Math 275: Geometry of Convex Optimization

Bernd Sturmfels, UC Berkeley, Fall 2010 Homework # 1, due Tuesday, September 7

1. Determine the global minimum in \mathbb{R}^2 of the polynomial

$$f(x,y) = x^6 + y^6 + x^3 + y^3 + xy.$$

Express the optimal points and the optimal value in radicals over \mathbb{Q} .

- 2. Let f(x, y) be the polynomial in the previous problem and consider the problem of maximizing λ such that $f(x, y) \lambda$ is a sum of squares.
 - Write this as a semidefinite program (SDP) for 10×10 -matrices.
 - Solve the SDP numerically, and compare with your answer in #1.
 - The given polynomial is symmetric in x and y. Can you formulate an equivalent SDP that takes advantage of this symmetry?
- 3. Determine the location in California that minimizes the sum of the distances to the five largest cities: Los Angeles, San Diego, San Jose, San Francisco and Fresno. For coordinates see www.travelmath.com.
- 4. The curve $X = \{(x, y) \in \mathbb{R}^2 : x^4 + y^4 = 1\}$ is known as the *TV* screen.
 - Is the convex hull of the TV screen X a spectrahedron?
 - Find the irreducible polynomial whose zero set is the dual curve X^* .
 - Can you write the equation $x^4 + y^4 1$ of X as the determinant of a symmetric 4×4 -matrix over \mathbb{C} whose entries are linear in x, y?

- 5. The polynomial $p(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6$ is non-negative on the real line. What is its minimum value? Write p(x) as a sum of squares. The set of all sums of squares representations of p(x) is a 3-dimensional spectrahedron. Draw a picture of this spectrahedron. Determine all possible representations of p(x) as a sum of <u>two</u> squares.
- 6. Intersect the unit sphere in 3-space with a general quadratic surface. Show that the convex hull of the resulting curve C is a spectrahedron.
- 7. Let P be the convex hull of the union of two circles in 3-dimensional space, where the first circle is defined by $x^2 + y^2 = 5/4$ and z = 0, and the second circle is defined by $x^2 + z^2 = 1$ and y = 0. Compute the irreducible polynomial in x, y, z that vanishes on the boundary of P. You can find pictures at the home page of *Tina Mai* at Texas A&M.
- 8. Let P be the convex hull of a compact curve C of degree 6 in \mathbb{R}^2 .
 - What is the expected degree of the algebraic boundary of the convex set P = conv(C), assuming the curve C is chosen at random?
 - What is the maximum number of ovals a sextic curve C can have?
 - Construct a curve C where P has as many straight edges as possible. The submission with the most edges wins a **candy prize**.