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Abstract

Background

While genome-wide gene expression profiling data are generated at an increasing rate,
the repertoire of approaches for pattern discovery in these data is still limited. Finding
subtle patterns of interest in large amounts of data (tens of thousands of profiles)
associated with a certain level of noise is still a challenge. A microarray time series was
recently generated to study the transcriptional program of the mouse segmentation clock,
a biological oscillator associated with the periodic formation of the segments of the body
axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to
detect periodic profiles in the dataset, leading to the identification of a set of novel cyclic
genes associated with the segmentation clock.

Methodology/principal findings

In this work, we apply to the same microarray time series dataset, four distinct
mathematical methods: Phase consistency, Address reduction, Cyclohedron test and
Stable persistence—each method using a different conceptual framework to identify
significant patterns. A common feature of some of these methods is that, unlike Fourier
transforms, they are not strongly dependent on the assumption of periodicity of the
pattern of interest. Remarkably, these methods identified blindly the expression profiles
of known cyclic genes as the most significant patterns in the dataset. Many candidate
genes predicted by more than one approach appeared to be true positive cyclic genes
(including known cyclic genes and a novel candidate cyclic gene experimentally
validated in the mouse embryo) and will be of particular interest for future research.
Significance, and conclusion

Thus, our results validate the use of these novel pattern detection strategies, notably for
the detection of periodic profiles. It further suggests that combining several distinct
mathematical approaches to analyze microarray datasets comprise a valuable strategy for
the identification of genes exhibiting novel, interesting transcriptional patterns.

Introduction

The dynamics of gene expression in a biological system exposed to varying
experimental conditions, such as dose response to a drug or a time course, can be
analyzed now at the whole genome level by generating series of microarrays. The main
difficulty is then to identify, among the thousands of gene expression profiles recorded,
hidden trends or patterns in specific gene expression profiles revealing particular
properties of the system that may lead to the formation of novel biological hypothesis.
However, because some of these patterns tend to be subtle and of partially or completely
unknown shape, as well as noisy, determining appropriate methods of pattern detection
still remains challenging.
Microarray time series have been extensively generated to study periodic biological
processes, such as the cell cycle [1], circadian regulation [2] [3], plasmodium cycle [4]
and vertebrae segmentation [5]. Several approaches have been used to identify genes
whose periodic expression underlies the cellular or tissue-level periodic behavior of the
system. However, a common feature of these approaches is their strict assumptions about
the shape of periodic profiles. For example, popular Fourier-based methods detect



periodicity by decomposing gene expression profiles into a series of sine curves.
However, these methods would be less sensitive to many types of periodic profiles that
are poorly approximated by sine curves (because of the noise in the experimental
measurements or because periodic profiles might have a different shape, such as
asymmetric profiles with short peak and long trough), introducing biases to the results.
Here, we applied to the same dataset four methods that do not have such prior
assumptions about the shape of the profiles of interest.

The segmentation of the vertebrate axis into periodic structures, such as vertebrae,
occurs during embryogenesis when the vertebral precursors, the somites, are formed
rhythmically from the presomitic mesoderm (PSM). This process is associated with a
molecular oscillator that drives periodic gene expression in the PSM with a period
corresponding to that of somite formation [6]. During one oscillation cycle, cyclic genes,
such as Lunatic fringe (Lfng), are expressed as a wave initiated in the posterior PSM that
progressively migrates along the PSM and narrows as it moves anteriorly [7-9]. A
microarray time series of PSM samples encompassing one period of the segmentation
clock has been generated in the mouse and analyzed using the Lomb-Scargle (L)
algorithm, a method related to Fourier analysis [5,10]. This analysis identified a large
number of novel cyclic genes that fall into two biologically coherent clusters associated
with the Wnt and the Notch/FGF signaling pathways.

In this paper, we applied four different mathematical approaches to the same mouse
segmentation data and compared the results to the original study. The four methods are:
Phase consistency (P); Address reduction (A); Cyclohedron test (C); and Stable
persistence (S). These methods can be divided into two groups. In the first group, the P
and S methods search for periodic profiles but in a very different way compared to the L
method. The P method optimizes the ratio of the total variation to the sum of the
piecewise variations, with the pieces set by the behavior of the known cyclic gene Lfng,
and the S method is based on a numerical assessment that is provably stable (See
Material and Methods). In the second group, the A and C methods attempt to identify
significant patterns without assuming the periodic nature of the patterns of interest.
Briefly, A and C associate significance inversely with the likelihood of certain groups of
patterns—the two methods differing from each other mainly in how they partition the set
of all possible patterns into groups.

All methods performed similarly well in identifying a list of benchmark cyclic genes
among their top ranked candidates, validating their use for the detection of periodic
profiles. Since some of the methods do not search specifically for periodic profiles, it
further suggests that the cyclic gene profiles are the most significant patterns in the
dataset. In addition to the genes in the benchmark list, each method identified a number
of novel candidate cyclic genes of the Wnt pathway. We show that the Wnt-target and
Wnt-modulator cysteine rich protein 61 (Cyr61), identified by three of the methods,
represents a novel bona fide cyclic gene of the mouse segmentation clock. Thus, our data
suggest that combining several distinct mathematical approaches to analyze microarray
datasets is a valuable strategy for the identification of genes exhibiting interesting
transcriptional patterns.

Results



In this study, we used the microarray dataset generated as described [5]. Briefly, in
order to identify cyclic genes associated with the mouse segmentation clock, a time series
was generated by collecting the PSM tissue that undergoes the clock oscillations from 17
embryos (17 time points). This microarray dataset was analyzed [5] using L analysis that
focuses on the genes whose expression patterns display the best fit to a sine curve [10]. A
set of 27 cyclic probe sets out of the top 40 probe sets, identified by a period between 80
to 130 minutes and ranked by their statistical significance, was subsequently validated by
in situ hybridization [5]. This 27 probe set list (Table S1) contains seven cyclic genes
whose cyclic expression has been discovered independently from the microarray study by
in situ hybridization (Table S1) [7-9,11-16].

We used the four methods (P, A, C and S) to rank the 7,549 probe sets of the dataset
in order of the significance of their expression profile (as defined by each method-See
Materials and Methods) and we restricted the analysis to the top 300 ranked probe sets
from each list (Table S2-S6). First, we compared the rank of the benchmark cyclic genes
that corresponded to seven probe sets and independently identified from non-microarray
experimental methods. The L, P, A and S methods identified at least five out of the seven
benchmark genes in the top ranked 100 probe sets, whereas C identified three of the
seven known genes (Figure 1A). However, if we concentrate on the top 10 probe sets in
each list (a more practical number for potential detailed experimental investigation), all
of the methods perform similarly by detecting from one to two of these known genes. To
measure the performance to a higher resolution, we repeated this analysis using a larger
validation set of 27 probe sets. In addition to the seven probe sets above, this set is
composed of cyclic genes identified by the L analysis and then experimentally validated
[5]. Since this benchmark set is based on the L method, this method was removed from
the analysis comparison (Figure 1B). As indicated in Figure 1B, method S performs best
by identifying 90% of the benchmark genes, followed by methods A and P
(approximately 75% and 63%, respectively) and C (approximately 37%). Again, when
we restrict our attention to the top 10 probe sets of each list, the methods perform
similarly by ranking among them from four to five benchmark genes. In conclusion, like
the L method, the P, A, C and S methods identify known cyclic genes from among their
top ranked probe sets.

We next compared the intersection of the top 300 ranked probe sets from the four
new methods and method L. This is represented in Figure 2A as a 5-set Venn diagram in
which each color corresponds to a different method. A different representation of the
same diagram is shown in Figure 2B in the form of the lattice of the subsets of a five
element set (Hasse diagram). The total number of distinct probe set profiles in all of the
five sets (the union) is 884; the total number in each of the five sets (the intersection) is
21. Remarkably, the common overlap contains eight true positive cyclic genes (Table 1).
Note that the L, P and C methods identified a large number of unique genes (104, 160
and 154, respectively) compared to method A (67) and method S (47).

We then studied the possible connections among the top 300 probe sets, identified by
each method, to the segmentation clock process. Most of the validated cyclic genes
(77%) in the top 40 probe sets of the L list are associated with the Notch, FGF and Wnt
signaling pathways [5]. These genes essentially belong to two clusters: the first contains
genes associated with the Notch- and FGF-signaling pathways; the second contains genes
associated with the Wnt pathway and oscillating in opposite phase with the genes of the
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first cluster. Bootstrap analysis provides particularly strong statistical support for the Wnt
cluster (data not shown). In accordance with the principle of “guilt by association,” the so
called L-Wnt cluster is strikingly homogenous because 90% of the genes contained in
this cluster are indeed linked to Wnt signaling.

Therefore, we tested the predictions of each of the four novel methods by
investigating the link of their candidates to Wnt signaling. We independently clustered
the top 300 gene expression profiles identified by the P, A, C, S and L methods (see
Material and Methods). In each of the five analyses, we identified a cluster of periodic
profiles containing at least the known cyclic genes (4Axin2, dickkopf homolog 1 [Dkkl], c-
Myc and dapper homolog 1 [Dactl]) of the Wnt pathway. We refer to the cluster that
contains these four genes as the Wnt cluster of the method (Table 2). We find that the S
method identifies the eight known members of the Wnt cluster previously identified by
the L method and validated as described [5], while the P and A methods identify six out
of eight, and the C method identifies four out of eight of the known Wnt cyclic genes. We
further analyzed the novel candidate cyclic gene contained in each of the Wnt clusters
through a literature search to investigate their potential link to Wnt signaling. This
allowed us to identify six novel candidate genes in the L-Wnt cluster showing a link to
the Wnt pathway (Table 2). Interestingly, the P method performs similarly to the L
method by predicting six new candidates, while the A, C and S methods predict two, four
and three additional members, respectively (Table 2). Interestingly, most of the Wnt
cyclic gene candidates predicted by the L method are also predicted by at least one of the
other methods (Table 2), lending added credibility to these candidates. In contrast, the P
and C methods strikingly predict the largest numbers of unique Wnt members (that are
not predicted by any other method). Only one candidate Wnt cyclic gene, Cyr61 (Figure
3A), was identified by three independent methods (including the L method). We
investigated experimentally by in situ hybridization the expression pattern of this gene in
the PSM of E9.0 mouse embryos (Figure 3B, C) and indeed observed a dynamic pattern
of expression in the posterior PSM, validating it as a novel cyclic gene.

Discussion

In this work, we apply four distinct mathematical methods of pattern detection in
high-dimensional gene expression data and we compare their predictions to those from
the L analysis on the same microarray dataset in three ways.

(1) We first examined the location of a set of benchmark cyclic genes in the top 300
probe set list of each method; the probe sets being ordered by significance of the pattern
of their expression profile. Remarkably, the new methods accurately identified a large
percentage of benchmark cyclic genes with a very high ranking. In addition, they
performed as well as the L method in detecting known cyclic genes (that were discovered
independently from the microarray study), validating the use of these methods in
detecting periodic profiles. Some of the methods were designed to detect any significant
patterns independently from the nature of the pattern—whether or not it is periodic.
Remarkably, these methods identified cyclic genes from among their top ranked
candidates, suggesting that periodic patterns are predominant in this dataset. Due to
technical issues, the enrichment in periodic profiles in the dataset is very likely indeed,
because the time series is constituted from samples from five consecutive cycles that
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were ordered based on their phase (revealed by the pattern of expression of Lfng by in
situ hybridization) to reconstitute one oscillation [5] (. One of the consequences of this
strategy is that the collapsed dataset generated by this procedure preserves periodic
patterns associated with the segmentation clock, while it affects most other patterns, such
as a linear increase with time.

(2) We then calculated the overlap between the sets of the top 300 ranked probe sets
determined by each method. The intersection contained notably eight true positive cyclic
genes. Applying different methods allows us to confirm the findings by the methods, but
in addition, it leads to the identification of complementary types of patterns by
identifying profiles that could be missed by some other methods.

(3) We independently clustered the top 300 ranked outputs generated by each method and
tested the predicted candidate genes clustering with the known cyclic genes of the Wnt
pathway. Many of the candidates appeared to be biologically consistent with previous
data, since they were reported in the literature to be associated with the Wnt pathway.
These are attractive potential new cyclic genes involved in the mouse segmentation
clock. Furthermore, one of the candidate genes, Cyr61, which is a canonical Wnt target
[17] and codes for a modulator of the Wnt signaling pathway [18], was identified by three
of the methods and was experimentally validated in mouse PSM, extending the list of
known cyclic genes associated with the Wnt pathway. Because it is technically difficult
(time and labor intensive) to validate large numbers of candidates, it is usually easier to
work with a small gene list resulting from the use of stringent criteria aimed at
minimizing the percentage of false positives. This strategy, however, tends to exclude
true positives. The other alternative is then to examine a larger list but with a higher rate
of false positives. In this case, different strategies can be adopted to filter out false
positives: clustering the profiles and checking the biological coherence (for example, co-
regulation by the same signaling pathway) but also cross-validating the results from
different analyses and concentrating on the candidates identified by more than one
method. This proved to be a valid strategy, leading to the discovery of the new cyclic
gene Cyr61.

An interesting feature common to the A, C and S methods is that they work on the
ranked data as opposed to the raw amplitudes of the signal. In other words, the signal
intensities that describe over time the expression of a gene are sorted by magnitude, and
each signal intensity is then replaced by the integer rank within this sorted order. Thus,
each gene expression profile is represented by a permutation, which is invariant over one-
to-one transformations of the data (such as log or taking the square) and is much more
mathematically tractable. These methods offer a particular advantage for the analysis of
this segmentation clock time series where only the ordering of the time points could be
estimated, but not the time interval in between. These methods, by taking the rank
permutation, do not require such precise timing information. Since these methods
perform similar to the L and P methods, which use the raw signal intensities, this
suggests that moving to ranked data despite loosing some information (like the amplitude
of the signal), might be advantageous in certain cases. Finally, our study suggests that
these four new methods of pattern detection are valid in the detection of periodic profiles.



Furthermore, since these methods have no strict prior assumptions on the shape of the
profiles of interest, they are promising exploratory tools to discover novel, interesting
transcriptional patterns in large-scale expression analysis.

Materials and Methods

Description of the starting microarray dataset. Microarray data, available at
ArrayExpress at www.ebi.ec.uk/arrayexpress/ under accession number E-TABM-163,
were normalized as described [5] and filtered based on detection call (by removing the
probe sets called “absent” throughout the experiment), signal intensity (by removing
genes with low expression level <50) and amplitude (by eliminating peak-to-trough
variation < 1.65). After these filters, the dataset consisted of 7,549 probe sets.

Cluster analysis. The expression profiles were clustered using K-means based on the
Pearson correlation distance in MultiExperiment Viewer (MEV) software. The optimal
number of clusters was determined using the Figure of Merit (FOM) function [19] in the
MEYV package that provides a measure of the fit of the expression patterns for the clusters
produced by K-means.

PubMed search. The PubMed database was searched for each of the 142 genes in the
Wnt clusters to identify articles indicating a link between these genes and the Wnt
pathway. The results indicated some articles containing the two search terms: the “gene
name” and “Wnt.” Manual curation of these results was necessary to verify the biological
connection between each gene and the Wnt pathway.

The search of the PubMed database was automated using the MedlineR library [20]
for the R statistical language. This library utilizes the Entrez Programming Utilities
interface to connect to the PubMed database. The number of matches for each pair of
search terms was returned, as well as a link to the abstracts for each match. Fifteen genes
were identified as novel Wnt cyclic gene candidates.

Experimental validation. The candidate cyclic gene Cyr6/ was experimentally
validated by whole mount in situ hybridization that was performed as described [21] on
9.0 dpc mouse embryos using expressed sequence tag (ESTs) from Image clone 5716887
as a probe for Cyr61.

See attached PDF for Pattern Detection Methods
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Figure Legends

Figure 1. Identification of Benchmark Cyclic Genes in the Top 300 Probe Sets Lists of
the Five Methods

(A) Benchmark genes are composed of cyclic genes identified independently from the
Lomb-Scargle (L) analysis (seven probe sets).

(B) Benchmark genes also include cyclic genes identified by the L analysis and
experimentally validated (27 probe sets).

L, Lomb-Scargle analysis; P, Phase consistency; A, Address reduction; C, Cyclohedron
test; S, Stable persistence



Figure 2. Comparison of the Intersection of the Top 300 Ranked Probe Sets from the
Five Methods

(A) Venn diagram.

(B) Haase diagram shows the pairwise intersection of two lists, the triple intersection of
three lists, and so on. The total number of distinct probe sets in all of the five top 300 lists
(the union) is 884; the total number in each of the five sets (the intersection) is 21.

L, Lomb-Scargle analysis; P, Phase consistency; A, Address reduction; C, Cyclohedron
test; S, Stable persistence

Figure 3. Identification of Cyr61 as a Novel Wnt-cyclic Gene

(A) Gene expression profiles (in log, ratio) of Cyr61 (represented by two probe sets) and
benchmark Wnt-cyclic gene Axin2.

(B) and (C) Experimental validation by in situ hybridization. Lateral views of the tails of
9.0 dpc mouse embryos hybridized with the Cyr61 probe. Two representative images
illustrating the dynamic expression of the gene in the presomitic mesoderm (PSM) are
shown. The domain of expression is in the posterior PSM (B) and the anterior PSM (C).

Supporting Information

Microarray data available at ArrayExpress at www.ebi.ec.uk/arrayexpress/ under
accession number E-TABM-163

Table S1. List of Benchmark Cyclic Genes

The benchmark cyclic genes in bold were identified independently from the microarray
analysis.

L, Lomb-Scargle analysis; P, Phase consistency; A, Address reduction; C, Cyclohedron
test; S, Stable persistence

Table S2. List of the Top 300 Probe Sets of the Lomb-Scargle (L) Analysis

Table S3. List of the Top 300 Probe Sets of the Phase consistency (P) Analysis

Table S4. List of the Top 300 Probe Sets of the AddressReduction (A) Analysis

Table S5. List of the Top 300 Probe Sets of the Cyclohedron Test C Analysis

Table S6. List of the top 300 Probe Sets of the Stable Persistence (S) Analysis
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