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Abstract. This paper addresses the problems of detecting Hopf bifurcations in systems of
ordinary differential equations and following curves of Hopf points in two-parameter families of
vector fields. The established approach to this problem relies upon augmenting the equilibrium
condition so that a Hopf bifurcation occurs at an isolated, regular point of the extended system.
We propose two new methods of this type based on classical algebraic results regarding the roots
of polynomial equations and properties of Kronecker products for matrices. In addition to their
utility as augmented systems for use with standard Newton-type continuation methods, they are
also particularly well adapted for solution by computer algebra techniques for vector fields of small
or moderate dimension.
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1. Introduction. Consider the n-dimensional system of ordinary differential
equations defined by

ẋ = f(x, α)(1)

where x = x(t) ∈ Rn and f : U→Rn is a C2-smooth function, defined on a subset
U ⊂ Rn, which depends upon a vector of parameters, α ∈ Rk. An equilibrium of this
system is a point x ∈ Rn with the property that f(x, α) = 0. As the parameters α are
varied, equilibrium points can undergo bifurcation [14]. There are two types of ele-
mentary bifurcations that occur in generic one-parameter families of systems: saddle
nodes and Hopf bifurcations. At a saddle-node bifurcation, the Jacobian derivative
evaluated at an equilibrium point possesses a simple zero eigenvalue. Similarly, a nec-
essary condition for Hopf bifurcation is the presence of a pure imaginary eigenvalue
pair in the spectrum of Dxf . One would like robust algorithms for the calculation
of parameter values where one of these bifurcations occurs in parameterized families
of vector fields. In the case of saddle-node bifurcations, one may obtain the bifur-
cation locus by augmenting the equation f(x, α) = 0 with a procedure to calculate
equilibrium points where Dxf has numerical rank (n− 1). An inflated system for the
detection of saddle nodes has been previously proposed using det(Dxf) as the aug-
menting equation [1, 20]. To treat Hopf bifurcations in a similar manner, one requires
explicit equations that determine whether the n-square matrix Dxf has a pair of pure
imaginary eigenvalues. This paper examines procedures for locating Hopf bifurcations
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2 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

based on the singularity of matrices obtained from algebraic transformations of the
Jacobian matrix at an equilibrium.

Previous investigators have proposed a variety of approaches to the determination
of Hopf bifurcation points, which may be divided into two broad classes. A typical
indirect method employs a numerical algorithm for computing the spectrum of the
Jacobian at each point along a path of equilibria and then interpolating to locate
parameter values at which a pair of eigenvalues cross the imaginary axis. For vec-
tor fields of small dimension, the unsymmetric QR factorization algorithm is widely
advocated, while for larger problems Krylov subspace techniques are fast and pro-
vide adequate accuracy in few iterations [21, 8]. In a direct method, equations which
characterize the Hopf point augment the usual equilibrium condition and standard
techniques are used to solve for roots of the resulting system. Algorithms frequently
used in practice solve explicitly for the purely imaginary eigenvalues together with a
normalized basis of the corresponding eigenspace [12, 23, 24, 16]. Such an approach
may be viewed as simultaneously solving for an equilibrium point and an eigensub-
space by an iterative method. In this sense, transition from indirect to direct methods
has replaced the use of highly stable and robust linear algebra techniques for spectral
computations with root-finding algorithms which are only locally convergent. Such
a strategy has a drawback. The minimal dimension of the inflated system increases
to at least 2n+ 1, which may decrease the performance expected from the algorithm
used to solve the resulting nonlinear system of equations and increase the demand for
good initial values and small stepsizes. A side effect of these methods is that they
produce more information than required—the detection of a pair of purely imaginary
eigenvalues—at a significant computational cost.

The purpose of this paper is to examine the algebraic structure of Hopf bifurcation
computations and to use the insight gained to construct direct methods that rely upon
minimally augmented systems for the computation of Hopf bifurcations. Our methods
are based on the algebraic properties of polynomial resultants and matrix symmetric
products. This algebraic theory has been applied to many areas of applied mathemat-
ics, in particular to develop criticality conditions in Lyapunov stability analysis and
root location [3]. The primary focus here is to develop a theoretical basis for algo-
rithms to study Hopf bifurcation in multiparameter vector fields of modest dimensions
where a complete and detailed description of the dynamics is a reasonable objective.
Our experience in this context suggests the approach may prove fruitful for three rea-
sons: First, the bifurcation analysis for a multiparameter dynamical system typically
proceeds through a number of phases, the earliest aimed at providing a gross decompo-
sition of the product space of phase and parameter variables into regions of greater or
lesser interest. Criteria for Hopf bifurcation that can be easily evaluated based on the
fixed point Jacobian alone, without requiring the details of its spectrum, lead to fast al-
gorithms for “scanning” the parameter space for candidate regions of interest. Second,
recent developments in computer algebra techniques and the widespread availability
of powerful computing machines require reassessment of mathematical algorithms
normally reserved exclusively for problems of very small dimension. Application of
computer algebra methods to problems in dynamical systems has already proved
effective in normal form computation, center-manifold reduction, and perturbation
analysis [22]. It is clear that approaches to computing Hopf bifurcations that require
the use of iterative algorithms or direct evaluation of the eigenvalues are unsuitable
for use with symbolic methods. If, instead, the Hopf condition is expressed in terms of
functions of the Jacobian, then, for some problems, application of symbolic methods
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COMPUTING HOPF BIFURCATIONS I 3

become feasible. Third, steady progress in computer hardware and software evolution
promises to continue the trend toward very fast, very robust methods for the solution
of linear algebra problems. It seems desirable to exploit reliable methods for matrix
manipulation in exchange for reducing the size or difficulty inherent in the solution of
nonlinear equations, even if the required penalty is an increase in the dimension of the
matrices involved. For some problems, especially those with a special structure, this
approach may yield algorithms that are more effective than those in widespread use. A
companion paper to this one [15] studies the implementation of these methods on three
examples. Detailed comparisons with other algorithms are discussed there, though
we make a few comments about these comparisons in the final section of this paper.

Methods for detecting Hopf bifurcation based on algebraic techniques have ap-
peared in the literature, and the present paper complements and extends those results
in a number of ways. In particular, the program LINLBF by Khibnik and his cowork-
ers [18] incorporates a method for following curves of Hopf bifurcations based on
the resultant of two polynomials which is similar to that described here. Our sub-
resultant condition described in section 2 provides a way of discriminating between
Hopf points and other resonant saddle points and can be used by either method. We
describe three formally different forms of the resultant criteria that lead to matrix
formulations with distinctly different properties and prove that they are equivalent.
The development of augmented systems based on tensor products is new, although
the important classical role occupied by tensors in the study of stability criteria for
ordinary differential equations is very suggestive. Our proof that Hopf bifurcations
are isolated solutions to the augmented equations in a neighborhood that does not
contain a degenerate point applies to augmented systems based on either resultants
or tensor products.

In the next section we recall the algebraic preliminaries required to express the
necessary Hopf condition in terms of the singular set for certain algebraic functions
of either the Jacobian at an equilibrium point or its associated characteristic poly-
nomial. We present two new methods for following curves of Hopf bifurcation points
in two-parameter families and discuss the variations which arise due to the vari-
ous ways singularity of a matrix may be measured. Concluding remarks, comments
about the performance of our algorithms, and a discussion of methods for extending
this approach to bifurcation points of greater degeneracy are collected together in
section 4.

2. Hopf algorithms using polynomial resultants. We seek explicit criteria
that specify whether an n×n matrix, with coefficients that may depend upon pa-
rameters, has a pair of pure imaginary eigenvalues. In this section we develop the
desired necessary conditions expressed in terms of the corresponding characteristic
polynomial for the matrix.

Let J be the Jacobian matrix for f , and denote its characteristic polynomial by

p(λ) = c0 + c1λ+ · · ·+ c
n−1λ

n−1
+ λ

n

.

Clearly, p has the nonzero root pair {λ,−λ} if and only if λ is a common root of the
two equations p(λ) + p(−λ) and p(λ) − p(−λ). Making the substitution z = λ

2
and

rearranging, we construct two new polynomials. If n is even, let

(2a)
re(z) = c0 + c2z + c4z

2 + · · ·+ cn−2z
n−2

2 + z
n
2 ,

ro(z) = c1 + c3z + c5z
2 + · · ·+ cn−1z

n−2
2
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4 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

while if n is odd, set

(2b)
re(z) = c0 + c2z + c4z

2 + · · ·+ cn−3z
n−3

2 + cn−1z
n−1

2 ,

ro(z) = c1 + c3z + c5z
2 + · · ·+ cn−2z

n−3
2 + z

n−1
2 .

Then p has a nonzero root pair {λ,−λ} if there exists a z that satisfies(
re(z)
ro(z)

)
= 0.(3)

Two polynomials have a common root if and only if they share a common factor.
Since re and ro are univariate polynomials with the degree of ro less than or equal
to the degree of re, the Euclidean algorithm may be used to answer this question.
We compute a sequence of polynomials P0 = re, P1 = ro, P2, . . . , Pk with the property
that Pi+1 is the remainder of dividing Pi−1 by Pi. Thus, one requires that the degrees
of the Pi are strictly decreasing and that there are polynomials Qi, i = 1, . . . , k such
that Pi−1 = QiPi + Pi+1. The sequence terminates when a Pk is found that divides
Pk−1. It is easy to verify by induction that the Pi are all in the ideal generated by re
and ro in the polynomial ring R[z] which implies that there are polynomials Ai and
Bi with Pi = Aire + Biro. If re and ro have no common factor, then the repeated
divisions will produce a Pk that is a nonzero constant. On the other hand, if re and
ro do have a common factor, then their greatest common denominator appears as Pk
which divides Pk−1. In this way the Euclidean algorithm may be used to determine
whether or not two polynomials share a common root.

The Euclidean algorithm is closely related to a collection of determinants con-
structed from the coefficients of two polynomials. For n even, let the Sylvester matrix
of the pair of equations (2a) and (2b) be the (n−1)×(n−1) matrix given by

S =



c0 c2 · · · cn−2 1 0 0 · · · 0
0 c0 c2 · · · cn−2 1 0 · · · 0
...

...
0 · · · · · · 0 c0 c2 · · · cn−2 1
c1 c3 · · · c

n−1 0 0 · · · · · · 0
0 c1 c3 · · · c

n−1 0 · · · · · · 0
...

...
0 · · · · · · 0 c1 c3 · · · · · · c

n−1




n−2

2 rows


n
2 rows

while if n is odd, this matrix is defined to be

S =



c0 c2 · · · cn−3 cn−1 0 0 · · · 0
0 c0 c2 · · · c

n−3 c
n−1 0 · · · 0

...
...

0 · · · · · · 0 c0 c2 · · · c
n−3 c

n−1

c1 c3 · · · c
n−2 1 0 · · · · · · 0

0 c1 c3 · · · c
n−2 1 0 · · · 0

...
...

0 · · · · · · 0 c1 c3 · · · cn−1 1




n−1

2 rows


n−1

2 rows

.

The determinant RS = det(S) is a polynomial in the coefficients of p referred to
as the Sylvester resultant of re and ro. The Sylvester matrix is singular (equivalently,
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COMPUTING HOPF BIFURCATIONS I 5

RS = 0 ) if and only if the polynomials re and ro share a common root. The
computation of the Sylvester resultant is usually performed through the construction
of a pseudoremainder sequence for the pair of polynomials. Modulo units in the ring
of coefficients of the polynomials, the terms of the pseudoremainder sequence are
the intermediate terms produced by the Euclidean algorithm. Explicit formulas for
the coefficients of these intermediate terms can be defined in terms of determinants of
appropriate submatrices of S, called subresultants. We shall use the subresultants that
correspond to a linear remainder term from the Euclidean algorithm. The coefficients
of the linear remainder may be obtained by considering determinants of two (n −
3)× (n− 3) submatrices of S. For i = 0, 1 let Si denote the matrix obtained from S
by deleting the rows 1 and n

2 and the columns 1 and i + 2. Thus, for n even, S0 is
obtained from the Sylvester matrix by removing the boxed entries shown below.

S0 =



c0 c2

0 c0
...
0 · · ·
0 · · ·

c1 c3

0 c1
...
0 · · ·
0 · · ·

· · · c
n−2 1 0 0 · · · 0

c2 · · · c
n−2 1 0 · · · 0

...
0 c0 c2 · · · c

n−2 1 0
· · · 0 c0 c2 · · · c

n−2 1

· · · c
n−1 0 0 · · · · · · 0

c3 · · · cn−1 0 · · · · · · 0
...

0 c1 c3 · · · · · · cn−1 0
· · · 0 c1 c3 · · · · · · c

n−1



.

The relationship between the characteristic polynomial and its corresponding matrices
S, S0, and S1 leads to the following result.

THEOREM 2.1. Let S be the Sylvester matrix for the polynomials re and ro in
(2a) and (2b). Then J has precisely one pair of pure imaginary eigenvalues if

RS = 0 and det(S0) · det(S1) > 0.

If RS 6= 0 or det(S0) · det(S1) < 0, then p(λ) has no purely imaginary roots.
Proof. From the elementary properties of resultants [5, Chap. 3, Prop. 8 and

9], RS = 0 if and only if re and ro share a common factor in R[z]. Suppose that
det(S0) · det(S1) 6= 0. Then this common factor is linear and, by Loos [19], it has the
explicit form

det(S0) + det(S1)z = h1(z) · re(z) + h2(z) · ro(z)

for two polynomials h1, h2 ∈ R[z]. The solution of det(S0) + det(S1)z = 0 results in
a common complex root ẑ of re and ro which is unique, real, and negative if det(S0) ·
det(S1) > 0.

If det(S) = det(S0) · det(S1) = 0, then p(λ) may have more than one pair of pure
imaginary roots, a case which may be resolved by computing higher subresultants.
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6 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

When the conditions of the theorem are satisfied, the magnitude of the shared root ẑ
is given by

|ẑ| =
√

det(S1)/ det(S0)

which, in the case of Hopf bifurcation, can be related directly to the period of the
limit cycle created at the bifurcation point. An efficient method of evaluating all sub-
resultants (including the determinants of S, S0, and S1) is the generalized polynomial
remainder sequences algorithm due to Habicht, Brown, and Collins. For a detailed
discussion, see Loos [19].

In the case of (2a) and (2b), the determinant of the Sylvester matrix can be
expressed explicitly in terms of the eigenvalues of J, according to the following result.

THEOREM 2.2. Let λ1, λ2, . . . , λn be the roots of the polynomial p(λ) and let
S = (sij) be the (n−1)×(n−1) Sylvester matrix of the associated pair (re, ro). If
m =

(b(n+1)/2c
2

)
+
(
n
2

)
, then

RS = (−1)m ·
∏

1≤i<j≤n
(λi + λj).

Proof. We note that ∏
1≤i<j≤n

(λi + λj)

and the Sylvester resultant RS are symmetric polynomials in λ1, . . . , λn. They can
be rewritten uniquely as polynomials in the coefficients c0, . . . , cn−1 of the polynomial

p(λ) =
n∏
i=1

(λ− λi) = λn +
n−1∑
i=0

ciλ
i.

We denote these two polynomials by prod(c0, . . . , cn−1) and res(c0, . . . , cn−1), re-
spectively. Both polynomials have integer coefficients, and res is irreducible [26] in
Z[c0, . . . , cn−1].

The polynomials prod and res define the same hypersurface in the affine space Cn.
Namely, a point (c0, . . . , cn−1) lies in this hypersurface if and only if the polynomial

λn +
n−1∑
i=0

ciλ
i

has a quadratic factor of the form λ2 − µ. Hence there exists an integer s such that
prod = s · res in Z[c0, . . . , cn−1].

In order to show s = (−1)m, we apply the classical algorithm for rewriting sym-
metric functions in terms of elementary symmetric functions. We begin by noting
that the lexicographic leading term of∏

1≤i<j≤n
(λi + λj)

equals λn−1
1 λn−2

2 · · ·λ1
n−1λ

0
n. There is a unique monomial in the elementary symmetric

functions (−1)n−ici which has the same leading term, namely,

(−1)n−1 · c1 · (−1)n−2c2 · · · · · (−cn−1) = (−1)(
n
2) · c1c2c3 · · · cn−1.
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COMPUTING HOPF BIFURCATIONS I 7

Therefore the monomial c1c2c3 · · · cn−1 occurs with coefficient (−1)(
n
2) in prod. How-

ever, the same monomial occurs with coefficient (−1)1+2+···+b(n−1)/2c in the expansion
of res = det(S), as can be verified from the definition of the matrix S. The desired
factor s is the quotient of these two coefficients. This quotient equals (−1)m and the
proof of Theorem 2.2 is complete.

We note that Theorem 2.1 imposes two requirements on the characteristic polyno-
mial of J: a singularity condition for the resultant matrix and an inequality involving
subresultants. There are many classical results on root location in systems of poly-
nomial equations. For example, the well-known Routh–Hurwitz criterion for stability
matrices determines whether all the eigenvalues of a matrix have nonpositive real
parts. We describe two other criteria for a polynomial to have a factor of the form
x2 − µ that are appealing alternatives to the calculation of the Sylvester resultant.
For ease of exposition, we consider the case where n ≥ 2 is even in the discussion that
follows; similar results for the case where n is odd follow analogously.

LetM denote the space of all real n2 -square matrices and charpoly :M→ Rn
2

[x]
the map that associates an element of M to its characteristic polynomial. If N ⊂M
is the dense subset of matrices with simple eigenvalues, then the equivalence rela-
tion A ∼ B defined by the condition that charpoly(A) = charpoly(B) for A,B ∈ N
induces a partition of N into similarity classes. For each equivalence class in this par-
tition, a useful representative element is a matrix that displays the coefficients of the
associated characteristic polynomial along a row or down a column; such an element
is called a companion matrix. Notice that for n even, re is a monic polynomial. Thus,
we may take

Cre =


0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c2
0 1 0 · · · 0 −c4
...

...
...

0 0 0 · · · 1 −cn−2


as the representative element of [Cre ], since charpoly(Cre) = re. Moreover, for each
A ∈ [Cre ] there exists a (nonsingular) matrix W such that

CreW = WA.

Recall that a matrix polynomial of degree k with elements inM is an expression
of the form

q(M) = akMk + ak−1Mk−1 + · · ·+ a1M + a0I,

where q :M→M, M ∈ M, the coefficients ai are scalars, and I is the unit matrix.
An alternative expression for RS is given by the following theorem [3, Sect. 1.2].

THEOREM 2.3. For ro and re defined as above, let ro(Cre) ≡ C if n is even and
re(Cro) ≡ C if n is odd. If RC is used to denote det(C), then

RC = RS .

Thus, the vanishing ofRC provides an alternative to the conditionRS = 0 given in
Theorem 2.1 but involves a matrix of smaller dimension. To develop a third equivalent
criterion, we consider the Bezout resultant. Again, for n even, consider the two
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8 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

polynomials specified by (2a). We define the brackets

[i, j] = det
[

c2i c2j

c2i + 1 c2j + 1

]
where 0 ≤ i, j ≤ n

2 and we take cn = 1, cn+1 = 0. The Bezout matrix B corresponding
to the polynomial pair (re, ro) is an n

2 -dimensional square, symmetric matrix with
entries constructed as sums of bracket products in the coefficients ci as follows: for
1 ≤ i ≤ j ≤ n

2 set

kmin = max
(

0, i+ j − n

2
− 1
)
,

kmax = i− 1.(4)

Then,

(B)ij =
kmax∑
k=kmin

[i+ j − k − 1, k] = (B)ji .(5)

The only modification required in this definition for the case of n odd is that cn has
the value prescribed by the characteristic polynomial p and cn+1 is taken to be unity.

The Sylvester and Bezout matrices are intimately related (see Theorem 1.13 of
Barnett [3] and note that, in his notation, det(T1) = 1) which leads to the following
theorem.

THEOREM 2.4. For the Bezout matrix corresponding to the polynomial pair
(re, ro), let RB denote det(B). Then we have

RB = (−1)n RS .(6)

Moreover, the coefficients of the linear remainder term from the Euclidean algo-
rithm may be expressed as determinants of certain Bezout submatrices, in analogy
to the subresultants defined for the Sylvester form. Consider two submatrices, Bi for
i = 0, 1, obtained by deleting the first column and the ith row of B. Then the Bezout
subresultants formed from the determinants of B0 and B1, together with (6), may be
used to specify the hypersurface of n-square matrices with a purely imaginary eigen-
value pair. Since we have not found the particular relationship given in the following
theorem described in the literature, we provide a sketch of the proof.

THEOREM 2.5. Let B be the Bezout matrix for the polynomials re and ro in (2a)
and (2b). Then J has precisely one pair of pure imaginary eigenvalues if

RB = 0 and det(B0) · det(B1) > 0.

If RB 6= 0 or det(B0) · det(B1) < 0, then p(λ) has no purely imaginary roots.
Proof. The Bezout matrix B is a symmetric m ×m matrix where m = bn2 c. By

Barnett [4, Sect. 1.5] it satisfies the following identity in the indeterminates w and z:

(1, w, w2, . . . , wm−1) · B · (1, z, z2, . . . , zm−1)T(7)

=
re(w) ro(z)− re(z) ro(w)

w − z .

Suppose that det(B) = 0 but det(B0) · det(B1) 6= 0. Then re and ro have a common
complex root, say w0. From (7) we conclude

(1, w0, w
2
0, . . . , w

m−1
0 ) · B · (1, z, z2, . . . , zm−1)T = 0(8)
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COMPUTING HOPF BIFURCATIONS I 9

for all z ∈ C. If we substitute m distinct values for z and invert the corresponding
Vandermonde matrix, then we see that (8) implies that (1, w0, w

2
0, . . . , w

m−1
0 ) · B is

the zero vector. Now, by our assumptions, the Bezout matrix has rank m − 1. The
unique (up to scaling) vector in its kernel is computed by Cramer’s rule. For some
nonzero constant c we find

(1, w0, w
2
0, . . . , w

m−2
0 , wm−1

0 )

= c · ((−1)m det(Bm−1), . . . , det(B2),− det(B1), det(B0)).

This implies w0 · det(B1) + det(B0) = 0. Hence w0 is negative if and only if
det(B0) · det(B1) is positive. Our proof is complete because w0 is the only common
root of re and ro (otherwise rank(B0) < m− 1).

Thus, we have three distinct but equivalent methods of computing the singular-
ity condition necessary to establish that the Jacobian has a pair of purely imaginary
eigenvalues: one (Sylvester) related directly to the sufficiency condition, one (Com-
panion) small in dimension compared to n, and, finally, one (Bezout) which is not
only small but has a symmetric structure. We illustrate the ideas presented above
concerning polynomial resultants with the following example.

Example. Consider the case n = 6. Then (2a) and (2b) become

p(λ) = c0 + c1λ+ · · ·+ c5λ
5 + λ6,

re(z) = c0 + c2z + c4z
2 + z3,

ro(z) = c1 + c3z + c5z
2.

The Sylvester matrix and the two relevant submatrices, S0 and S1, are given by

S =


c0 c2 c4 1 0
0 c0 c2 c4 1
c1 c3 c5 0 0
0 c1 c3 c5 0
0 0 c1 c3 c5

 ,

S0 =

 c2 c4 1
c3 c5 0
c1 c3 c5

 , S1 =

 c0 c4 1
c1 c5 0
0 c3 c5

 .
By Theorem 2.1, p has a pair of purely imaginary roots if and only if

RS = c0
2c5

2 + c1
2c4

2c5 + c1c2
2c5

2 + c0c3
2c4c5 − 2c0c1c52c4 − c0c2c3c52

− c1c2c3c4c5 − c0c33 + 3c0c1c3c5 + c1c2c3
2 − 2c12c2c5 − c12c3c4 + c1

3

vanishes and the product(
c3

2 − c1c5 + c2c5
2 − c3c4c5

) (
c1c3 + c0c5

2 − c1c4c5
)
> 0.

The singularity condition may be expressed in terms of the companion matrix for re
through the matrix polynomial

ro (Cre) =

 c1 −c0c5c0 c0(c4c5 − c3)
c3 c1 − c2c5 c5(c2c4 − c0)− c2c3
c5 c3 − c4c5 c5(c42 − c2) + c1 − c3c4
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10 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

TABLE 1
Resultant equality and subresultant inequality conditions required for Hopf bifurcation for vector

fields of dimension two through six.

n

RS

det(S0) · det(S1)

2
c1

c0

3
c0 − c1c2

c1

4
c0c23 − c1c2c3 + c21

c1c3

5
(c2 − c3c4)(c1c2 − c0c3) + c1c4(c1c4 − 2c0) + c20

(c2 − c3c4) · (c0 − c1c4)

6

c0c25(c0c5 − c2c3) + c1c25(c22 − c0c4) + c1(c21 + c0c3c5)

+ c1c5(c0c3 − 2c1c2) + (c4c5 − c3)(c0c23 − c0c1c5 + c21c4 − c1c2c3)

(c1c3 + c0c25 − c1c4c5) · (c23 − c1c5 + c2c25 − c3c4c5)

Finally, the Bezout matrix associated with (re, ro) is given by

B =

 [1, 0] [2, 0] [3, 0]
[2, 0] [3, 0] + [2, 1] [3, 1]
[3, 0] [3, 1] [3, 2]


=

 c1c2 − c0c3 c1c4 − c0c5 c1
c1c4 − c0c5 c1 + c3c4 − c2c5 c3

c1 c3 c5


and it is easy to verify RB = det(B) = RS . The Bezout subresultant condition
provided by the expression

det (B0) · det (B1) = det
[
c1 + c3c4 − c2c5 c3

c3 c5

]
· det

[
c1c4 − c0c5 c1

c3 c5

]
is necessarily positive when p has a pair of imaginary conjugate roots.

Table 1 provides a list of the resultant equality and subresultant inequality con-
ditions, as functions of the polynomial coefficients, for vector fields of dimension two
through six.

3. Hopf algorithms using symmetric products.

3.1. Algebraic properties of symmetric products. In practical applica-
tions, the computation of the characteristic polynomial coefficients is problematic
since known algorithms are numerically unstable. For each method (Danilewski, La
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COMPUTING HOPF BIFURCATIONS I 11

Verrier, etc.) otherwise unremarkable example matrices can be constructed for which
the technique yields arbitrarily inaccurate polynomial coefficients; for a detailed dis-
cussion, see Wilkinson [27]. Despite this fact, computational methods which employ
numerically determined matrix characteristic polynomial coefficients are used exten-
sively in engineering linear systems analysis and control theory where empirical ev-
idence suggests they are effective. Thus, while it is clear that numerical calculation
of the explicit coefficients cannot be recommended as a general technique, the classes
of matrices for which these techniques break down and a complete understanding of
their failure modes is not well established. For example, Wilkinson observes that
Jacobian matrices derived from damped oscillatory systems are frequently associated
with well-conditioned characteristic polynomials. In such circumstances, eigenvalue
methods based on explicit use of the coefficients appear to be fast and reliable, based
on numerical experiments with an early iterative solver, DEUCE [28].

To circumvent difficulties in explicitly determining the characteristic polynomial
coefficients, we seek a method to determine whether a square matrix has a pair of
eigenvalues whose sum is zero directly from the entries in the Jacobian matrix. A
simple procedure for doing this involves Kronecker or tensor products of matrices.

For the finite-dimensional vector spaces V and W , let T1 : V → V be a linear
operator with (n×n) matrix representation A = (aij) in terms of the basis ei, and
let T2 : W →W be another linear operator with (m×m) representation B = (bkl) in
terms of the basis fk. The tensor product T1⊗T2 : V ⊗W → V ⊗W is an (mn×mn)
matrix with entries aijbkl in terms of the basis ei⊗fk for V ⊗W . Moreover, eigenvalues
behave multiplicatively under tensor products: if λi and µk are eigenvalues of T1 and
T2 corresponding to eigenvectors ui and vk, then λiµk is an eigenvalue of T1 ⊗ T2. If,
in addition, we assume T1 and T2 are nondefective and dim(V ) = dim(W ), then the
tensor sum (T1 ⊗ T2 + T2 ⊗ T1) has a special action on its eigenspaces. Since

(T1 ⊗ T2 + T2 ⊗ T1) (ui ⊗ vk) = (λiui)⊗ (µkvk) + (µiui)⊗ (λkvk)
= (λiµk + λkµi)(ui ⊗ vk)

the spectrum of this operator consists of the n2 pairwise sums (λiµk+λkµi) associated
with the eigenvectors ui ⊗ vk for 1≤ i, k ≤n.

This tensor sum suggests an obvious candidate for an augmenting function: if J
is the Jacobian, then J has an eigenpair that sums to zero if and only if

g(x, α;β) = det(J⊗ In + In ⊗ J)

vanishes where In is the appropriate identity matrix. Notice that since each eigensum
of distinct eigenvalues occurs twice, the tensor sum will have corank-2 at a Hopf
bifurcation point, which has important numerical disadvantages.

To remove the twofold redundancy in the eigenvalues of the tensor product, one
can split V ⊗V into the eigenspaces for ±1 of the involution σ : V ⊗V → V ⊗V that
interchanges factors: σ(v1⊗v2) = v2⊗v1. The restriction to the n

2 (n−1)-dimensional
eigenspace of −1 for σ is an operator whose eigenvalues are (λiµk +λkµi) with i < k.
If T1, T2 : V → V , the operator T1 ⊗ T2 + T2 ⊗ T1 commutes with σ, so it maps the
σ eigenspaces to themselves. In what follows we construct the matrix corresponding
to the restriction to the (−1) eigenspace of σ. Using a different approach, the matrix
representation of this restricted operator was originally constructed directly from the
elements of the argument matrices by Stéphanos [25] and later by Fuller [7].

DEFINITION. Let A and B be n×n matrices with entries (aij) and (bij), respec-
tively, 1 ≤ i, j ≤ n. Set m = n

2 (n − 1). Then the bialternate product (or biproduct)
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12 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

of A and B, denoted A � B, is an m×m matrix whose rows are labeled pq for
(p = 2, 3, . . . , n; q = 1, 2, . . . , p − 1) and columns labeled rs for (r = 2, 3, . . . , n; s =
1, 2, . . . , r − 1) with entries

(A�B){pq,rs} =
1
2

{∣∣∣∣ apr aps
bqr bqs

∣∣∣∣+
∣∣∣∣ bpr bps
aqr aqs

∣∣∣∣} .
In the case B = 2In we obtain from this an operator on an n

2 (n− 1)-dimensional
space whose eigenvalues are the pairwise sums of the eigenvalues of A without repe-
tition: λi + λj for i < j.

THEOREM 3.1. Let A be an (n×n) matrix with eigenvalues (λ1, . . . , λn). Then
(i) A�A has eigenvalues λi ·λj, and
(ii) 2A� In has eigenvalues λi+λj

where In is the n-square identity matrix and 1≤j<i≤n.
Notice that the subscripts used to compute the biproduct entries are indexed by

pairs. To avoid confusion, when the lexicographically ordered pair, or label, is used to
refer to an element of A�B, we shall enclose it in braces, as in the definition above.
When the row/column matrix index is used, we employ the standard notation. Thus,
the index provides information about the position of the entry in the biproduct matrix
while the label indicates which elements of the arguments to the product are involved.
As an example, consider an arbitrary 3×3 matrix A = (ai,j) for 1≤ i, j≤3. Then, the
conventions require that

(A�A)2,3 = (A�A){31,32} = a1,2 a3,3 − a1,3 a3,2.

For compactness in the index notation, when there is no possibility of confusion we
drop the comma separating the row and column indices. Thus, in the example, the
two products of A are given by

A�A =



∣∣∣∣ a22 a21
a12 a11

∣∣∣∣ ∣∣∣∣ a23 a21
a13 a11

∣∣∣∣ ∣∣∣∣ a23 a22
a13 a12

∣∣∣∣∣∣∣∣ a32 a31
a12 a11

∣∣∣∣ ∣∣∣∣ a33 a31
a13 a11

∣∣∣∣ ∣∣∣∣ a33 a32
a13 a12

∣∣∣∣∣∣∣∣ a32 a31
a22 a21

∣∣∣∣ ∣∣∣∣ a33 a31
a23 a21

∣∣∣∣ ∣∣∣∣ a33 a32
a23 a22

∣∣∣∣


,

2A� I3 =

 a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33

 .
Substituting In into the definition of the bialternate product and solving for the
elements yields a simple formula for the entries. For the n

2 (n− 1)-square matrix
2A� In with rows pq and columns rs, the entries are given by the formula

(2A� In){pq,rs} =



−(A)ps if r = q,
(A)pr if r 6= p and s = q,

(A)pp + (A)qq if r = p and s = q,
(A)qs if r = p and s 6= q,
−(A)qr if s = p,

0 otherwise.

(9)
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COMPUTING HOPF BIFURCATIONS I 13

The algebraic properties of the bialternate product transformation confers a cer-
tain structure upon the matrix A� In which may be used in the construction of Hopf
algorithms. For example, simple manipulation of the row and column labels yields
the following lemma.

LEMMA 3.2. Let A be an (n×n) matrix. If A is lower (upper) triangular, then
2A� In is lower (upper) triangular. In particular, if A is diagonal so is 2A� In.

Proof. Suppose A is lower triangular and let (A)ij be nonzero. Notice that if
i = j then it contributes only to the diagonal elements of 2A� In. Consider the case
for 1≤j<i≤ n. The first assignment in (9) may be written

−(A)ij 7→ (2A� In){ik,kj}

for k such that 1≤j<k<i≤ n. By the row and column label convention,

ik 7→ k +
i−2∑
l=0

l = j +

[
(k − j) +

i−2∑
l=k−1

l

]
+
k−2∑
l=0

l > j +
k−2∑
l=0

l ← kj

shows (2A� In){ik,kj} is below the diagonal. Similar arguments hold for the second
and fourth assignments in (9); the fifth does not apply in the lower triangular case.
Thus, 2A� In is lower triangular. A similar argument holds for A upper triangular,
and the result for diagonal A follows immediately.

A simple extension of the index counting arguments used above can be used to
establish how a nonzero off-diagonal element in the Jacobian is propagated to the
product matrix.

LEMMA 3.3. Suppose (A)ij is nonzero, i 6= j. Then (A)ij appears n − 2 times
in entries of 2A� In. Moreover, if u = max{i, j} and l = min{i, j}, each of these
entries is contained in a band of width

bw =
1
2
(
u2 − l2 + 3(l − u)

)
.

Proof. Suppose j<i. The three assignments specified in (9) which apply may be
written

(10a) −(A)ij 7→ (2A� In){ik,kj} for k such that 1≤j<k<i≤ n,
(10b) (A)ij 7→ (2A� In){ik,jk} for k such that 1≤k<j<i≤ n,
(10c) (A)ij 7→ (2A� In){ki,kj} for k such that 1≤j<i<k≤ n.

The total number of off-diagonal entries in 2A� In contributed by (A)ij is given by
(i−j−1) + (j−1) + (n−i) = n−2.

The nonzero entry (A)ij may contribute elements (2A� In){pq,rs} through each
of the three rules (10a–c) above. Let (iarow, i

a
col), (ibrow, i

b
col), and (icrow, i

c
col) denote

the row and column indices corresponding to the labels pq and rs under the rules
(10a), (10b), and (10c), respectively. To find the bandwidth we wish to maximize the
differences i∗row − i∗col where the asterisk is replaced by the rule identifier a, b, or c.
Simple calculations show

icrow − iccol ≤ i− j,(11)

ibrow − ibcol ≤ 1 +
1
2
(
i2 − j2 − 3i+ j + 2

)
,(12)

iarow − iacol ≤
1
2
(
i2 − j2 + 3(j − i)

)
.(13)
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14 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

Comparing these bounds establishes the result for (A)ij for j < i. The case for
i<j follows analogously.

Finally, since the bialternate product was derived as the restriction of a tensor
product of matrices to an invariant subspace, it inherits several important properties
from tensor calculus. In particular, it is straightforward to verify the following.

LEMMA 3.4. For α a scalar and A, B in M depending on a parameter λ, the
following properties hold:

(i) α (A�B) = (αA)�B = A� (αB) ,
(ii) (A + B)�C = (A�C) + (A�C) ,
(iii) A�B = B�A,
(iv) (A�B)t = (At �Bt),
(v) ∂

∂λ (A�B) =
[
∂
∂λA

]
�B + A�

[
∂
∂λB

]
(provided the partial derivatives exist),

(vi) (AB)� In = (A� In) (B� In)− (A�B) .

3.2. Bialternate product algorithms. From the algebraic theory of symmet-
ric matrix products described above we have a simple necessary condition for a Hopf
point: if the point (x∗, λ∗) is a Hopf bifurcation point for ẋ = f(x, α), then the
(n+ 1)-dimensional system

F (x∗, α∗) =

 f(x∗, α∗),

det
(
Dxf�In

(x∗,α∗)

) (14)

vanishes. However, we have not found a condition that distinguishes purely imaginary
eigenvalues directly from the Jacobian and its bialternate products in analogy to the
subresultant criterion described earlier.

One can use bialternate products effectively in continuation method calculations
of Hopf bifurcation curves relying on the observation that transitions where eigen-
values depart from the imaginary axis occur at degenerate bifurcations. As before,
we propose following curves of Hopf bifurcations in two-parameter families by solving
the equations expressing the singularity of the bialternate product of the Jacobian,
while ensuring that the imaginary eigenvalues are bounded away from zero and that
multiple imaginary eigenpairs do not occur. We begin with the simple proof that (14)
is regular on its zero set provided appropriate genericity and transversality condi-
tions hold.

THEOREM 3.5. Suppose the system

ẋ = f(x, α), x ∈ Rn, α ∈ R

has an equilibrium (x∗, α∗) at which the following properties are satisfied:
(E1) Dxf(x∗, α∗) is nonsingular,
(E2) Dxf(x∗, α∗) has a single pair of eigenvalues λ∗1,2

whose sum is zero; i.e., (λ∗1 + λ∗2) = 0,
(E3) d

dα [λ1(x, α) + λ2(x, α)]| (x∗,α∗) = ∆ 6= 0.
Then (x∗, α∗) is an isolated nonsingular solution of

F (x, α) =
(

f(x, α),
det (Dxf�In)

)
= 0.(15)D
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COMPUTING HOPF BIFURCATIONS I 15

Proof. Let y = (x, α). It suffices to show that DyF (x∗, α∗) is nonsingular. By
Keller’s bordering lemma [17],

DyF (x∗, α∗) ≡
[

Jx(x∗, α∗) Jα(x∗, α∗)
w(x∗, α∗) d(x∗, α∗)

]

=


Dxf(x∗, α∗) Dαf(x∗, α∗)

Dx [det (Dxf�In)]
(x∗,α∗)

Dα [det (Dxf�In)]
(x∗,α∗)


is nonsingular if d(x∗, α∗) 6= w(x∗, α∗) [Jx(x∗, α∗)]−1 Jα(x∗, α∗) since, by assumption
(E1), Jx(x∗, α∗) is invertible. Let {λk(x, α)}nk=3 be the complement of the critical
eigenvalues of Jx(x∗, α∗). The product

θ(x, α) =
n∏
j=3

(λ1 + λj)(λ2 + λj)

 n∏
i=3
i<j

(λi + λj)


defines a smooth function in a neighborhood of the solution, which, by (E2), is nonzero
at (x∗, α∗), say θ(x∗, α∗) = δ. For simplicity of notation, let J∗x ≡ Jx(x∗, α∗) and
J∗α ≡ Jα(x∗, α∗). Then, using Theorem 3.1,

Dα [det (Jx�In)]
(x∗,α∗)

= θ(x∗, α∗) ·Dα(λ1 + λ2)
(x∗,α∗)

+ (λ∗1 + λ∗2) · ∂θ
∂α

(x∗, α∗)(16)

= ∆δ

since the second term in the sum vanishes. But it is also true that

Dα [det (Jx�In)]
(x∗,α∗)

= Dx [det (Jx�In)] · dx
dα (x∗,α∗)

.(17)

Differentiating the equilibrium condition f(x, α) = 0 and evaluating the result at
(x∗, α∗), we have

dx

dα
= − [J∗x]−1 J∗α .(18)

Substituting (18) into (17) we have

−Dx [det (Jx�In)]
(x∗,α∗)

[J∗x]−1 J∗α = ∆δ

as well. Together with (16) this implies

d(x∗, α∗)− w(x∗, α∗) [Jx]−1 Jα = 2∆δ 6= 0

which establishes the result.
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16 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

To utilize either augmented system defined by the vanishing of a resultant or
biproduct in the Euler–Newton continuation framework we must specify how the
Jacobian of the extended system is to be computed since, at each corrector step, a
linear system of the form

yk+1 = yk − [DyF (yk;β)]−1
F (yk;β)

must be solved. Here, and in the discussion that follows, we use y = (x, α)t to
denote the augmented column vector of independent variables of F . Referring to
Theorem 3.5, we will assume that the components Dxf(x, α;β) and Dαf(x, α;β)
are readily available either analytically, by automatic differentiation (see [13] and
references therein), or, in the worst case, by finite-difference estimation. One way of
computing the derivatives

Dx [det(Dxf � In)] and Dα [det(Dxf � In)]

is to apply a forward or central difference formula to the scalar-valued function

g(y;β) = det(Dyf � In)

for the (n + 1) required partials. An alternative is suggested by an extension of a
lemma due to Halanai (published by Davidenko [6]).

LEMMA 3.6. Let A(x) = (aij(x)) be a matrix, 1≤ i, j≤ m, whose entries are C1

real-valued functions aij : Ω ⊂ Rk → R. Then for 1≤ l≤ k,

∂

∂xl
det (A(x)) = tr

(
Adj(A(x)) · ∂

∂xl
A(x)

)
where tr() denotes the trace function and Adj() is the adjoint matrix of A. Moreover,
if A(x) is invertible in Ω, then

∂

∂xl
det (A(x)) = det (A(x)) · tr

(
A−1(x) · ∂

∂xl
A(x)

)
for all x ∈ Ω.

Identifying the matrix A in the lemma with either J�In or a resultant matrix
from section 2 shows that the partial derivatives of the augmented equation may
be computed without resorting to differencing the determinant function. Moreover,
in those cases when second derivatives of f are known, these formulae indicate how
they may be used directly. The adjoint form is undesirable since the computation of
Adj(A(x)) is O(m4); however, since the objective of the corrector step is, essentially,
to drive A to singularity we expect the calculation of A−1 to be increasingly unstable
near a solution point. Therefore we require a similar formula valid near a generic
solution where we expect the rank of A to drop by one due to the vanishing of a
single eigenvalue. In the case that the singular values σn−1 > σn > 0 of A are well
separated, the results of Chan [4] show that we can isolate the vanishing pivot in its
LU decomposition using an appropriately chosen permutation matrix P to form

PAQ = LAUA =
[

L 0
vt 1

] [
U w
0 ε

]
(19)

where ε is on the order of the smallest singular value of A. Thus, we expect the
conditioning of L and U to be much improved compared with that of A and, using
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COMPUTING HOPF BIFURCATIONS I 17

TABLE 2
Fraction of entries in the bialternate product matrix 2J � In which are nonzero as a function

of Jacobian dimension n.

n Fraction Nonzero
5 70 %
10 38 %
15 26 %
25 16 %
50 8 %

block forms for the inverses of LA and UA together with the relation det(A) =
ε · det(U), we obtain the following.

LEMMA 3.7. Let A be a matrix defined as in Lemma 3.6 and suppose that A is
invertible in some open set Ω ∈ Rk with singular values σ1(x) ≥ · · · ≥ σn−1(x) >
σn(x) > 0. Then for 1≤ l ≤k and each x ∈ Ω there exist matrices P, Q, U, and L,
vectors v and w and ε > 0 such that

∂

∂xl
det (A(x)) = det (U) · tr

(
Z · ∂

∂xl
A(x)

)
where P is a permutation matrix, Q is orthogonal, ε is either O(σn) or O(κ−1

∞ (A)),
and

Z = Q
[
ε (LU)−1 + U−1wvtL−1 −U−1w

−vtL−1 1

]
P.

Applying Lemmas 3.4 and 3.7 to the augmented system defined by (14), one
obtains for 1≤ l≤(n+ 1)

∂

∂yl
det (J(y)�In) = det (U) · tr

(
Z ·
([

∂

∂yl
J(y)

]
� In

))
.

As this formula shows, each partial of det(J � I) is composed of weighted sums of
entries in the matrix derivatives of J. In particular, Z is the weight matrix and det(U)
a scale factor, both dependent upon J but not on l. Thus, to compute the row of
entries in DyF corresponding to the augmented singularity equation,

DyF (y;β) =

 ∗ ∗

Dx [det [Dxf�In)]t Dα [det (Dxf�In)]

 ,
one needs to evaluate these factors only once per corrector step.

We conclude this section with a few remarks concerning the properties of bialter-
nate product matrices germane to the solution of the linear algebra problems which
arise in algorithms for Hopf bifurcation. Specifically, we wish to exploit the structure
of J�In in such a way as to mitigate the dimension increase of the linear systems
from n to n

2 (n − 1). Foremost among these is the observation that the bialternate
product matrix of J is sparse—very sparse—even for n of modest dimension. Table
2 shows the fraction of nonzero entries in J�In for dense J as a function of n. The
sparsity of the bialternate product is a consequence of its relationship to the tensor
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18 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

J⊕ I14 =




FIG. 1. Sparsity pattern in the bialternate product matrix produced by a dense Jacobian matrix

of dimension n = 14. Note wedge diagonal structures comprised of subblocks of increasing size.

sum J⊗ I + I⊗ J which is composed of a dense block-diagonal band of bandwidth n,
and n2(n2 − 1) off-diagonal blocks with (at most) n nonzero entries in each block. A
similar internal structure is inherited by the bialternate product matrix, a conclusion
which is implied by Lemmas 3.2 and 3.3. For example, consider the fate of the mth
lower subdiagonal of J under the bialternate product transformation; that is, consider
the elements of J for which i > j and 1 ≤ m = i− j ≤ (n− 1). From Lemma 3.2, its
image in J�In remains in the lower subtriangle. Inspection of the proof for Lemma
3.3 shows the bound for the difference in row and column indices for elements in the
bialternate product matrix originating from (J)ij ,

ir − ic ≤
1
2
(
i2 − j2 + 3(j − i)

)
=
m

2
(2i−m− 3) ,

is tight and monotonically increasing with i. Thus, the mth subdiagonal of J generates
a wedge or fan-like structure of nonzero entries in J�In which is narrow in the upper-
left corner of the bialternate product matrix and achieves its maximum width as
a result of the (n, n−m)th entry of J. Finally, (9) shows that while the product
matrix is not symmetric, in general, its basic sparsity pattern is. To illustrate these
observations, Figure 1 shows the sparsity pattern generated by a dense Jacobian
matrix of dimension n = 14.

The observation that J�In is band structured and sparse may be exploited by
Hopf path-following algorithms in a variety of ways. For example, the augmented
equation defined above depends upon the singularity of the bialternate product, a
property which is preserved under similarity transformation [9]. Thus, (14) may be
replaced by

F̃ (y;β) =
(

f(x, α),
det
((

M−1JM
)
�In

) )(20)

where M ≡ M(y;β) is invertible. Naturally, the most desirable choices for M will
be unitary as well. Reduction of J to Hessenberg form by choosing M a product of
Householder matrices is numerically stable and yields a bialternate product which has
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COMPUTING HOPF BIFURCATIONS I 19

a block Hessenberg structure with a subdiagonal bandwidth (n − 2) and a sparsity
structure in the upper triangle as described above. If the Jacobian is reduced to
tridiagonal form, J � In is block tridiagonal. Matrix routines designed for these
(block) banded structures can then be exploited to achieve a corresponding reduction
of computational work.

4. Concluding remarks. The algorithms that we have described for comput-
ing Hopf bifurcations are specifically designed to compute points at which there is a
simple pair of pure imaginary eigenvalues for the Jacobian of a system [10]. We briefly
discuss the extension of the algorithms to ones which seek points of codimension-two
bifurcation. There are three cases which arise from codimension-two conditions on the
linearization of a vector field at an equilibrium, namely, Takens–Bogdanov bifurcation,
double Hopf bifurcation, and simultaneous simple zero and pure imaginary eigenval-
ues. In each case, we seek minimally inflated systems of (n+ 2) equations that locate
the codimension-two bifurcation points. The case of the Takens–Bogdanov bifurca-
tion is easy. In terms of the characteristic polynomial of the Jacobian, one wants the
constant and linear coefficients to vanish. This condition is equivalent to the Jacobian
J having corank-1 and the square of the Jacobian J2 having corank-2. Alternatively,
the Jacobian and the bialternate product of the Jacobian both vanish. These last
criteria are also satisfied at a point with a zero eigenvalue and a pair of imaginary
eigenvalues. Locating points of double Hopf bifurcation is a bit more complex. One
can calculate in terms of polynomial remainder sequences the presence of two pairs of
eigenvalues whose sum is zero. At such a parameter value, the two polynomials re and
ro constructed from the characteristic polynomial have a common quadratic factor.
The coefficients of this polynomial can be computed as subresultants of the Sylvester
matrix of re and ro. In order for the two pairs of roots to be imaginary, the common
quadratic factor of re and ro should have negative real roots. This is easily expressed
as inequalities on the coefficients of the common (monic) factor: it must have positive
coefficients and a positive discriminant. Bialternate product methods for computing
points of multiple Hopf bifurcation are discussed in a forthcoming paper of Govaerts,
Guckenheimer, and Khibnik [11].

In a companion paper [15], we examine the issues relating to implementing Hopf
continuation using the resultant and biproduct formulations and study their perfor-
mance on a suite of example problems of current research interest in neurobiology.
Several algorithms, including the ones based on the Bezout resultant and the bialter-
nate product, are applied to compute curves of Hopf bifurcations in a two-dimensional
parameter space for the following six-dimensional vector field:

ẋ1=−gNaϕ3
2 (x1)x4 (x1 − vna)− 2gCax5

(x1 − vca)
(1 + 2x2) − gKx

4
3 (x1 − vk)

− 2gKCax2
(x1 − vk)
(1 + 2x2) − gAψ

3
2 (x1)x6 (x1 − vk)− gl (x1 − vl),

ẋ2=−0.003
[
x2 − kcax5

(x1 − vca)
(1 + 2x2)

]
,

ẋ3= 0.8
[

(1− x3)ϕ3 (x1)− x3ψ3 (x1)
]
,

ẋ4= 0.8
[

(1− x4)ϕ4 (x1)− x4ψ4 (x1)
]
,

ẋ5=−.042553
[
x1 − φ+ (x1;α5, β5)

]
,

ẋ6= φ+ (x1; γ5, δ5)− x6
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20 J. GUCKENHEIMER, M. MYERS, AND B. STURMFELS

where

ϕ1 (x1) = − (α1 + β1x1)φ− (x1;α1, β1), ψ1 (x1) = 4eγ1+δ1x1 ,

ϕ2 (x1) = ϕ1(x1)(
ϕ1(x1) + ψ1(x1)

) , ψ2 (x1) = φ+ (x1; γ2, δ2),

ϕ3 (x1) = −0.1 (α3 + β3x1)φ− (x1;α3, β3), ψ3 (x1) = 0.125eγ3+δ3x1 ,

ϕ4 (x1) = 0.07eα4+β4x1 , ψ4 (x1) = φ+ (x1; γ4, δ4).

We consider the accuracy and convergence of root-finding algorithms as well as the
number of operations required to compute the curves of Hopf bifurcations. Summa-
rizing our findings, the number of floating point operations required for continuation
of a curve of Hopf bifurcations using an augmentation function based upon the Be-
zout resultant required slightly fewer operations (664,777 flops) than the use of an
algorithm described by Griewank and Reddien [12] based upon a (2n+2)-dimensional
augmentation function (701,244 flops). However, in a test of the convergence of root
finding from “naturally” chosen initial values for parameter values near a point of
double Hopf bifurcation, the method based upon use of the Bezout resultant as an
augmentation function gave more consistent results. Use of the the determinant of
the biproduct as an augmentation function was substantially slower (2,786,163 flops),
but these biproduct calculations did not exploit the sparsity of the biproduct matrix
in computing its determinant.

Acknowledgment. Many of the calculations were performed with the software
package DsTool [2] developed at Cornell University.
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