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Our first lecture was concerned with minimizing the distance from a given data point u to
a model X that is described by polynomial equations. In the second lecture we considered the
analogous problem in the setting of algebraic statistics [23], where the model X represents
a family of probability distributions, and we used the Wasserstein metric to measure the
distances from u to X. In this lecture we stay in the setting of statistical models but we now
use Kullback-Leibler divergence and likelihood inference instead of Wasserstein distance.

The two scenarios of most interest for statisticians are Gaussian models and discrete
models. We start with discrete models, where we take the state space is the finite set
{0, 1, . . . , n}. The simplex of all probability distributions on this state space equals

∆n =
{
p = (p0, p1, . . . , pn) ∈ Rn+1 : p0 + p1 + · · · + pn = 1 and p0, p1, . . . , pn > 0

}
. (1)

Given two distributions q and p in ∆n, the Kullback-Leibler (KL) divergence is defined as

DKL( q || p ) =
n∑

i=0

qi · log(qi/pi). (2)

This function is not symmetric in its two arguments, i.e. we have DKL( q || p ) ̸= DKL( p || q )
in general. Nevertheless, we interpret KL divergence as a kind of metric on the simplex ∆n.

Lemma 1. The KL divergence is nonnegative and it is zero if and only if the two distributions
agree. In symbols, DKL( q || p ) ≥ 0 for all p, q ∈ ∆n, and equality holds if and only if p = q.

Proof. We use the calculus fact that the function x 7→ (x − 1) − log(x) is nonnegative for
x ∈ R>0 and its only zero occurs at x = 1. Hence sum in (2) is bounded below as follows:

DKL( q || p ) = −
n∑

i=0

qi · log(pi/qi) ≥ −
n∑

i=0

qi ·
(
pi/qi− 1

)
=

n∑

i=0

pi −
n∑

i=0

qi = 1− 1 = 0.

Moreover, equality holds if and only if pi/qi = 1 for all indices i.

Our model is a subset X of ∆n defined by polynomial equations. As before, for venturing
beyond linear algebra, we identify X with its Zariski closure in complex projective space Pn.

We shall present the algebraic approach to maximum likelihood estimation (MLE). See [8,
10, 16, 17, 14, 23] and references therein. Suppose we are given N i.i.d. samples. These are
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summarized in the data vector u = (u0, u1, . . . , un) where ui is the number of samples that
were in state i. Note that N = u0 + · · · + un. The associated log-likelihood function equals

ℓu : ∆n → R , p 7→ u0 · log(p0) + u1 · log(p1) + · · · + un · log(pn).

Performing MLE for the model X means solving the following optimization problem:

Maximize ℓu(p) subject to p ∈ X. (3)

Viewed through the lens of metric algebraic geometry, this problem amounts to minimizing
a certain distance, namely KL divergence, to the variety X. Namely, given a data vector u
with ui > 0 for all i, we write q = 1

N
u for the corresponding empirical distribution in ∆n

Remark 2. The maximum likelihood estimation problem (3) is equivalent to:

Minimize DKL( q || p ) subject to p ∈ X. (4)

This holds because the KL divergence can be rewritten as the entropy of the empirical
distribution q minus the log-likelihood function: DKL( q || p ) =

∑n
i=0 qi log(qi) − 1

N
ℓu(p).

As in previous lectures, we identify the model X with a projective variety in Pn. The
objective function in the optimization problem (3) involves logarithms and it is not an alge-
braic function. However, each of its partial derivatives is a rational function, and therefore
we can study this problem using algebraic geometry.

We define the ML degree of the given projective variety X to be the number of complex
critical points for generic data u. The optimal solution is denoted p̂ and called the maximum
likelihood estimate of the model X for the data u. Thus ML degree is the analogue to ED
degree, when now KL divergence replaces Euclidean distance.

The critical equations for (3) are similar to those of ED problem. Let IX = ⟨f1, . . . , fk⟩ be
the homogeneous ideal of the model X. In addition, we consider the inhomogeneous linear
polynomial f0 := p0 + p1 + · · · + pn − 1. Let J =

(
∂fi/∂pj

)
denote the Jacobian matrix of

size (k+ 1)× (n+ 1) for these polynomials, and set c = codim(X). The augmented Jacobian
AJ is obtained by prepending one more row, namely the gradient of the objective function

∇ℓu =
(
u0/p0, u1/p1, . . . , un/pn

)
.

To obtain the critical equations, enlarge IX by the (c+2)×(c+2) minors of the (k+2)×(n+1)
matrix AJ , then clear denominators, and remove extraneous components by saturation.

Example 3 (Space curves). Let n = 3 and X the curve in ∆3 defined by two general
polynomials f1 and f2 of degrees d1 and d2 in p0, p1, p2, p3. The augmented Jacobian matrix is

AJ =




u0/p0 u1/p1 u2/p2 u3/p3
1 1 1 1

∂f1/∂p0 ∂f1/∂p1 ∂f1/∂p2 ∂f1/∂p3
∂f2/∂p0 ∂f2/∂p1 ∂f2/∂p2 ∂f2/∂p3


 . (5)

Clearing denominators amounts to multiplying the ith column by pi, so the determinant
contributes a polynomial of degree d1+d2+1 to the critical equations. Here the codimension
equals c = 2, we need to take the 4×4 minors of AJ . Since the generators of IX have degrees
d1 and d2, we conclude that the ML degree of X equals d1d2(d1 + d2 + 1).
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The following general upper bound on the ML degree is established in [14, Theorem 5].

Proposition 4. Let X be a model of codimension c in ∆n whose ideal IX is generated by
polynomials f1, f2, . . . , fc, . . . , fk of degrees d1 ≥ d2 ≥ · · · ≥ dc ≥ · · · ≥ dk. Then

MLdegree(X) ≤ d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c

di11 d
i2
2 · · · dicc . (6)

Equality holds when X is a generic complete intersection of codimension c (hence c = k).

We next present a more precise formula. For the ED degree, the polar degrees in Pn were
used to give such a formula. For the ML degree, we shall use the Euler characteristic.

Given our variety X in the complex projective space Pn, and let Xo be the open subset
of X that is obtained by removing

{
p0p1 · · · pn(

∑n
i=0 pi) = 0

}
. We recall from [15, 16] that

a very affine variety is a closed subvariety of an algebraic torus (C∗)r. Thus Xo is a very
affine variety, with r = n + 2. The following formula works for any very affine variety.

Theorem 5. Suppose that the very affine variety Xo is non-singular. The ML degree of the
model X equals the signed Euler characteristic (−1)dim(X) · χ(Xo) of the manifold Xo.

Proof and Discussion. This was proved under additional assumptions in [8, Theorem 19],
and in full generality in [15, Theorem 1]. If Xo is singular then the Euler characteristic can
be replaced by the Chern-Schwartz-MacPherson class, as shown in [15, Theorem‘2].

The optimal solution of (3)-(4) in the statistical model Xo ∩ ∆n = X ∩ ∆n is denoted p̂.
This point is called the maximum likelihood estimate (MLE) for the data u and the model X.
The ML degree measures the algebraic complexity of the MLE. Theorem 5 says that the ML
degree is a topological invariant. Varieties X for which the ML degree is equal to one are of
special interest, both statistically and geometrically. ML degree one means that the MLE p̂
is a rational function of the data u. Here are two natural examples where this happens.

Example 6 (n = 3). The independence model for two binary random variables is a quadratic
surface X in the tetrahedron ∆3. This model is described by the constraints

det

[
p0 p1
p2 p3

]
= 0 and p0 + p1 + p2 + p3 = 1 and p0, p1, p2, p3 > 0.

Consider data u =

[
u0 u1
u2 u3

]
of sample size |u| = u0+u1+u2+u3. The ML degree of the

surface X equals one because the MLE p̂ is a rational function of the data, namely

p̂0 = |u|−2(u0+u1)(u0+u2), p̂1 = |u|−2(u0+u1)(u1+u3),
p̂2 = |u|−2(u2+u3)(u0+u2), p̂3 = |u|−2(u2+u3)(u1+u3).

(7)

In words, we multiply the row sums with the column sums in the empirical distribution 1
|u|u.
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2 How to be Rational

Let M be a discrete statistical model in the open simplex �n that has a well-defined maxi-
mum likelihood estimator � : �n !M. We also write � : Rn+1

>0 !M for the induced map
u 7! �(u/|u|) on all positive vectors. If the n + 1 coordinates of � are rational functions in
u, then we say that M has rational MLE. The following is our main result in this paper.

Theorem 1. The following are equivalent for a discrete statistical model M with MLE �:

(1) The model M has rational MLE.

(2) There exists a Horn pair (H, �) such that M is the image of the Horn map '(H,�).

(3) There exists a discriminantal triple (A, �,m) such that M is the image under the
monomial map �(�,m) of precisely one orthant (9) of the dual toric variety Y ⇤

A.

The MLE of the model satisfies the following relation on the open orthant Rn+1
>0 :

� = '(H,�) = �(�,m) �H. (1)

The goal of this section is to define all the terms seen in parts (2) and (3) of this theorem.

Example 2. We first discuss Theorem 1 for a very simple experiment: Flip a biased coin. If
it shows heads, flip it again. This is a statistical model with n = 2 given by the tree diagram

s0

s1

s0

s1

p0

p1

p2.

The model M is a curve in the probability triangle �2. The tree shows its parametrization

�1 ! �2 , (s0, s1) 7! (s2
0, s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

The implicit representation of the curve M is the quadratic equation p0p2� (p0 + p1)p1 = 0.
Let (u0, u1, u2) be the counts from repeated experiments. A total of 2u0 + 2u1 + u2 coin

tosses were made. We estimate the parameters as the empirical frequency of heads resp. tails:

ŝ0 =
2u0 + u1

2u0 + 2u1 + u2

and ŝ1 =
u1 + u2

2u0 + 2u1 + u2

.

The MLE is the retraction from the triangle �2 to the curve M given by the rational formula

�(u0, u1, u2) = (ŝ2
0, ŝ0ŝ1, ŝ1) =

✓
(2u0 + u1)

2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

◆
.
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Figure 1: Probability tree that describes the coin toss model in Example 7.

Example 7 (n = 2). Given a biased coin, we perform the following experiment: Flip a
biased coin. If it shows heads, flip it again. The outcome is the number of heads: 0, 1 or 2.

If s is the bias of the cone, then the model is the parametric curve X given by

(0, 1) → X ⊂ ∆2 , s 7→
(
s2, s(1 − s), 1 − s

)
.

This model is the conic X = V (p0p2 − (p0 + p1)p1) ⊂ P2. The MLE is given by the formula

(p̂0, p̂1, p̂2) =

(
(2u0 + u1)

2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

)
. (8)

Since the coordinates of p̂ are rational functions, the ML degree of X is equal to one.

The following theorem explains what we saw in equations (7) and (8):

Theorem 8. If X ⊂ ∆n is a model of ML degree one, so p̂ is a rational function of u, then
each coordinate p̂i is an alternating product of linear forms with positive coefficients.

Proof and Discussion. This was shown in the setting of arbitrary complex very affine vari-
eties by Huh in [16]. It was adapted to real algebraic geometry and statistical models in
[10]. These articles offer precise statements via Horn uniformization for A-discriminants [12],
i.e. hypersurfaces dual to toric varieties. For more information see [17, Corollary 3.12].

Models given by rank constraints on matrices and tensors are particularly important in
applications, since these represent conditional independence. Consider two random variables,
having n1 and n2 states respectively, which are conditionally independent, given a hidden
random variable with r states. In algebraic geometry, this model is the variety Xr in Pn1n2−1

that is defined by the (r + 1) × (r + 1) minors of an n1 × n2 matrix (pij). The ML degree
of this rank r model was first studied by Hauenstein, Rodriguez and Sturmfels in [13], who
obtained the following results using methods from numerical algebraic geometry.

Proposition 9. For small values of n1 and n2, the ML degrees of low rank models Xr are

(n1, n2) = (3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6) (5, 5)
r = 1 1 1 1 1 1 1 1
r = 2 10 26 58 191 843 3119 6776
r = 3 1 1 1 191 843 3119 61326
r = 4 1 1 1 6776
r = 5 1

(9)
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Every entry in the r = 1 row is 1 because the MLE for the independence model is a
rational function in the data (uij). One finds p̂ = (p̂ij) by multiplying the column vector
of row sums of u with the row vector of column sums of u, and then dividing by |u|2, as
shown in (7) for n1 = n2 = 2. The other entries are more interesting, and they give precise
information on the algebraic complexity of minimizing the Kullback-Leibler distance from a
given data matrix u to the conditional independence model Xr. Here is a matrix from [13].

Example 10 (n1 = n2 = 5). Following [13, Example 7], we consider the data

u =




2864 6 6 3 3
2 7577 2 2 5
4 1 7543 2 4
5 1 2 3809 4
6 2 6 3 5685




.

For r = 2 and r = 4, this instance has the expected number of 6776 distinct complex critical
points. In both cases, 1774 of these are real and 90 of these are real and positive. This
illustrates the last statement in Theorem 11 below. The number of local maxima for r = 2
equals 15, and the number of local maxima for r = 4 equals 6. For r = 3, we have 61326
critical points, of which 15450 are real. Of these, 362 are positive and 25 are local maxima.

The columns of the table in (9) exhibit an obvious symmetry. This was conjectured in
[13], and it was proved by Draisma and Rodriguez in their article [9] on maximum likelihood
duality. Given an n1 × n2 matrix u, we write Ωu for the matrix whose (i, j) entry equals

uijui+u+j

(u++)3
.

In the following theorem, the symbol ⋆ denotes the Hadamard product (or entrywise product)
of two matrices. All matrices pi and qi have format n1 × n2 and they have complex entries.

Theorem 11. Fix n1 ≤ n2 and u an n1 × n2-matrix with strictly positive integer entries.
There exists a bijection between the complex critical points p1, p2, . . . , ps of the likelihood
function for u on Xr and the complex critical points q1, q2, . . . , qs on Xn1−r+1 such that

p1 ⋆ q1 = p2 ⋆ q2 = · · · = ps ⋆ qs = Ωu. (10)

In particular, this bijection preserves reality, positivity, and rationality of the critical points.

This result represents a multiplicative version of the duality we encountered in our study
of ED degrees. Recall that the ED degree of any projective variety X equals that of its dual
variety X∨. Under some genericity assumption, this common ED degree is the sum of the
polar degrees, which arises from the conormal variety NX = NX∨ . By “multiplicative” we
mean that ui/pi instead of ui−pi appears in the first row of the augmented Jacobian matrix.

It is an interesting challenge in intersection theory and singularity theory to find general
formulas for the ML degrees encountered in Proposition 9. This problem was solved for
r = 2 by Rodriguez and Wang in [20]. They give a recursive formula in [20, Theorem 4.1],
and they present impressive values in [20, Table 1]. They unravel the recursion, and they
obtain the explicit formulas for the ML degree of conditional independence in many cases.
In particular, they obtain the following result which had been stated as a conjecture in [13].
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Theorem 12 (Rodriguez-Wang [20]). Consider the variety X2 ⊂ P3n−1 whose points are the
3 × n matrices of rank ≤ 2. The ML degree of this variety equals 2n+1 − 6.

We now turn to a connection between algebraic statistics and particle physics that was
developed in [21]. The physics context is scattering amplitudes, where the critical equations
for (3)-(4) are known as the scattering equations. We consider the CEGM model, due to
Cachazo and his collaborators [6, 7]. The role of the data vector u is played by the Mandel-
stam invariants. This theory rests on the space Xo of m labeled points in general position in
Pk−1, up to projective transformations. Consider the Grassmannian Gr(k,m) in its Plücker

embedding into P(m
k)−1. The torus (C∗)m acts on Gr(k,m) by scaling the columns of k ×m

matrices representing subspaces. Let Gr(k,m)o be the open Grassmannian where all Plücker
coordinates are nonzero. The CEGM model is the (k − 1)(m− k − 1)-dimensional manifold

Xo = Gr(k,m)o/(C∗)m. (11)

Example 13 (k = 2). For k = 2, the very affine variety in (11) has dimension m− 3, and it
is the moduli space of m distinct labeled points on the complex projective line P1. This space
is ubiquitous in algebraic geometry where it is known as M0,m. The point of our discussion
here is to interpret M0,m as a statistical model, and to argue that its ML degree is equal to
(m−3)!. For instance, if m = 4 then Xo = M0,4 is the Riemann sphere P1 with three points
removed. The signed Euler characteristic of this surface is one, and Theorem 8 applies.

Proposition 14. The variety Xo in (11) is very affine, with coordinates given by the k×k
minors of the following k ×m matrix, which we denote by Mk,m:




0 0 0 . . . 0 (−1)k 1 1 1 . . . 1
0 0 0 . . . (−1)k−1 0 1 x1,1 x1,2 . . . x1,m−k−1
...

...
... . .

. ...
...

...
...

...
. . .

...
0 0 −1 . . . 0 0 1 xk−3,1 xk−3,2 . . . xk−3,m−k−1

0 1 0 . . . 0 0 1 xk−2,1 xk−2,2 . . . xk−2,m−k−1

−1 0 0 . . . 0 0 1 xk−1,1 xk−1,2 . . . xk−1,m−k−1



.

To be precise, the coordinates on Xo ⊂ (C∗)(
m
k) are the non-constant minors pi1i2···ik .

Following [1, equation (4)], the antidiagonal matrix in the left k × k block of Mk,m is
chosen so that each unknown xi,j is precisely equal to pi1i2···ik for some i1 < i2 < · · · < ik.
The scattering potential for the CEGM model is the following multivalued function on Xo:

ℓu =
∑

i1i2···ik
ui1i2···ik · log(pi1i2···ik). (12)

The critical point equations, known as scattering equations [1, equation (7)], are given by

∂ℓu
∂xi,j

= 0 for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ m− k − 1. (13)

These are equations of rational functions. Solving these equations is the agenda in [6, 7, 21].
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Corollary 15. The number of complex solutions to (13) is the ML degree of the CEGM
model Xo. This number equals the signed Euler characteristic (−1)(k−1)(m−k−1) · χ(Xo).

Example 16 (k = 2,m = 6). The very affine threefold Xo = M0,6 is embedded in (C∗)9 via

p24 = x1, p25 = x2, p26 = x3, p34 = x1 − 1, p35 = x2 − 1,
p36 = x3 − 1, p45 = x2 − x1, p46 = x3 − x1, p56 = x3 − x2.

These nine coordinates on Xo ⊂ (C∗)9 are the non-constant 2 × 2 minors of our matrix

M2,6 =

[
0 1 1 1 1 1

−1 0 1 x1 x2 x3

]
.

The scattering potential is the analogue to the log-likelihood function in statistics:

ℓu = u24 log(p24) + u25 log(p25) + · · · + u56 log(p56).

This function has six critical points in Xo. Hence MLdegree(Xo) = −χ(Xo) = 6.

We now examine the number of critical points of the scattering potential (12).

Theorem 17. The known values of the ML degree for the CEGM model (11) are as fol-
lows. For k = 2, the ML degree equals (m − 3)! for all m ≥ 4. For k = 3, it equals
2, 26, 1272, 188112, 74570400 for m = 5, 6, 7, 8, 9, and for k = 4,m = 8 it equals 5211816.

Proof. We refer to [1, Example 2.2], [1, Theorem 5.1] and [1, Theorem 6.1] for k = 2, 3, 4.

Knowing these ML degrees helps in solving the scattering equations reliably. We demon-
strated in [1, 21] how this can be done in practice with HomotopyContinuation.jl [5, 4]. For
instance, we see in [21, Table 1] that the 10! = 3628800 solutions for k = 2,m = 13 are found
in under one hour. See [1, Section 6] for the solution in the challenging case k = 4,m = 8.

We now change topic by turning to models for Gaussian random variables. Let PDn

denote the open convex cone of positive-definite symmetric n × n matrices. This cone now
plays the role which was played by the simplex ∆n when we discussed discrete models above.

Given a mean vector µ ∈ Rn and a covariance matrix Σ ∈ PDn, the associated Gaussian
distribution is supported on Rn. Its density has the familiar “bell shape”; it is the function

fµ,Σ(x) :=
1√

(2π)n det Σ
· exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

We fix a model Y ⊂ Rn × PDn that is defined by polynomial equations in (µ,Σ). Suppose
we are given N samples U (1), . . . , U (N) in Rn. These are summarized in the sample mean
Ū = 1

N

∑N
i=1 U

(i) and in the sample covariance matrix S = 1
N

∑N
i=1(U

(i) − Ū)(U (i) − Ū)T .
Given these data, the log-likelihood is the following function in the unknowns (µ,Σ):

ℓ(µ,Σ) = −N

2
·
[

log det Σ + trace(SΣ−1) + (Ū − µ)TΣ−1(Ū − µ)

]
. (14)
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The task of likelihood inference is to minimize this function subject to (µ,Σ) ∈ Y .
There are two extreme cases. First, consider a model where Σ is fixed to be the identity

matrix Idn. Then Y = X × {Idn} and we are supposed to minimize the Euclidean distance
from the sample mean Ū to the variety X in Rn. This is precisely the earlier ED problem.

We instead focus on the second case, the family of centered Gaussians, where µ is fixed
at zero. The model has the form {0} × X, where X is a variety in the space Sym2(Rn) of
symmetric n× n matrices. Following [23, Proposition 7.1.10], our task is now as follows:

Minimize the function Σ 7→ log det Σ + trace(S Σ−1) subject to Σ ∈ X. (15)

Using the concentration matrix K = Σ−1, we can write this equivalently as follows:

Maximize the function K 7→ log detK − trace(S K) subject to K ∈ X−1. (16)

Here the variety X−1 is the Zariski closure of the set of inverses of all matrices in X.

Remark 18. The optimization problem (15)-(16) has a metric interpretation as in (4).
Namely, we can define the KL divergence between two probability distributions on Rn by
replacing the sum in (2) by the corresponding integral over Rn. For two Gaussians we obtain
a certain kind of distance between the unknown Σ and the sample covariance matrix S.

The critical equations of the optimization problem (15)-(16) can be written as polyno-
mials, since the partial derivatives of the logarithm are rational functions. These equations
have finitely many complex solutions. Their number is the ML degree of the model X−1.

In the remainder of this lecture we focus on Gaussian models that are described by linear
constraints on either the covariance matrix or its inverse, which is the concentration matrix.
Let L ⊂ Sym2(Rn) be a linear space of symmetric matrices (LSSM), whose general element
is assumed to be invertible. We are interested in the models X−1 = L and X = L. It is
convenient to use primal-dual coordinates (Σ, K) to write the respective critical equations.

Proposition 19. Fix an LSSM L and its orthogonal complement L⊥ for the inner product
⟨X, Y ⟩ = trace(XY ). The critical equations for the linear concentration model X−1 = L are

K ∈ L and KΣ = Idn and Σ − S ∈ L⊥. (17)

The critical equations for the linear covariance model X = L are

Σ ∈ L and KΣ = Idn and KSK −K ∈ L⊥. (18)

Proof. This is well-known in statistics. For proofs see [22, Propositions 3.1 and 3.3].

The system (17) is linear in K, but the last group of equations in (18) is quadratic in K.
The numbers of complex solutions are the ML degree of L and the reciprocal ML degree of
L. The former is smaller than the latter, and (17) is easier to solve than (18).
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Example 20. Let n = 4 and L a generic LSSM of dimension k. Our degrees are as follows:

k = dim(L) : 2 3 4 5 6 7 8 9
ML degree : 3 9 17 21 21 17 9 3

reciprocal ML degree : 5 19 45 71 81 63 29 7

These numbers and many more appear in [22, Table 1].

ML degrees and the reciprocal ML degrees have been studied intensively in the recent
literature, both for generic and special spaces L. See [2, 3, 11] and the references therein.
We now present an important result due to Manivel, Micha lek, Monin, Seynnaeve, Vodička
and Wísniewski. Theorem 21 paraphrases highlights from their articles [18, 19].

Theorem 21. The ML degree of a generic linear subspace L of dimension k in Sym2(Rn)
is the number of quadrics in Pn−1 that pass through

(
n+1
2

)
− k general points and are tangent

to k − 1 general hyperplanes. For fixed k, this number is a polynomial in n of degree k − 1.

Proof. The first statement is [19, Corollary 2.6 (4)], here interpreted classically in terms
of Schubert calculus. For a detailed discussion see the introduction of [18]. The second
statement appears in [18, Theorem 1.3 and Corollary 4.13].

Example 22 (n = 4). Fix 10 − k points and k − 1 planes in P3. We are interested in
all quadratic surfaces that contain the points and are tangent to the planes. This points
and planes impose 9 constraints on P(Sym2(C4)) ≃ P9. Passing through a point is a linear
equation. Being tangent to a plane is a cubic constraint on P9. Bézout’s Theorem suggests
that there could be 3k−1 solutions. This is correct for k ≤ 3 but it overcounts for k ≥ 4.
Indeed, in Example 20 we see 17, 21, 21, . . . instead of 27, 81, 243, . . ..

The intersection theory approeach in [19, 18] leads to formulas for the ML degrees of linear
Gaussian models. From this we obtain provably correct numerical methods for maximum
likelihood estimation. Namely, after computing critical points as in [22], we can certify them
as in [4]. Since the ML degree is known, one can be sure that all solutions have been found.

References

[1] D. Agostini, T. Brysiewicz, C. Fevola, L. Kühne, B. Sturmfels and S. Telen: Likelihood
degenerations, Advances in Mathematics, to appear.
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