Graphical Models

Sullivant — Algebraic Statistics — Ch. 13
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Undirected Graphs

Notation: G = (V, E), V = vertices,
E = edges.

N(v) = neighbors of v. ’

X: random vector indexed by V.




Markov Properties

Pairwise Markov property: /'\
Xu 1l Xv ‘ XV\{u,v}

for all

lu,v} ¢ E




Markov Properties

Local Markov property /.\
Xy L Xy\vayowy | Xnw)

for all
vev




Markov Properties

VAN

Global Markov property

Xa UL Xp | X

for all disjoint A, B, C such that C
separates A and B




Theorem 13.1.4

Intersection axiom = the Markov properties are equivalent.

In part.: 1f
P X(.X) > ()
for all x, then the Markov properties are equivalent for all G.



Example: Multivariate
Gaussian

X: multivariate Gaussian with nonsingular covariance matrix 2

Satisfies the intersection axiom



Example: Multivariate
Gaussian

Xy L X, | Xyju,y © detZyy,yy =0
%, =0



Example: Multivariate
Gaussian

Path not sep. by C

A, B, C disjoint subsets of V such 1 ¢
that C does not separate A and B s 1

I
SR
[S—

=> there exists 2 such that X y-1
satisfies all global Markov 1
statements but

X4 L Xp| Xc \ y

Rest of the graph



Directed Acyclic Graphs

VX

Directed cycle

*—0—0—0
Directed path

>

v

Undirected cycle

1
Collider

Parents of v: pa(v)

Descendants of v

o0—0—10—0—

Undirected path

Ancestors of v: an(v)

O O O
Nondescendants of v: nd(v)



d-separation

C CV, d-separates v,w € V. /‘
for all undirected paths 77 between v \
and w, 1n induced subgraph of 7 ‘\'/'
there exists /
o e

a collider in CUan(C),

or a non-collider in C,



d-separation

C CV, d-separates v,w € V. /‘
for all undirected paths 77 between v \
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d-separation

C C V d-separatess A, B C V:

AVAN

e
.y

C d-separates all pairsa €A, b EB



d-separation

C CV, d-separates v,w € V.

for all undirected paths 7 between v ‘/ \‘

and w, 1n induced subgraph of 7
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d-separation
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d-separation

C CV, d-separates v,w € V.
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d-separation
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d-separation
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for all undirected paths 7 between v o \‘
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d-separation

C CV, d-separates v,w € V.

for all undirected paths 7 between v
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or a non-collider in C,



d-separation

C CV, d-separates v,w € V.

for all undirected paths 7 between v
and w, 1n induced subgraph of 7
there exists

a collider in CUan(C),

or a non-collider in C,

—

.



Markov Properties

Definition 13.1.9. Let G = (V, E) be a directed acyclic graph.

(i) The directed pairwise Markov property associated to (¢ consists of
X nd(u)\{v} where

all conditional independence statements X, || X,
(w,v) is not an edge of G.

(ii) The directed locel Markov property associated to G consists of all
conditional independence statements X LX)\ page) [ X for
all v e V.

pa(v)

(1i1) The directed global Markov property associated to G consists of all
conditional independence statements X 4 Il X | X for all disjoint
sets A, B, and ' such that (" d-separates A and B in GG.




Local Markov property



Parametrized undirected
sraphical model

Density function:

,, 1
flz) = 7 H ¢c(xc) "Factorizes according to G"

CeC(G)
C(G): set of all maximal cliques
oc: Xo — Ry potential functions T—
o —

!
-®

Z: normalizing constant

. 1 | | .
f(x1, 22, 23, 24, T5) = §<;~>12;;(;1f1 , 2, 3)P25(x2, T5)d34(3, T4)Da5(24, T5).



Theorem 13.2.3 (Hammersley—Clifford). A continuous positive probability
density f on X satisfies the pairwise Markov property on the graph G if and
only if it factorizes according to G.




Proof. <: let f = % | I ¢c and let 4,7 € V not connected by an edge.

Then f(z;,x;,zr) = %(HiEC’ ¢c)(HjEc ¢C)(H@',j¢c ¢c)

Hence for all z;, y;, x5, v, vr: f(s, 25, 2Rr)f(Yir¥s, TR) = f(2i, 95, 2Rr) f(Yi» j, TR)

(zi,zj,xr) _ f(xj,%R)

f(zi,xr) —  f(xr)

Average over the y;,y;: get /

=: Let f satisty the pairwise Markov property w.r.t. G, Let y € X arbitrary.

_p)lei-is]

CCV~oc(zc):= Hsgc f(CUSayV\S)(
Mobius inversion on the power set of V' gives

fl) =[] dclze)*™®

CcCcV

It suffices to show: ¢ =1 if C is not a clique

For this, choose 7,7 € C' not connected by an edge, write down ¢, and use
the Markov property of ¢ and j.



Corollary

Let P be a distribution that factors according to G. Then P satisfies
the global Markov property on G.

Proof: the global Markov property 1s a closed condition and the
statement 1s correct when P has positive density.



Parametric directed graphical
model

All densities f with f(x) = HjEV f($j|37pa,(j))
"Recursive Factorization Property"

Idea: we always have f(x) = f(z1) f(z2|z1) f(z3]z1,22) - f2n|T1,. o 20o1)
Here, the ordering of the vertices respects parenthood.
But the graph says that the information from the parents suffices.

Theorem 13.2.10 (Recursive Factorization). A probability density satisfies
the recursive factorization property (13.2.2) associated to the directed acyclic
graph G if and only if it satisfies the directed local Markov property associated

to G&.



Proof. (=) Let f factorize. Then it satisfies the global Markov property
Indeed, let C d-separate A, B, W.l.o.g. V =an(AU B U C)

Then C separates A and B in the moralization G™" of G

/) o~ T\

Moralization makes {j} U pa(j) into a clique, hence f factorizes according to G™**

By the Corollary, X4 1L Xp|Xc

(&) carry out the Idea f(x) = f(x1)f(xa|x1) -+ f(xulx1, ..., x)



For any random variable X, directed graph G:

[.ocal directed Markov w.r.t. G = Global directed Markov w.r.t. G

Ny Z

Recursive factorization property w.r.t. G



Example: discrete case
'\? /'
f(x1, xe,x3) = f(x1)f(22) [ (23|21, 22)

P0,0,0 = ‘9(()1)‘9(()2)9(3) P1,0,0 = 9?)9(()2)0(3)

X; € {O, 1}

0/0,0 01,0
P0,0,1 = 9(()1)9(()2)957)3,0 P1,0,1 = ‘9§1)9(()2)9§:|?,0

Do,1,0 = 9(()1)@?)96?3,1 P1,1,0 = 9§1)9§2)9c()i|?,1

o = 00205, piaa =600

Ay x Ay x A 5 A,



Multivariate Gaussian case

X multivariate Gaussian = X, univariate (Gaussian

X ;| Xpa(;) multivariate Gaussian

fx) =11, f(@jl@pac) = Xi = 2 jepagi) Mg Xs T €
Where ¢; ~ N (v;, w;)
We have X = (Id —A)~1¢
Where A@j — )\7;7]' if (Z,]) S E, 0 else.
— S = (Id—A)"TQ(Id —A)~!
With Q = diag(w1,...,wn)



Proposition 13.2.12. The parametrized Gaussian graphical model associ-
ated to the directed acyclic graph G consists of all pairs (u, X)) € R™ x PD,,

such that ¥ = (Id — A)~1Q(Id — A)~! for some Q diagonal with positive
entries and upper triangular A € R”.

M paramGaussian = image of (A, Q) — X
Ideal of the closure: Ig
Ideal Iy of conditional independent statements for X ~ N (p, 3):
Ideal Tgiob = 2 au,81c IanBIC

Iaupic = {(|C| + 1)-minors of 24ucpuc)

Question: when does Iyop = 17



det(%1245) € I \ Igiob
I = Igop + (det(X12.45))



Examples of graphical models

® o - ©
Markov chain Hidden Markov model
@, O
© -

Ising model



b) 0.37

Aridity Spatial
Lat/Long
0.40
-0.40
0.68
Vegetation cover -0.61
0.15 pH
Soil Organic
Carbon 0.53

0.52 0.44

Bacterial gPCR
R2 = 0.48

Bacterial diversity
R2 = 0.37

(Guerra, Eisenhauer, Pereira: Synthesising Soil Ecosystem Multifunctionality)

Talk to Eliana or me about this!



