algebraic geometry and related areas. For instance, in [HKS22],
they use a practical approach and train deep neural networks to predict the com-
plexity of Gauss-Manin connections for a pencil of hypersurfaces. In [BHM+20],

10

a machine learning-based method is proposed for approximating the real dis-
criminant locus of parameterized polynomial systems, with applications in equi-
libria of dynamical systems and scene reconstruction. Similarly, [BLOS22] and
[BHH+22] demonstrate the effectiveness of machine learning techniques in pre-
dicting the number of real circles tangent to three conics respectively the geo-
metric properties of Hilbert series. In [DLQ22], new machine learning methods
are presented for efficiently computing numerical Calabi-Yau metrics. Lastly,
[CHLM21] shows that machine learning can significantly speed up the compu-
tation of tensor products and branching rules of irreducible representations of
Lie algebras, which are important for analyzing symmetry in physical systems.

4.1 A Research Problem

To this end, I would like to present a potential research question dealing with
possibility of learning topology of hypersurfaces with machine learning. The
rest of this section briefly outlines the motivation and context of this problem.

Hilbert’s Sixteenth Problem (H16): This problem, presented in a con-
temporary formulation, entails studying the number, shape, and position of
the components comprising a smooth algebraic hypersurface of degree d in n-
dimensional real projective space. An illustration of this problem can be found
in the case where n=2, where Harnack’s inequality sets the upper bound at
(d−1)(d−2)

2 + 1 for the number of connected components in a smooth real alge-
braic curve of degree d in the plane.

Space of polynomials and its discriminant: We define Pn,d as the collec-
tion of real homogeneous polynomials of degree d, namely R[x0, . . . , xn](d). The
real discriminant Sn,d refers to the subset of Pn,d consisting of polynomials
whose zero sets possess real singular points.

11

Figure 6: The zero sets of two polynomials from different chambers may exhibit
distinct topological properties, this is not the case for polynomials selected from
within the same chamber.

Figure 7: A cobordism M between Z0 and Z1. The red curve occurs while
passing through the discriminant; image from [Ant23].

It can be inferred that Pn,d \ Sn,d comprises a finite number of connected
regions, known as chambers, represented as Cτ . Additionally, Thom’s Isotopy
Lemma guarantees that the zero sets of any two polynomials p1, p2 in Pn,d

within the same chamber exhibit identical topological characteristics; see Figure
6 and 7.

Question: Is it possible to employ machine learning techniques to learn the
topology of hypersurfaces?

After conducting a series of experiments, we have arrived at the preliminary
conclusion that the answer to the above question is likely affirmative; also see
[MPTV06]. Our approach involves generating a large number of random samples

12

Figure 8: Labeling of random samples of degree 2 polynomials based on the
number of real roots.

in Pn,d and utilizing tools in topological data analysis to compute/approximate
the betti numbers. Subsequently, we constructed a neural network to discern
the boundary decision between various chambers for some fixed d and n ≤ 2.
Here are some of our specific findings for the scenario in which n is equal to
1: Our procedure involved the utilization of polynomials

∑d
i=0 ξix

i, whereby
ξi denotes independent Gaussian random variables having a zero mean and
unit variance. These polynomials were assigned labels based on the quantity of
their actual roots; see Figure 8. Subsequently, we proceeded to train a neural
network utilizing a dataset consisting of 20000 to 30000 samples of polynomials
with degrees 2, 3, and 6. The outcomes of these experiments have been depicted
in the form of confusion matrices, as illustrated in Figure 9, 10, and 11.

13

Figure 9: Confusion matrix for predicting the number of real roots for degree 2
polynomials

Figure 10: Confusion matrix for predicting the number of real roots for degree
3 polynomials

14

Figure 11: Confusion matrix for predicting the number of real roots for degree
2 polynomials

Acknowledgement

I would like to express my gratitude to Professor Kathlén Kohn for her valu-
able insights and ideas, as well as for her help in writing some parts of this
lecture note. Her guidance and support have been instrumental in shaping my
understanding of algebraic geometry and machine learning.

I would also like to thank my friend Björn Wehlin for his contributions in
producing the results for my research question, using his expertise in Python
programming. His assistance has been crucial in making this lecture note pos-
sible.

References

[Ch23] Chabacano. overfitting. https://en.wikipedia.org/wiki/

Overfitting, 2023. [Online; accessed March 18, 2023].

[ACGH18] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A
convergence analysis of gradient descent for deep linear neural net-
works. arXiv preprint arXiv:1810.02281, 2018.

[Aji23] Ajitesh Kumar. computation via activation. https://vitalflux.
com/perceptron-explained-using-python-example/, 2023.
[Online; accessed March 18, 2023].

15

 https://en.wikipedia.org/wiki/Overfitting
 https://en.wikipedia.org/wiki/Overfitting
 https://vitalflux.com/perceptron-explained-using-python-example/
 https://vitalflux.com/perceptron-explained-using-python-example/

[Ant23] Antonio Lerario. Cobordism. https://drive.google.com/file/

d/1cwOm6S3M4FxtvUzVA9_-kFhBj2dx0WkX/view, 2023. [Online; ac-
cessed March 18, 2023].

[BH89] Pierre Baldi and Kurt Hornik. Neural networks and principal com-
ponent analysis: Learning from examples without local minima.
Neural networks, 2(1):53–58, 1989.

[BHH+22] Jiakang Bao, Yang-Hui He, Edward Hirst, Johannes Hofscheier,
Alexander Kasprzyk, and Suvajit Majumder. Hilbert series, ma-
chine learning, and applications to physics. Physics Letters B,
827:136966, 2022.

[BHM+20] Edgar A Bernal, Jonathan D Hauenstein, Dhagash Mehta, Mar-
garet H Regan, and Tingting Tang. Machine learning the real dis-
criminant locus. arXiv preprint arXiv:2006.14078, 2020.

[BLOS22] Paul Breiding, Julia Lindberg, Wern Juin Gabriel Ong, and Li-
nus Sommer. Real circles tangent to 3 conics. arXiv preprint
arXiv:2211.06876, 2022.

[BRTW22] Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael West-
dickenberg. Learning deep linear neural networks: Riemannian gra-
dient flows and convergence to global minimizers. Information and
Inference: A Journal of the IMA, 11(1):307–353, 2022.

[CHLM21] Heng-Yu Chen, Yang-Hui He, Shailesh Lal, and Suvajit Majumder.
Machine learning lie structures & applications to physics. Physics
Letters B, 817:136297, 2021.

[CLC22] Yacine Chitour, Zhenyu Liao, and Romain Couillet. A geometric
approach of gradient descent algorithms in linear neural networks.
Mathematical Control and Related Fields, pages 0–0, 2022.

[DLQ22] Michael Douglas, Subramanian Lakshminarasimhan, and Yidi Qi.
Numerical calabi-yau metrics from holomorphic networks. In Math-
ematical and Scientific Machine Learning, pages 223–252. PMLR,
2022.

[GL22] J Elisenda Grigsby and Kathryn Lindsey. On transversality of bent
hyperplane arrangements and the topological expressiveness of relu
neural networks. SIAM Journal on Applied Algebra and Geometry,
6(2):216–242, 2022.

[Gra23] Grace Zhang. Kernel. https://medium.com/@zxr.nju/

what-is-the-kernel-trick-why-is-it-important-98a98db0961d,
2023. [Online; accessed March 18, 2023].

[GRK20] Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of
deep neural networks. arXiv preprint arXiv:2007.04759, 2020.

16

 https://drive.google.com/file/d/1cwOm6S3M4FxtvUzVA9_-kFhBj2dx0WkX/view
 https://drive.google.com/file/d/1cwOm6S3M4FxtvUzVA9_-kFhBj2dx0WkX/view
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d

[HKS22] Kathryn Heal, Avinash Kulkarni, and Emre Can Sertöz. Deep
learning gauss–manin connections. Advances in Applied Clifford
Algebras, 32(2):24, 2022.

[Kaw16] Kenji Kawaguchi. Deep learning without poor local minima. Ad-
vances in neural information processing systems, 29, 2016.

[KMMT22] Kathlén Kohn, Thomas Merkh, Guido Montúfar, and Matthew
Trager. Geometry of linear convolutional networks. SIAM Jour-
nal on Applied Algebra and Geometry, 6(3):368–406, 2022.

[KTB19] Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive
power of deep polynomial neural networks. Advances in neural
information processing systems, 32, 2019.

[LB18] Thomas Laurent and James Brecht. Deep linear networks with arbi-
trary loss: All local minima are global. In International conference
on machine learning, pages 2902–2907. PMLR, 2018.

[LLPS93] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon
Schocken. Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

[LXT+18] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Gold-
stein. Visualizing the loss landscape of neural nets. Advances in
neural information processing systems, 31, 2018.

[MCTH21] Dhagash Mehta, Tianran Chen, Tingting Tang, and Jonathan D
Hauenstein. The loss surface of deep linear networks viewed through
the algebraic geometry lens. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(9):5664–5680, 2021.

[MPTV06] Bernard Mourrain, Nicos G Pavlidis, Dimitris K Tasoulis, and
Michael N Vrahatis. Determining the number of real roots of poly-
nomials through neural networks. Computers & Mathematics with
Applications, 51(3-4):527–536, 2006.

[MRZ22] Guido Montúfar, Yue Ren, and Leon Zhang. Sharp bounds for the
number of regions of maxout networks and vertices of minkowski
sums. SIAM Journal on Applied Algebra and Geometry, 6(4):618–
649, 2022.

[NRT21] Gabin Maxime Nguegnang, Holger Rauhut, and Ulrich Terstiege.
Convergence of gradient descent for learning linear neural networks.
arXiv preprint arXiv:2108.02040, 2021.

[Saz06] Murat H Sazli. A brief review of feed-forward neural networks.
Communications Faculty of Sciences University of Ankara Series
A2-A3 Physical Sciences and Engineering, 50(01), 2006.

17

[SV08] Alex Smola and SVN Vishwanathan. Introduction to machine learn-
ing. Cambridge University, UK, 32(34):2008, 2008.

[TFHV21] Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene
Vidal. Understanding the dynamics of gradient flow in overparam-
eterized linear models. In International Conference on Machine
Learning, pages 10153–10161. PMLR, 2021.

[TKB19] Matthew Trager, Kathlén Kohn, and Joan Bruna. Pure and spu-
rious critical points: a geometric study of linear networks. arXiv
preprint arXiv:1910.01671, 2019.

[VZH22] René Vidal, Zhihui Zhu, and Benjamin D Haeffele. Optimization
landscape of neural networks. Mathematical Aspects of Deep Learn-
ing, page 200, 2022.

[WTP+19] Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva,
Denis Zorin, and Joan Bruna. Gradient dynamics of shallow uni-
variate relu networks. Advances in Neural Information Processing
Systems, 32, 2019.

[ZNL18] Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical ge-
ometry of deep neural networks. In International Conference on
Machine Learning, pages 5824–5832. PMLR, 2018.

18

	Introduction to Machine Learning
	Machine Learning as an Optimization Problem
	From Linear to Non-linear via Kernel Method

	Neural Network
	Feedforward Neural Network
	Universal Approximation Theorem
	Geometric questions in the theory of machine learning

	Algebraic Geometry for Machine Learning
	Linear Neural Networks
	Neural Networks with Polynomial Activation functions
	Neural Networks with ReLU Activation functions

	Machine Learning for Algebraic Geometry
	A Research Problem

