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Or-bi-tope ['or bi toup]. an orbitope is the convex hull of the orbit of an element v
in a real representation V' of a compact group G,

conv(G -v) =conv{g-A:ge G} C V.
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Or-bi-tope ['or bi toup]. an orbitope is the convex hull of the orbit of an element v
in a real representation V' of a compact group G,

conv(G -v) =conv{g-A:ge G} C V.

Gn-orbitope SO(n)-orbitope

here: G linear algebraic group, V rational representation
= G - v real algebraic variety and conv(G - v) convex semi-algebraic set

Perspectives of Convex Algebraic Geometry

Convex geometry: faces, face lattices, dual bodies
Algebraic geometry: algebraic boundary, its equation, Whitney stratification
Optimization: How to optimize over an orbitope?
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Why do we care?
finite groups

» classic geometry
platonic solids, Permutahedra, Birkhoff polytopes, ...

» combinatorial optimization (see [Onn'93])
matching polytope, traveling salesman polytope, graph isomorphism, ...

compact groups

» protein structure prediction [Longinetti-Sgheri-Sottile’08]
magnetic susceptibility of folding proteins — SO(3)-orbitopes

» Calibrated geometries a la [Harvey-Lawson'82]
‘local geometry' of area-minimizing smooth manifolds
faces of Grassmann orbitopes: convex hull of Grassmann manifold

» norm balls with transitive G-action
balls, ellipses, operator norms, nuclear norms,...

» non-negative trigonometric polyn. are dual to Carathéodory orbitopes

» non-negative k-forms are dual to Veronese orbitopes

fascinating objects — plenty in supply!



How to compute with orbitopes? How to represent them?

Basic question: What is the dimension of a face of O, in a given direction?
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S is a polyhedron if the A; are commuting.
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Basic question: What is the dimension of a face of O, in a given direction?

Easy, if orbitope can be represented as spectrahedron, i.e.
feasible region of semidefinite program:

S={y : AvtyiAi+ - +y4Aq = 0 } (positive semidefinite)
Ao, ..., Ag symmetric n X n-matrices.

S is a polyhedron if the A; are commuting.
Example: Set of symmetric matrices A with eigenvalues at most A

Aid—A>=0

Further Benefits
» information about facial structure; e.g. all faces exposed!
» readily available presentation for algebraic boundary

Caveat: Class of spectrahedra not closed under projection!

Alternatives: spectrahedral shadows such as Theta bodies



60 second commercial: Project proposals (with Philipp)

When is a spectrahedron a polytope?

S={y : A+yAi+- - +ysAs =0}
If the A; do not commute, it might still be a polytope.
How do you check that algorithmically?
How do you prove that theoretically?

Is there such a 3-dim’l spectrahedron?

I.e. smooth boundary except for a single edge?
If No then this has intersting consequences for

( ‘ hyperbolic polynomials...
| w‘ Degtyarev and ltenberg construct interesting/extremal

! Maybe degenerations thereof?

‘ Kind of a sub-project to Anand Kulkarni projects
~ regarding the combinatorial types of 3-spectrahedra.

‘ 3-spectrahedra with 10 singular points in the boundary.



In this talk

Tautological orbitopes for O(n) and SO(n)

O = conv{ (special) orthogonal matrices } C R"*”

(Tautological orbitope is convex hull over the representation G C End(V))
O is the norm ball in the operator norm for R"*"

Grassmann orbitopes
G(k, n) = conv{ oriented k-dim subspaces of R" } C AcR"

Known as the mass ball in differential geometry
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Tautological orbitope for the orthogonal group

O, =conv(0(n)) = conv{g e R™": g.g" =1d}
» O, convex body of dimension n?
» all faces are exposed and isomorphic to Oy for k < n

» equation algebraic boundary is f(A) = det(A- AT —1d)

» O, is the spectrahedron
Id A
A (AT Id) =0
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O,NT" = Prra(0,) = [-1,+1]" (n-cube)



Tautological orbitope for the orthogonal group

O, =conv(0(n)) = conv{ g e R™": g. g7 =1d }
» O, convex body of dimension n?
» all faces are exposed and isomorphic to Oy for k < n

» equation algebraic boundary is f(A) = det(A- AT —1d)
» O, is the spectrahedron
Id A
A: (AT Id) =0
Key observation

T" diagonal matrices, Pry» : R™" — T" orthogonal projection
O0,NT" = Prr+(0,) = [-1,41]" (n-cube)

» O, is the unit ball for the operator norm (=max singular value < 1)
— projects to unit ball for £,,-norm

» dual body Oj is the unit ball for the nuclear norm (=sum of sing. vals < 1)
— projects to unit ball for £1-norm



Tautological orbitope for the special orthogonal group
SO, = conv(S0(n)) = conv{ g e R™": g.gT =1d,det(g) =1}
» SO, convex body of dimension n?, forn >3

» faces are linearly isomorphic to SOy for k < n or free spectrahedra
Fi = conv{uu’ : ||ul| = 1} = PSD, N { trace = 1 } ¢ Rk*k

» equation of the algebraic boundary is not known
» is SO, a spectrahedron???
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Tautological orbitope for the special orthogonal group
SO, = conv(S0(n)) = conv{ g e R™": g.gT =1d,det(g) =1}
» SO, convex body of dimension n?, forn >3

» faces are linearly isomorphic to SOy for k < n or free spectrahedra
Fi = conv{uu’ : ||ul| = 1} = PSD, N { trace = 1 } ¢ Rk*k

» equation of the algebraic boundary is not known
» is SO, a spectrahedron???

T" diagonal matrices, Pry» : R™" — T" orthogonal projection
SO, NT" = Prro(SO,) = H, (n-halfcube)
n-Halfcube
H, = conv{x € {—1,+1}": even number of x; = —1}

for n =1,2, 3,4 the halfcubes are: point, segment, tetrahedron, octahedron
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Grassmann orbitopes
Exterior algebra AYR" = R{e; : J C [n],|J| = k} = R()

ka”a(vl,...,vk) = VI A AV = Zp_,eJ
J

S0(n) actson AkR" by g-vi A~ Avk=gva A=+ A gvk
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Grassmann orbitopes
Exterior algebra AYR" = R{e; : J C [n],|J| = k} = R()

Rk*n > (Vl,...,Vk) = VI A AV = Zp_,eJ
J
S0(n) actson AkR" by g-vi A~ Avk=gva A=+ A gvk
Grassmannian of oriented k-planes
G(k,n):=50(n)-et Nex A+ N e

Grassmann orbitope G(k, n) = conv G(k, n)

vi A -+ A v, decomposable and p = (p,), decomposable iff p satisfies the
Pliicker relations I , C R[x; : [J]| = K]

LCR" 11 vi A A v 1 P:(PJ)JGR(:)
oriented oy decomposable Phais Pliicker relations
k—plane unit length >y pi=1

Grassmannian G(k, n) = V/(Ix ) N {unit sphere} is a compact real variety
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The Grassmannian G(2,4) of 2-planes in 4-space

MNR* =R{ejAe:1<i<j<a}=TR{pw,pi3, Pia, P23, P24, p3a } 6-dim’l vector space
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The Grassmannian G(2,4) of 2-planes in 4-space

MNR* =R{ejAe:1<i<j<a}=TR{pw,pi3, Pia, P23, P24, p3a } 6-dim’l vector space
for u,v € R*

. u v
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The Grassmannian G(2,4) of 2-planes in 4-space
/\QRA = R{e;/\ej 01 < i <j < 4} = R{P12,P13,P147P23,p247p34} 6-dim’l vector Space

for u,v € R*

. u v
UANV = pppea+ -+ pssess with Pij:det<' '>
uj v

Pliicker relations 4 unit sphere determine unit decomposable vectors

(P12P34 — P13P24 + Prap23, Pip + P33 + Pl + P3 + Pas + P3s — 1)
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The Grassmannian G(2,4) of 2-planes in 4-space
/\QRA = R{e;/\ej 01 < i <j < 4} = R{p127p13,p147p23,p247p34} 6-dim’l vector Space

for u,v € R*

. u v
UANV = pppea+ -+ pssess with P/j:det<' '>
uj v

Pliicker relations 4 unit sphere determine unit decomposable vectors
(P12P3a — P13Pas + P1ap23, Pio + Pis + Pla + P3 + Py + P3y — 1)

A linear change of coordinates

= %(Pu +pa), v= %(PB — p2u), w= %/(PM + p23),
X = T(Plz —p3), y= %(PB +pos), z= 7(P14 — p23).

yields
(P+vi+w’ -3, P+y*+22 -1 ) CR[x,y,z,u,v,w]
So, G(2,4) = S? x §?% is the Cartesian product of two 2-spheres.
G(2,4) = convG(2,4) is the Cartesian product of two 3-balls.
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Area-minimizing manifolds and Grassmann orbitopes
Audience participation: Which 1-manifold is area-minimizing?

2 2

X, X

a smooth k-dim’l manifold M is area-minimizing if it has the least volume
among all manifolds with the same boundary.

11/ 20



Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

NN
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Theorem [Harvey-Lawson'82]. If all tangent k-planes of M C R” lie in a
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Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim’l manifold M is area-minimizing if it has the least volume
among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of M C R” lie in a

common proper face F of G(k, n), then M is area-minimizing.
n P

B
P

The collection of extreme points F N G(k, n) is called a calibrated geometry.
Elements of the dual face F° are calibrations.
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What we know about Grassmann orbitopes
G(n, k) is a convex body of dimension dimG(k,n) = (})

» G(1,n) and G(n — 1, n) are balls
line segments are area-minimizing
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What we know about Grassmann orbitopes

G(n,

>

>

k) is a convex body of dimension dim G(k, n) = (})
G(1,n) and G(n — 1, n) are balls

line segments are area-minimizing

G(2,4) linearly isomorphic to product of two 3-balls
positive dimensional faces are 3-balls

G(2,n) and G(n — 2, n) are rank 2 skew Schur-Horn orbitopes

up to symmetry only one face of a given dimension

calibrated geometries correspond to complex structures

G(3,6) described in [Dadok-Harvey'83]

face-dimensions 0, 1 (doubletons), 3 (CP*), and 12 (special Lagrangian)
inclusion maximal faces: doubletons, special Lagrangians

up to symmetry only finitely many Lagrangians but a moduli of edges
non-exposed faces — not a spectrahedron!

G(3,7) is understood but difficult [Harvey-Morgan'86]

G(4,8) partial knowledge, very difficult [Dadok-Harvey-Morgan'88]

G(n, k) complete understanding probably hopeless!?

What about computer experimentation?
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Back to the Basic Question
Basic question: What is the dimension of a face of O, in direction ¢(x)?
The orbit is a real variety G - v = V(I) for I C R[X]

Rephrased: What is the affine dimension of set of solutions to
the optimization problem max £(x) subject to x € Vg(I)?
» Polynomial optimization is hard but powerful relaxations (SOS, moment)
are available [Parrilo, Lasserre, Laurent...]!

» The geometry behind (particular) relaxations are called Theta bodies
[Gouveia, Parrilo, Thomas'08].

» In particular, Theta bodies are projected spectrahedra.

If the relaxation is exact, then local information about O, are computable!



SOS relaxations and Theta bodies
Sum-of-Squares relaxation of degree k for ¢(x) and I C R[x]

min §
s.t. 6 —L(x) = Z hi(x)?> mod I
i=1

for hy,..., hy € R[x] polynomials of degree < k. § — ¢(x) is called k-SOS mod I
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for hy,..., hy € R[x] polynomials of degree < k. § — ¢(x) is called k-SOS mod I

The k-th Theta body TH(I) C R" is the convex body bounded by k-SOS
supporting planes

TH(I) ={p € R": 5 —£(p) >0 for all 6 — ¢(x) k-SOS mod I }

14/ 20



SOS relaxations and Theta bodies
Sum-of-Squares relaxation of degree k for ¢(x) and I C R[x]

min &
s.t.d —L4(x) = Z hi(x)?> mod I
i=1

for hy, ..., h, € R][x] polynomials of degree < k. § — £(x) is called k-SOS mod I

The k-th Theta body TH(I) C R" is the convex body bounded by k-SOS
supporting planes

TH(I) ={peR":§ —¥¢(p) >0 for all 6 — £(x) k-SOS mod I }
Chain of convex bodies
THy(I) 2 THy() 2 -+ O conv Vg(I)

Iis THy-exact if TH,(I) = conv Vg(I)
The Theta rank TH-rank(I) is the least k for which T is TH-exact
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Theta ranks

Let V C R" be a finite set and I = I(V) C R[] its ideal.
A linear function ¢(x) has m-levels with respect to V if {(x) takes m distinct
values on V. V is m-level if every facet direction is.
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Theta ranks

Let V C R" be a finite set and I = I(V) C R[] its ideal.
A linear function ¢(x) has m-levels with respect to V if {(x) takes m distinct
values on V. V is m-level if every facet direction is.

Proposition. If every facet direction of conv(V) has < m levels, then I has
Theta rank < m — 1. In particular, if V is 2-level, then V is TH;-exact.

» actual Theta rank might be much smaller!
» SOS relaxations for polytopes might be bad!
» 2-level polytopes are special

Example. TH-rank of the regular heptagon. For what k is § £ ¢(x) k-SOS?



Theta ranks

V C R" arbitrary real variety with I = I(V), TH;-exact is particularly desirable:

geometry determined by convex quadrics, projection of spectrahedron of
tractable size.

Theorem.[Gouveia,Parrilo, Thomas'08] If I is TH;-exact, then
conv(V) = {x € R": g(x) <0 for all g € I convex quadric}

A useful tool for bounding Theta rank is

Lemma. If L C R" is a linear space such that
conv(VNL) = conv(V)NL
then TH-rank(I) > TH-rank(I + I(L)).

» Theta-rank monotone with respect to (empty) faces (L supporting plane)
» Theta-rank can be bounded from above by special cross-sections
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Theta ranks

V C R" arbitrary real variety with I = I(V), TH;-exact is particularly desirable:

geometry determined by convex quadrics, projection of spectrahedron of
tractable size.

Theorem.[Gouveia,Parrilo, Thomas'08] If I is TH;-exact, then
conv(V) = {x € R": g(x) <0 for all g € I convex quadric}

A useful tool for bounding Theta rank is
Lemma. If L C R" is a linear space such that

conv(VNL) = conv(V)NL

then TH-rank(I) > TH-rank(I +I(L)).
» Theta-rank monotone with respect to (empty) faces (L supporting plane)
» Theta-rank can be bounded from above by special cross-sections
» Both O(n) and SO(n) have such special cross-sections
» G(3,6) has such a special cross section, the Segre orbitope
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Theta ranks for some Orbitopes
Theta rank for O(n)

» cross-section with diagonal matrices L = T"
conv(O(n))NL = [-1,41]" = conv{—1,+1}" = conv(O(n) N L)

the n-cube is 2-level — TH-rank(O(n)) > 2 (ok, trivial)
» up to symmetry only one facet direction: £(X) = X3

1- X = 35(Xu—1° + X5 + -+ + 5XZ on O(n)
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Theta ranks for some Orbitopes
Theta rank for O(n)

» cross-section with diagonal matrices L = T"
conv(O(n))NL = [-1,41]" = conv{—1,+1}" = conv(O(n) N L)
the n-cube is 2-level — TH-rank(O(n)) > 2 (ok, trivial)
» up to symmetry only one facet direction: £(X) = X3
1- X = 35(Xu—1° + X5 + -+ + 5XZ on O(n)

Theta rank for SO(n)
» up to symmetry two facet directions: Xj; is 2-SOS, trace(X) is [5]-SOS

» cross-section with diagonal matrices L = T" is the halfcube H,

Proposition. The n-dim'l halfcube H, is has Theta rank [5]. In particular, H,
and SO(n) have the same Theta rank.

Slightly simpler yoga as in the case for the heptagon...
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Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes G(2, n) and G(n — 2, n) are TH;-exact.

» there is only one inclusion maximal face up to symmetry
— show that facet direction is 1-SOS for G(k, n)
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Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes G(2, n) and G(n — 2, n) are TH;-exact.

» there is only one inclusion maximal face up to symmetry
— show that facet direction is 1-SOS for G(k, n)

based on computer experiments we
Conjecture. All Grassmann orbitopes G(k, n) are TH-exact.

For G(3,6) there are up to symmetry only finitely many special Lagrangian faces
but infinitely many doubletons (edges).
— show that the family doubleton directions is 1-SOS.

For G(3,7) and G(4,8) we recover ‘all’ known faces.

Experimentation is fast: For G(3,9) the ideal has 1050 + 1 generators on 84
variables. Computations in < 10min on laptop
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Conjecture of Harvey-Lawson

In their 1982 paper we found that Harvey and Lawson conjecture that if
A—{(x) > 0on G(k,n)

then there are linear polynomials hy(x), ..., hyn(x) such that

N[x[|? = €(x) = Zh;(x)2 mod I ,

Ik,n is the homogeneous Pliicker ideal
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In their 1982 paper we found that Harvey and Lawson conjecture that if
A—{(x) > 0on G(k,n)

then there are linear polynomials hy(x), ..., hyn(x) such that

N[x[|? = €(x) = Zh;(x)2 mod I ,

Ik,n is the homogeneous Pliicker ideal

Theorem. H-L conjecture is equivalent to G(n, k) being TH;-exact.
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Take home messages

Orbitopes are a rich class of convex algebraic bodies
» appealing convex, algebraic, and combinatorial properties
» appear throughout mathematics; practical relevance?

» lots of open questions
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Orbitopes are a rich class of convex algebraic bodies
» appealing convex, algebraic, and combinatorial properties
» appear throughout mathematics; practical relevance?

» lots of open questions

Theta bodies are an attractive tool for the study convex hulls of varieties
» allow for local study of boundary (if finite TH-rank)
» computational tractable (if small TH-rank)

» characterization of THy-exact ideals wide open — even 0-dim’l!

Theta bodies of Orbitopes
» O(n) is THi-exact, SO(n) is TH{zy-exact
» G(2,n) and G(n — 2, n) are TH;-exact

» strong computational evidence that G(3,6) is TH;-exact, but no proof yet...

» we conjecture that all Grassmann orbitopes are TH;-exact
» Do orbitopes have finite Theta rank? ‘small’ Theta rank?
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