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Sn-orbitope SO(n)-orbitope

here: G linear algebraic group, V rational representation
è G · v real algebraic variety and conv(G · v) convex semi-algebraic set

Perspectives of Convex Algebraic Geometry

Convex geometry: faces, face lattices, dual bodies

Algebraic geometry: algebraic boundary, its equation, Whitney stratification

Optimization: How to optimize over an orbitope?
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Why do we care?
finite groups

I classic geometry
platonic solids, Permutahedra, Birkhoff polytopes, ...

I combinatorial optimization (see [Onn’93])
matching polytope, traveling salesman polytope, graph isomorphism, ...

compact groups

I protein structure prediction [Longinetti-Sgheri-Sottile’08]
magnetic susceptibility of folding proteins → SO(3)-orbitopes

I Calibrated geometries à la [Harvey-Lawson’82]
‘local geometry’ of area-minimizing smooth manifolds
faces of Grassmann orbitopes: convex hull of Grassmann manifold

I norm balls with transitive G -action
balls, ellipses, operator norms, nuclear norms,...

I non-negative trigonometric polyn. are dual to Carathéodory orbitopes

I non-negative k-forms are dual to Veronese orbitopes

fascinating objects – plenty in supply!
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How to compute with orbitopes? How to represent them?
Basic question: What is the dimension of a face of Ov in a given direction?

Easy, if orbitope can be represented as spectrahedron, i.e.
feasible region of semidefinite program:

S = { y : A0+y1A1+· · ·+ydAd � 0 } (positive semidefinite)

A0, . . . ,Ad symmetric n × n-matrices.

S is a polyhedron if the Ai are commuting.

Example: Set of symmetric matrices A with eigenvalues at most λ

λ id − A � 0

Further Benefits

I information about facial structure; e.g. all faces exposed!

I readily available presentation for algebraic boundary

Caveat: Class of spectrahedra not closed under projection!

Alternatives: spectrahedral shadows such as Theta bodies
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60 second commercial: Project proposals (with Philipp)

When is a spectrahedron a polytope?

S = { y : A0 + y1A1 + · · ·+ ydAd � 0 }

If the Ai do not commute, it might still be a polytope.

How do you check that algorithmically?

How do you prove that theoretically?

Is there such a 3-dim’l spectrahedron?

I.e. smooth boundary except for a single edge?
If No then this has intersting consequences for
hyperbolic polynomials...

Degtyarev and Itenberg construct interesting/extremal
3-spectrahedra with 10 singular points in the boundary.
Maybe degenerations thereof?

Kind of a sub-project to Anand Kulkarni projects
regarding the combinatorial types of 3-spectrahedra.
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In this talk

Tautological orbitopes for O(n) and SO(n)

O = conv{ (special) orthogonal matrices } ⊂ Rn×n

(Tautological orbitope is convex hull over the representation G ⊂ End(V ))

O is the norm ball in the operator norm for Rn×n

Grassmann orbitopes

G(k, n) = conv{ oriented k-dim subspaces of Rn } ⊂ ∧kRn

Known as the mass ball in differential geometry
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Tautological orbitope for the orthogonal group

On = conv(O(n)) = conv{ g ∈ Rn×n : g · gT = Id }
I On convex body of dimension n2

I all faces are exposed and isomorphic to Ok for k ≤ n

I equation algebraic boundary is f (A) = det(A · AT − Id)

I On is the spectrahedron

A :

(
Id A
AT Id

)
� 0

Key observation
T n diagonal matrices, PrT n : Rn×n → T n orthogonal projection

On ∩ T n = PrT n(On) = [−1,+1]n (n-cube)

I On is the unit ball for the operator norm (=max singular value ≤ 1)

→ projects to unit ball for `∞-norm

I dual body O◦n is the unit ball for the nuclear norm (=sum of sing. vals ≤ 1)

→ projects to unit ball for `1-norm
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Tautological orbitope for the special orthogonal group

SOn = conv(SO(n)) = conv{ g ∈ Rn×n : g · gT = Id, det(g) = 1 }
I SOn convex body of dimension n2, for n ≥ 3

I faces are linearly isomorphic to SOk for k ≤ n or free spectrahedra

Fk = conv{uuT : ‖u‖ = 1} = PSDk ∩ { trace = 1 } ⊂ Rk×k

I equation of the algebraic boundary is not known

I is SOn a spectrahedron???

T n diagonal matrices, PrT n : Rn×n → T n orthogonal projection

SOn ∩ T n = PrT n(SOn) = Hn (n-halfcube)

n-Halfcube

Hn = conv
{

x ∈ {−1,+1}n : even number of xi = −1
}

for n = 1, 2, 3, 4 the halfcubes are: point, segment, tetrahedron, octahedron

8/ 20



Tautological orbitope for the special orthogonal group

SOn = conv(SO(n)) = conv{ g ∈ Rn×n : g · gT = Id, det(g) = 1 }
I SOn convex body of dimension n2, for n ≥ 3

I faces are linearly isomorphic to SOk for k ≤ n or free spectrahedra

Fk = conv{uuT : ‖u‖ = 1} = PSDk ∩ { trace = 1 } ⊂ Rk×k

I equation of the algebraic boundary is not known

I is SOn a spectrahedron???

T n diagonal matrices, PrT n : Rn×n → T n orthogonal projection

SOn ∩ T n = PrT n(SOn) = Hn (n-halfcube)

n-Halfcube

Hn = conv
{

x ∈ {−1,+1}n : even number of xi = −1
}

for n = 1, 2, 3, 4 the halfcubes are: point, segment, tetrahedron, octahedron

8/ 20



Tautological orbitope for the special orthogonal group

SOn = conv(SO(n)) = conv{ g ∈ Rn×n : g · gT = Id, det(g) = 1 }
I SOn convex body of dimension n2, for n ≥ 3

I faces are linearly isomorphic to SOk for k ≤ n or free spectrahedra

Fk = conv{uuT : ‖u‖ = 1} = PSDk ∩ { trace = 1 } ⊂ Rk×k

I equation of the algebraic boundary is not known

I is SOn a spectrahedron???

T n diagonal matrices, PrT n : Rn×n → T n orthogonal projection

SOn ∩ T n = PrT n(SOn) = Hn (n-halfcube)

n-Halfcube

Hn = conv
{

x ∈ {−1,+1}n : even number of xi = −1
}

for n = 1, 2, 3, 4 the halfcubes are: point, segment, tetrahedron, octahedron

8/ 20



Grassmann orbitopes

Exterior algebra ∧kRn = R{eJ : J ⊆ [n], |J| = k} ∼= R(n
k)

Rk×n 3 (v1, . . . , vk) 7→ v1 ∧ · · · ∧ vk =
∑
J

pJ eJ

SO(n) acts on ∧kRn by g · v1 ∧ · · · ∧ vk = gv1 ∧ · · · ∧ gvk

Grassmannian of oriented k-planes

G (k, n) := SO(n) · e1 ∧ e2 ∧ · · · ∧ ek

Grassmann orbitope G(k, n) = conv G (k, n)

v1 ∧ · · · ∧ vk decomposable and p = (pJ)J decomposable iff p satisfies the
Plücker relations Ik,n ⊂ R[xJ : |J| = k] L ⊂ Rn

oriented
k−plane

 1:1←→

 v1 ∧ · · · ∧ vk
decomposable

unit length

 1:1←→

 p = (pJ)J ∈ R(n
k)

Plücker relations∑
J p2

J = 1


Grassmannian G (k, n) = V (Ik,n) ∩ {unit sphere} is a compact real variety
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The Grassmannian G (2, 4) of 2-planes in 4-space

∧2R4 = R{ei ∧ ej : 1 ≤ i < j ≤ 4} = R{p12, p13, p14, p23, p24, p34} 6-dim’l vector space

for u, v ∈ R4

u ∧ v = p12 e12 + · · ·+ p34 e34 with pij = det

(
ui vi
uj vj

)
Plücker relations + unit sphere determine unit decomposable vectors

〈p12p34 − p13p24 + p14p23, p2
12 + p2

13 + p2
14 + p2

23 + p2
24 + p2

34 − 1〉

A linear change of coordinates

u = 1√
2

(p12 + p34), v = 1√
2

(p13 − p24), w = 1√
2

(p14 + p23),

x = 1√
2

(p12 − p34), y = 1√
2

(p13 + p24), z = 1√
2

(p14 − p23).

yields 〈
u2 + v2 + w2 − 1

2 , x2 + y2 + z2 − 1
2

〉
⊂ R[x , y , z , u, v ,w ]

So, G (2, 4) = S2 × S2 is the Cartesian product of two 2-spheres.

G(2, 4) = convG (2, 4) is the Cartesian product of two 3-balls.
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Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim’l manifold M is area-minimizing if it has the least volume
among all manifolds with the same boundary.

Theorem [Harvey-Lawson’82]. If all tangent k-planes of M ⊂ Rn lie in a
common proper face F of G(k, n), then M is area-minimizing.

The collection of extreme points F ∩ G (k, n) is called a calibrated geometry.
Elements of the dual face F � are calibrations.
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What we know about Grassmann orbitopes

G(n, k) is a convex body of dimension dimG(k , n) =
(
n
k

)
I G(1, n) and G(n − 1, n) are balls

line segments are area-minimizing

I G(2, 4) linearly isomorphic to product of two 3-balls
positive dimensional faces are 3-balls

I G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes
up to symmetry only one face of a given dimension
calibrated geometries correspond to complex structures

I G(3, 6) described in [Dadok-Harvey’83]
face-dimensions 0, 1 (doubletons), 3 (CP1), and 12 (special Lagrangian)
inclusion maximal faces: doubletons, special Lagrangians
up to symmetry only finitely many Lagrangians but a moduli of edges
non-exposed faces → not a spectrahedron!

I G(3, 7) is understood but difficult [Harvey-Morgan’86]

I G(4, 8) partial knowledge, very difficult [Dadok-Harvey-Morgan’88]

I G(n, k) complete understanding probably hopeless!?

What about computer experimentation?
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I G(3, 7) is understood but difficult [Harvey-Morgan’86]
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Back to the Basic Question

Basic question: What is the dimension of a face of Ov in direction `(x)?

The orbit is a real variety G · v = VR(I) for I ⊆ R[x]

Rephrased: What is the affine dimension of set of solutions to
the optimization problem max `(x) subject to x ∈ VR(I)?

I Polynomial optimization is hard but powerful relaxations (SOS, moment)
are available [Parrilo, Lasserre, Laurent...]!

I The geometry behind (particular) relaxations are called Theta bodies
[Gouveia, Parrilo, Thomas’08].

I In particular, Theta bodies are projected spectrahedra.

If the relaxation is exact, then local information about Ov are computable!
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SOS relaxations and Theta bodies
Sum-of-Squares relaxation of degree k for `(x) and I ⊂ R[x]

min δ

s.t. δ − `(x) =
m∑
i=1

hi (x)2 mod I

for h1, . . . , hm ∈ R[x] polynomials of degree ≤ k . δ− `(x) is called k-SOS mod I

The k-th Theta body THk(I) ⊂ Rn is the convex body bounded by k-SOS
supporting planes

THk(I) = {p ∈ Rn : δ − `(p) ≥ 0 for all δ − `(x) k-SOS mod I }
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THk(I) = {p ∈ Rn : δ − `(p) ≥ 0 for all δ − `(x) k-SOS mod I }

Chain of convex bodies

TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ conv VR(I)

I is THk -exact if THk(I) = conv VR(I)
The Theta rank TH-rank(I) is the least k for which I is THk -exact
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Theta ranks

Let V ⊂ Rn be a finite set and I = I(V ) ⊂ R[x] its ideal.
A linear function `(x) has m-levels with respect to V if `(x) takes m distinct
values on V . V is m-level if every facet direction is.

Proposition. If every facet direction of conv(V ) has ≤ m levels, then I has
Theta rank ≤ m − 1. In particular, if V is 2-level, then V is TH1-exact.

I actual Theta rank might be much smaller!

I SOS relaxations for polytopes might be bad!

I 2-level polytopes are special

Example. TH-rank of the regular heptagon. For what k is δ ± `(x) k-SOS?
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Theta ranks

V ⊂ Rn arbitrary real variety with I = I(V ), TH1-exact is particularly desirable:
geometry determined by convex quadrics, projection of spectrahedron of
tractable size.

Theorem.[Gouveia,Parrilo,Thomas’08] If I is TH1-exact, then

conv(V ) = {x ∈ Rn : q(x) ≤ 0 for all q ∈ I convex quadric}

A useful tool for bounding Theta rank is

Lemma. If L ⊂ Rn is a linear space such that

conv(V ∩ L) = conv(V ) ∩ L

then TH-rank(I) ≥ TH-rank(I + I(L)).

I Theta-rank monotone with respect to (empty) faces (L supporting plane)

I Theta-rank can be bounded from above by special cross-sections

I Both O(n) and SO(n) have such special cross-sections

I G (3, 6) has such a special cross section, the Segre orbitope
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Theta ranks for some Orbitopes

Theta rank for O(n)

I cross-section with diagonal matrices L = T n

conv(O(n)) ∩ L = [−1,+1]n = conv{−1,+1}n = conv(O(n) ∩ L)

the n-cube is 2-level → TH-rank(O(n)) ≥ 2 (ok, trivial)

I up to symmetry only one facet direction: `(X ) = X11

1− X11 ≡ 1
2 (X11 − 1)2 + 1

2X 2
21 + · · · + 1

2X 2
n1 on O(n)

Theta rank for SO(n)

I up to symmetry two facet directions: X11 is 2-SOS, trace(X ) is d n2e-SOS

I cross-section with diagonal matrices L = T n is the halfcube Hn

Proposition. The n-dim’l halfcube Hn is has Theta rank d n2e. In particular, Hn

and SO(n) have the same Theta rank.

Slightly simpler yoga as in the case for the heptagon...
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Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes G(2, n) and G(n − 2, n) are TH1-exact.

I there is only one inclusion maximal face up to symmetry
→ show that facet direction is 1-SOS for G (k , n)

based on computer experiments we

Conjecture. All Grassmann orbitopes G(k, n) are TH1-exact.

For G(3, 6) there are up to symmetry only finitely many special Lagrangian faces
but infinitely many doubletons (edges).
→ show that the family doubleton directions is 1-SOS.

For G(3, 7) and G(4, 8) we recover ‘all’ known faces.

Experimentation is fast: For G(3, 9) the ideal has 1050 + 1 generators on 84
variables. Computations in < 10min on laptop
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Conjecture of Harvey-Lawson

In their 1982 paper we found that Harvey and Lawson conjecture that if

λ− `(x) ≥ 0 on G(k , n)

then there are linear polynomials h1(x), . . . , hm(x) such that

λ‖x‖2 − `(x) =
∑
i

hi (x)2 mod Ik,n

Ik,n is the homogeneous Plücker ideal

Theorem. H-L conjecture is equivalent to G (n, k) being TH1-exact.
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Take home messages

Orbitopes are a rich class of convex algebraic bodies

I appealing convex, algebraic, and combinatorial properties

I appear throughout mathematics; practical relevance?

I lots of open questions

Theta bodies are an attractive tool for the study convex hulls of varieties

I allow for local study of boundary (if finite TH-rank)

I computational tractable (if small TH-rank)

I characterization of THk -exact ideals wide open – even 0-dim’l!

Theta bodies of Orbitopes
I O(n) is TH1-exact, SO(n) is THd n2 e-exact

I G(2, n) and G(n − 2, n) are TH1-exact

I strong computational evidence that G(3, 6) is TH1-exact, but no proof yet...

I we conjecture that all Grassmann orbitopes are TH1-exact

I Do orbitopes have finite Theta rank? ‘small’ Theta rank?
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