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What is a Statistical Model ?

Wiki: In mathematical terms, a statistical model
is frequently thought of as a parameterized set
of probability distributions of the form {Pθ | θ ∈ Θ}.

Planetmath.org: A statistical model is usually
parameterized by a function, called a parameterization

Θ→ P given by θ 7→ Pθ so that P = {Pθ | θ ∈ Θ}.

where Θ is called a parameter space. Θ is usually a subset of Rn.

McCullagh, 2002: This should be defined using Category Theory.

Today: Consider discrete data and suppose that the parameter
space Θ and the function θ 7→ Pθ are described by polynomials.

Tomorrow: This makes sense also for Gaussian models.
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Three-Way Contingency Tables

Let X , Y and Z be random variables that have a, b and c states
respectively. A probability distribution P for these random variables
is an a× b× c-table of non-negative real numbers that sum to one.

The entries of the table P are the probabilities

Pijk = Prob(X = i ,Y = j ,Z = k).

The set of all distributions is a simplex ∆ of dimension abc − 1.

A statistical model is a subset M of ∆ which can be described
by polynomial equations and inequalities in the coordinates Pijk .

Typically, the model M is presented as the image of a polynomial
map P : Θ 7→ ∆ where Θ is a polynomially described subset of Rn.
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Independence

The distribution P is called independent if each probability
is the product of the corresponding marginal probabilities:

Pijk = Pi++ · P+j+ · P++k

Here, for instance,

Pi++ = Prob(X = i) =
b∑

j=1

c∑
k=1

Pijk

The independence model has the parametric representation

Θ = ∆a−1 ×∆b−1 ×∆c−1 → ∆ = ∆abc−1

(α, β, γ) 7→ (Pijk) = (αiβjγk)

The image is known as the Segre variety in algebraic geometry.
Its points are the a× b × c-tables of tensor rank one.
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Three Binary Variables
If a = b = c = 2 then the independence model (Segre variety)
is the threefold in ∆7 (or in P7) which has the parametrization:

P000 = αβγ P001 = αβ(1− γ)

P010 = α(1− β)γ P011 = α(1− β)(1− γ)

P100 = (1− α)βγ P101 = (1− α)β(1− γ)

P110 = (1− α)(1− β)γ P111 = (1− α)(1− β)(1− γ)

This threefold is cut out by the trivial constraint

P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111 = 1

and the Markov basis which consists of nine quadratic binomials:

P100P111 − P101P110, P010P111 − P011P110, P010P101 − P011P100,
P001P111 − P011P101, P001P110 − P011P100, P000P111 − P011P100,
P000P110 − P010P100, P000P101 − P001P100, P000P011 − P001P010.
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Markov bases

I make sense for every exponential family (log-linear model)

I are interesting for graphical models and hierarchical models

I minimally generate the corresponding toric ideal

I give Markov chains for sampling from conditional distributions

I can be computed in practise using the software 4ti2

Theorem
The Markov basis for the independence model on three random
variables consists of quadratic binomials P•••P••• − P•••P•••.
The number of binomials in this Markov basis equals

1

8
abc (3abc − ab − ac − bc − a− b − c + 3).

Use representation theory to figure this out
and to compactly encode the Markov basis.



Markov bases

I make sense for every exponential family (log-linear model)

I are interesting for graphical models and hierarchical models

I minimally generate the corresponding toric ideal

I give Markov chains for sampling from conditional distributions

I can be computed in practise using the software 4ti2

Theorem
The Markov basis for the independence model on three random
variables consists of quadratic binomials P•••P••• − P•••P•••.
The number of binomials in this Markov basis equals

1

8
abc (3abc − ab − ac − bc − a− b − c + 3).

Use representation theory to figure this out
and to compactly encode the Markov basis.



Mixtures

A distribution P is a mixture of independent distributions if

P = λP ′ + (1− λ)P ′′

where P ′ and P ′′ are independent and 0 ≤ λ ≤ 1. The set of such
mixtures is the first mixture model of the independence model.

Thus the first mixture model is the image of the parametrization

(∆a−1×∆b−1×∆c−1)2 ×∆1 → ∆abc−1

(α′, β′, γ′; α′′, β′′, γ′′; λ) 7→
(
λα′iβ

′
jγ
′
k + (1− λ)α′′i β

′′
j γ
′′
k

)
The first mixture model is identifiable, because the corresponding
algebraic variety has the expected dimension 2a + 2b + 2c − 5.
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Secants and rank two tensors

In algebraic geometry, mixtures correspond to secant lines, and the
first mixture model is known as the first secant variety of the Segre
variety. Its points are the a× b × c-tables of tensor rank two.

Theorem
The homogeneous prime ideal of the first mixture model
is generated by cubic polynomials in the probabilities Pijk .

These cubic generators are the 3× 3-subdeterminants of the
three matrices, of formats (ab)× c, (ac)× b and (bc)× a,
which arise from flattening the three-dimensional table P.

This result was conjectured by [Garcia-Stillman-St 2005]
and proved by [Landsberg-Manivel 2004]. A very general
phylogenetic version appears in [Draisma-Kuttler 2008].

Further progress on rank 4 tensors might earn you smoked salmon.
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Flattening a 3× 2× 2-table

Suppose we are given one ternary variable and two binary variables,
that is, a = 3 and b = c = 2. The Landsberg-Manivel Theorem
states that the first mixture model is characterized algebraically
by the vanishing of the 3× 3-minors of the 3× 4-matrix

Pflat =

P000 P001 P010 P011

P100 P101 P110 P111

P200 P201 P210 P211

 .

This matrix has rank at most two for P in the first mixture model.

Application to likelihood inference: This model has maximum

likelihood degree 26. Maximizing a monomial
∏

P
Uijk

ijk over this
model reduces to solving an algebraic equation of degree 26.

The analogous computation for the variety of 4× 4-matrices having
rank ≤ 2 is an open problem that might earn you 100 Swiss Francs.
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Bayesian inference

Given a table of data U = (Uijk) ∈ Na×b×c , a central problem in
Bayesian statistics is to compute the marginal likelihood integral∫ ∏

i ,j ,k

(
λα′iβ

′
jγ
′
k + (1− λ)α′′i β

′′
j γ
′′
k

)Uijk dαdβdγdλ

This integral is over the (2a + 2b + 2c − 5)-dimensional polytope

(∆a−1 ×∆b−1 ×∆c−1)2 ×∆1

with respect to a probability distribution representing prior belief.

Algebraic statistics has tools for exact integration when the sample
size |U| is small, and for asymptotic analysis when |U| → ∞.



Exact integration

Proposition (Lin-St-Xu 2008)

For uniform priors, the value of the marginal likelihood integral
is a rational number. For Dirichlet priors, it is a product of
special values of the Gamma function. −→ software in maple

Example: Consider the following 3× 2× 2-table of data

Uflat =

2 3 1 1
2 1 3 1
2 1 1 3


The marginal likelihood of these data in the mixture model equals(
|U|
U

)
·
∫

PUdP =
10009904728516559993962151

958019384093441508386090262720000

Here the prior on the 9-dimensional parameter polytope is uniform.
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Higher mixture models

In the r -th mixture model we are mixing r independent
distributions, so the model consists of tensors of rank r :

P = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + · · ·+ ar ⊗ br ⊗ cr .

We consider the following class of submodels.

A context-specific independence model is specified by
three partitions A,B, C of {1, . . . , r}. These partitions
describe how the parameters are tied together:

I ai = aj if i and j are in the same block in A,

I bi = bj if i and j are in the same block in B,

I ci = cj if i and j are in the same block in C.

[B. Georgi and A. Schliep: Context-specific independence mixture
modeling for positional weight matrices, Bioinformatics, 2006]
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Context-specific independence

Let r = 3 and fix the three partitions
A = {{1, 2}, {3}}, B = {{1, 3}, {2}}, and C = {{2, 3}, {1}}.

This CSI model has the parametric representation

Pijk = λ · αiβjφk + µ · αiεjγk + (1−λ−µ) · δiβjγk

Equivalently, in tensor notation:

P = a⊗ b⊗ f + a⊗ e⊗ c + d⊗ b⊗ c

Theorem
The Zariski closure of this CSI model is the tangential variety
of the Segre variety. Its homogeneous prime ideal is generated
by all 2× 2× 2-hyperdeterminants in the a× b × c-table P
together with all 3× 3-determinants obtained by flattening P.
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A small example
Let a = 3, b = 2, c = 2 and fix the CSI model specified by
A = {{1, 2}, {3}}, B = {{1, 3}, {2}} and C = {{2, 3}, {1}}.

This model lies in ∆11. It has dimension 8 and degree 16.
It is not identifiable because there are 10 natural parameters.

Its ideal is generated by the four 3× 3-subdeterminants of

Pflat =

P000 P001 P010 P011

P100 P101 P110 P111

P200 P201 P210 P211

 .

and six 2× 2× 2-hyperdeterminants, such as

p2
000p2

111 + p2
010p2

101 + p2
011p2

100 + p2
001p2

110

−2p010p011p100p101 − 2p001p011p100p110 − 2p001p010p101p110

−2p000p011p100p111 − 2p000p010p101p111 − 2p000p001p110p111

+ 4p000p011p101p110 + 4p001p010p100p111.
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Conclusion

Algebraic Statistics is both cool and useful.

For further reading see, e.g.,

[M. Drton, B. Sturmfels and S. Sullivant:
Lectures on Algebraic Statistics, Oberwolfach Seminars Series,
Vol. 40, Approx. 175 p., Softcover, Birkhäuser, Basel, 2009]
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