1. Can you recover a matroid M from its tropical linear space $\text{Trop}(M)$? Explain how the flats, bases and circuits of M are encoded in $\text{Trop}(M)$.

2. Let f and g be Laurent polynomials in two variables with generic coefficients, with Newton polygons P and Q respectively. Use tropical geometry to give a proof of Bernstein’s Theorem: The number of solutions of $f = g = 0$ in $(\mathbb{C}^*)^2$ equals $\text{area}(P) + \text{area}(Q) - \text{area}(P + Q)$. What about the (stable) intersection of n tropical hyperplanes in \mathbb{R}^n?

3. Does the Riemann-Roch Theorem hold for tropical curves? Find the relevant sources in the literature and summarize what is currently known.

4. Find a “smooth” cubic curve in \mathbb{TP}^2 whose tropical j-invariant equals 17. Can you evaluate the tropical discriminant of your cubic polynomial?

5. The following 3×6-matrix has tropical rank three:

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 2 & 4 & 6 & 8 & 10
\end{pmatrix}.
$$

Its tropical column span defines a tropical hexagon in the plane \mathbb{TP}^2, while its tropical row span defines a tropical triangle in \mathbb{TP}^5. Compute these two objects, draw them, and show that they are isomorphic.

6. In your opinion, is the following statement true or false: The 4×4-minors of a 5×5-matrix are a tropical basis for the ideal they generate.