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Preface

This book grew out of the lecture notes for a graduate course we taught
during the summer semester of 2018 at the Max-Planck Institute (MPI) for
Mathematics in the Sciences in Leipzig, Germany. This was part of the
general lecture series (called Ringvorlesung in German) offered biannually
by the International Max-Planck Research School (IMPRS). The aim of our
course was to introduce the theme of Nonlinear Algebra, which is also the
name of the research group that started at MPI Leipzig in early 2017.

Linear algebra is the foundation of much of mathematics, particularly
applied mathematics. Numerical linear algebra is the basis of scientific com-
puting, and its importance for the sciences and engineering can hardly be
overestimated. The ubiquity of linear algebra has overshadowed the fairly re-
cent growth in the use of nonlinear models across the mathematical sciences.
There has been a proliferation of methods based on systems of multivariate
polynomial equations and inequalities. This expansion is fueled by recent
theoretical advances, development of efficient software, and an increased
awareness of these tools. At the heart of this growing area lies algebraic
geometry, but there are links to many other branches of mathematics, such
as combinatorics, algebraic topology, commutative algebra, convex and dis-
crete geometry, tensors and multilinear algebra, number theory, represen-
tation theory, and symbolic and numerical computation. Application areas
include optimization, statistics, and complexity theory, among many others.

Nonlinear algebra is not simply a rebranding of algebraic geometry. It
represents a recognition that a focus on computation and applications, and
the theoretical underpinnings that this requires, results in a body of inquiry
that is complementary to the existing curriculum. The term nonlinear alge-
bra is intended to capture these trends, and to be more friendly to applied

xi
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xii Preface

scientists. A special research semester with that title, held in the fall of 2018
at the Institute for Computational and Experimental Research in Mathe-
matics (ICERM) in Providence, Rhode Island, explored the theoretical and
computational challenges that have arisen and charted a course for the fu-
ture. This book supports this effort by offering students and researchers a
warm welcome to the theme of nonlinear algebra.

Our presentation is structured into 13 chapters, one for each week in a
semester. Many of the chapters are rather ambitious in that they promise a
first introduction to an area of mathematics that would normally be covered
in a full-year course. But what we offer is really just an invitation. Readers
are encouraged to go further in their studies by exploring other sources. We
think that students will enjoy our presentation. We hope that nonlinear
algebra will encourage them to think critically and deeply, and to question
the historic boundaries between “pure” and “applied” mathematics.

Mateusz Micha�lek and Bernd Sturmfels
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Chapter 1

Polynomial Rings

“Algebra is but written geometry”, Sophie Germain

After a course in linear algebra one often encounters abstract algebra. In
that course one studies algebraic structures such as fields, rings and ideals.
In this first chapter we introduce basics, with a focus on polynomials and
Gröbner bases. We show how to use these for computing invariants of a
polynomial ideal, such as the dimension or degree. The formalism we develop
now will be applied to geometric situations in later chapters.

1.1. Ideals

Our most basic algebraic structure is that of a field. The elements of the field
serve as numbers, also called scalars. We can add, subtract, multiply and
divide them. It is customary to denote fields by the letter K, for the German
word Körper. Our favorite field is the set K = Q of rational numbers.
Another important field is the set K = R of real numbers. In practice, these
two fields are very different. Numbers in Q can be manipulated by exact
symbolic computation, whereas numbers in R are approximated by floating
point representations and manipulated by numerical computation.

Other widely used fields are the set of complex numbers C and the finite
field Fq with q elements. If K is not algebraically closed then we write K for
its algebraic closure. This is the smallest field in which every nonconstant
polynomial with coefficients in K has a root. For instance, Q and Fq are
the algebraic closures of the two fields above. Another important example is
the field of rational functions Q(t). Its algebraic closure Q(t) is contained
in the field of Puiseux series, denoted by C{{t}}, which is also algebraically

1
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2 1. Polynomial Rings

closed. The elements of C{{t}} are formal expressions
∑∞

a=a0
cat

a
m , where m

is a fixed positive integer, a0 is an integer and ca ∈ C. The fields Q(t) and
C{{t}} may be unfamiliar to many of our readers. Their importance will be
seen in Chapter 7, when we pass from classical algebra to tropical algebra.

In this section we study the ring of polynomials in n variables x1, . . . , xn
with coefficients in our field K. This polynomial ring is denoted by K[x] =
K[x1, . . . , xn]. If the number n is small, then we typically use letters without
indices to denote the variables. For instance, we often write K[x],K[x, y],
or K[x, y, z] for the polynomial ring when n = 1, 2, or 3.

Many of the constructions we present work not just for the polynomial
ring K[x] but also for an arbitrary commutative ring R with unit 1. We
allow 1 = 0, i.e. R as a set may contain just one element 0. For the most
part, the reader may assume R = K[x]. But it would not hurt to peruse
a standard textbook on abstract algebra and look up the axioms of a ring
and the formal definitions of commutative and unit. Important examples of
commutative rings are the integers Z, the polynomial ring over the integers
Z[x], and the quotient of a polynomial ring by an ideal. The latter will be
discussed soon.

The polynomial ring K[x] is an infinite-dimensional K-vector space. A
distinguished basis of this vector space consists of the monomials xa =
xa11 xa22 · · ·xann . There is one monomial for each nonnegative integer vector
a = (a1, a2, . . . , an) ∈ Nn. Every polynomial f ∈ K[x] is written uniquely
as a finite K-linear combination of monomials:

f =
∑
a

ca x
a.

The degree of f is the maximum of the quantities |a| = a1 + · · ·+ an where
ca �= 0. For polynomials of degree 1, 2, 3, 4, 5 and 6 we use the words linear,
quadratic, cubic, quartic, quintic and sextic. These can be adjectives or
nouns. It is also common to use the term quadric for a quadratic polynomial.

For example, the following is a cubic polynomial in n = 3 variables:

(1.1) f = det

⎛⎝1 x y
x 1 z
y z 1

⎞⎠ = 2xyz − x2 − y2 − z2 + 1.

The zero set of f is a surface in R3. It consists of all points at which the rank
of the 3 × 3 matrix in (1.1) decreases. It has four singular points, namely
the points (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1). These points
are the common zeros in R3 of the cubic f and its three partial derivatives

∂f

∂x
= 2yz − 2x ,

∂f

∂y
= 2xz − 2y ,

∂f

∂z
= 2xy − 2z.
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1.1. Ideals 3

These are the points at which the rank of the 3×3 matrix in (1.1) equals 1.
The formal definition of singular points will appear at the end of Section 2.1.

Figure 1.1. A cubic surface with four singular points.

Figure 1.1 illustrates the cubic surface {f = 0}. However, the picture
is drawn in a different coordinate system. Namely, we divide each of the
three coordinates by 1

3(1 − x − y − z) and clear denominators to get g =

8x3 + 6x2y + 6x2z + · · · − 3z + 1. Figure 1.1 shows the part of the surface
{g = 0} that lies in the box −1.5 < x, y, z < 1.5. This change of coordinates
amounts to applying a projective transformation to our surface. From the
vantage point of projective geometry, to be adopted in Section 2.2, it is
natural to regard two varieties as being the same if they differ by a projective
transformation. We therefore assert, from now on, that Figure 1.1 shows the
surface {f = 0}. This will serve as a running example throughout the book.

Definition 1.1. All rings in this book are commutative and have a unit 1.
An ideal in such a ring R is a nonempty subset I of R such that

(a) if f ∈ R and g ∈ I, then fg ∈ I;

(b) if f, g ∈ I, then f + g ∈ I.

If R = K[x] then an ideal I is a nonempty subset of K[x] that is closed
under taking linear combinations with polynomial coefficients. An alterna-
tive definition is as follows: A subset I of a ring R is an ideal if and only if
there exists a ring homomorphism φ : R → S whose kernel kerφ = φ−1(0)
is equal to I. For instance, if R = Z then the set I of even integers is an
ideal. It is the kernel of the ring homomorphism Z → Z/2Z = {0, 1} that
takes an integer to either 0 or 1, depending on its parity.

Ideals in a ring play the same role as normal subgroups in a group. They
are the subobjects used to define quotients. Consider the quotient of abelian
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4 1. Polynomial Rings

groups R/I. Its elements are the congruence classes f + I modulo I. The
axioms (a) and (b) in Definition 1.1 ensure that the following identities hold:

(1.2) (f + I) + (g + I) = (f + g) + I and (f + I)(g + I) = fg + I.

Proposition 1.2. If I ⊂ R is an ideal, then the quotient R/I is a ring.

Given any subset F of a ring R, we write 〈F〉 for the smallest ideal
containing F . This is the ideal generated by F . If R = K[x] then the ideal
〈F〉 is the set of all polynomial linear combinations of finite subsets of F .

Proposition 1.3. If I and J are ideals in a ring R, then the following
subsets of R are ideals as well: the sum I + J , the intersection I ∩ J , the
product IJ , and the quotient (I : J). The latter two subsets of R are defined
as follows:

IJ = 〈 fg : f ∈ I, g ∈ J 〉 and (I : J) =
{
f ∈ R : fJ ⊆ I

}
.

Proof. The product IJ is an ideal by definition. For the others one checks
that conditions (a) and (b) hold. We shall carry this out for the ideal
quotient (I : J). To show (a), suppose that f ∈ R and g ∈ (I : J). We have

(fg)J = f(gJ) ⊂ fI ⊂ I.

For (b), suppose f and g are in (I : J). We have

(f + g)J ⊂ fJ + gJ ⊂ I + I = I.

This implies f + g ∈ (I : J). We have shown that (I : J) is an ideal. �

The Euclidean algorithm works in the polynomial ring K[x] in one vari-
able x over a field K. This implies that K[x] is a principal ideal domain
(PID), i.e. every ideal I in K[x] is generated by one element. That generator
can be uniquely factored into irreducible polynomials.

Unique factorization of polynomials also holds when the number of vari-
ables satisfies n ≥ 2. We say that the polynomial ring K[x] is a unique
factorization domain (UFD). However, K[x] is not a PID when n ≥ 2. For
instance, for n = 2, the ideal 〈x1, x2〉 is not principal. But let’s first go back
to the univariate case in order to illustrate the operations in Proposition 1.3.

Example 1.4 (n = 1). Consider the following two ideals in Q[x]:

I = 〈x3 + 6x2 + 12x+ 8 〉 and J = 〈x2 + x− 2 〉.

We compute the four ideals in Proposition 1.3. For this, it helps to factor:

I = 〈 (x+ 2)3 〉 and J = 〈 (x− 1)(x+ 2) 〉.
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1.1. Ideals 5

The four new ideals are

I ∩ J = 〈 (x− 1)(x+ 2)3 〉, IJ = 〈 (x− 1)(x+ 2)4 〉,
I + J = 〈x+ 2 〉, I : J = 〈 (x+ 2)2 〉.

We see that arithmetic in Q[x] is just like arithmetic in the ring of integers Z.

A nonzero element f in a ring R is called

• a nilpotent if fm = 0 for some positive integer m;

• a zero divisor if there exists 0 �= g ∈ R such that gf = 0.

A ring R is called an integral domain if it has no zero divisors and 1 �= 0 in
R. For instance, the set {0} is a ring but not an integral domain.

We examine these properties for the quotient ring R/I where I is an
ideal in R. Properties of the ideal I correspond to properties of the ring
R/I. This correspondence is summarized in the following table:

Property Definition The quotient ring R/I
I is maximal No other proper ideal contains I is a field
I is prime fg ∈ I ⇒ f ∈ I or g ∈ I is an integral domain
I is radical (∃s : f s ∈ I) ⇒ f ∈ I has no nilpotent elements
I is primary fg ∈ I and g �∈ I ⇒ (∃s : f s ∈ I) zero divisors are nilpotent

Maximal, prime and primary ideals are proper. In other words, the ring R
itself is an ideal in R, but it is neither maximal, nor prime, nor primary.

Example 1.5. The ideal I = 〈x2 + 10x + 34, 3y − 2x − 13〉 is maximal in
the polynomial ring R[x, y]. The field R[x, y]/I is isomorphic to the field
of complex numbers C = R[i]/〈i2 + 1〉. One isomorphism is obtained by
sending i =

√
−1 to 1

13(x+ 5y). The square of that expression is −1 mod

I. The principal ideal J = 〈x2 + 10x+ 34〉 is prime, but it is not maximal.
The quotient R[x, y]/J is an integral domain. It is isomorphic to C[y].

Examples for the other two classes of ideals are given in the next proof.

Proposition 1.6. We have the following implications for an ideal I in R:

I maximal ⇒ I prime
⇒ I radical,
⇒ I primary.

None of these implications is reversible. However, every ideal that is both
radical and primary is prime. Every intersection of prime ideals is radical.

Proof. The first implication holds because there are no zero divisors in a
field. To see that prime implies radical, we take g = f s−1 and use induction
on s. That prime implies primary is clear. To prove that every radical
primary ideal is prime, assume fg ∈ I and f �∈ I. Then, as I is primary, we
have gs ∈ I for some s ∈ N. As I is radical, we conclude that g ∈ I.
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6 1. Polynomial Rings

To see that no implication is reversible, we consider the following three
ideals in the polynomial ring R[x, y] with n = 2 variables:

• I = 〈x2 〉 is primary but not radical;

• I = 〈x(x− 1) 〉 is radical but not primary;

• I = 〈x 〉 is prime but not maximal.

The last statement holds since intersections of radical ideals are radical. �

We now revisit the surface in Figure 1.1 from the perspective of ideals.

Example 1.7 (n = 3). We consider the ideal generated by the partial
derivatives of the cubic f = 2xyz − x2 − y2 − z2 + 1. This is the ideal

I =
〈 ∂f
∂x

,
∂f

∂y
,
∂f

∂z

〉
= 〈 yz − x , xz − y , xy − z 〉 ⊂ R[x, y, z].

The cubic f is not in this ideal because every polynomial in I has zero con-
stant term. The ideal I is radical because we can write it as the intersection
of five maximal ideals. Namely, using a computer algebra system, we find

(1.3)
I = 〈x,y, z〉 ∩ 〈x− 1, y − 1, z − 1〉 ∩ 〈x− 1, y + 1, z + 1〉

∩ 〈x+ 1, y − 1, z + 1〉 ∩ 〈x+ 1, y + 1, z − 1〉.
This is a primary decomposition of I, as discussed in detail in Chapter 3.

The cubic f lies in the last four maximal ideals. Their intersection equals
I+ 〈f〉. The zero set of the radical ideal I+ 〈f〉 consists of the four singular
points on the surface seen in Figure 1.1. The Chinese Remainder Theorem
for rings implies that the quotient ring is a product of fields. Namely, we have
an isomorphism R[x, y, z]/I � R×R×R×R×R. It takes each polynomial
modulo I to its residue classes modulo the intersectands in (1.3).

1.2. Gröbner Bases

Every ideal has many different generating sets. There is no canonical notion
of a basis for an ideal. For instance, the set F = {x6 − 1, x10 − 1, x15 − 1}
minimally generates the ideal 〈x − 1〉 in the polynomial ring Q[x] in one
variable. Of course, the singleton {x− 1} is a preferable generating set for
that ideal. Recall that every ideal in Q[x] is principal, since we here have
n = 1. The Euclidean algorithm transforms the set F into the set {x− 1}.

Here is a certificate for the fact that x−1 is in the ideal generated by F :
x5 · (x6 − 1) − (x5 + x) · (x10 − 1) + 1 · (x15 − 1) = x− 1.

Such identities can be found with the extended Euclidean algorithm. Please
google this. Finding certificates for ideal membership when n ≥ 2 is a harder
problem. This topic comes up when we discuss Hilbert’s Nullstellensatz in
Chapter 6. In this section we introduce the basics of computing with ideals.
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1.2. Gröbner Bases 7

Gaussian elimination is familiar from linear algebra. It gives a process
for manipulating ideals that are generated by linear polynomials. For exam-
ple, the following two ideals are identical in the polynomial ring Q[x, y, z]:

〈 2x+ 3y + 5z + 7, 11x+ 13y + 17z + 19, 23x+ 29y + 31z + 37 〉
= 〈 7x− 16, 7y + 12, 7z + 9 〉.

Undergraduate linear algebra taught us how to transform the three gener-
ators on the left into the simpler ones on the right. This is the process
of solving a system of linear equations. In our example, the three linear
equations have a unique solution, namely the point

(
16
7 ,−

12
7 ,−

9
7

)
in R3.

We next introduce Gröbner bases. The framework of Gröbner bases
offers practical methods for computing with ideals in a polynomial ring
K[x] in n variables. Here K is a field whose arithmetic we can compute.
Implementations of Gröbner bases are available in many computer algebra
systems. We strongly encourage readers to experiment with these tools.

Informally, we can think of computing Gröbner bases as a version of
the Euclidean algorithm for polynomials in n ≥ 2 variables, or as a version
of Gaussian elimination for polynomials of degree ≥ 2. Gröbner bases for
ideals are fundamental to nonlinear algebra, just like Gaussian elimination
for matrices is fundamental to linear algebra. The premise of this book is
that nonlinear algebra is the next step after linear algebra.

We identify the set Nn of nonnegative integer vectors with the monomial
basis of the polynomial ring K[x]. The coordinatewise partial order on Nn

corresponds to divisibility of monomials. To be precise, we have a ≤ b in
the poset Nn if and only if the monomial xa divides the monomial xb.

Theorem 1.8 (Dickson’s Lemma). Any infinite subset of Nn contains a
pair {a,b} that satisfies a ≤ b.

Corollary 1.9. For any nonempty setM⊂ Nn, its subset of coordinatewise
minimal elements is finite and nonempty.

Proof. The fact that the subset is nonempty follows by induction on n.
The subset is finite by Dickson’s Lemma. �

Proof of Theorem 1.8. We proceed by induction on n. The statement
is trivial for n = 1. Any subset of cardinality at least 2 in N contains a
comparable pair. Suppose now that Dickson’s Lemma has been proved for
n−1, and consider an infinite subsetM of Nn. For each i ∈ N letMi denote
the set of all vectors a ∈ Nn−1 such that (a, i) ∈ M. If some Mi is infinite
then we are done by the induction hypothesis. Hence we may assume that
each Mi is a finite subset of Nn−1 and that Mi �= ∅ for infinitely many i.

Consider the (possibly infinite) subset
⋃∞

i=0Mi of N
n−1. We claim that

the subset of its minimal elements with respect to the coordinatewise order
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8 1. Polynomial Rings

is finite. This is clear when
⋃∞

i=0Mi is finite. Otherwise, by the induction
hypothesis we may apply Corollary 1.9 to this subset. Hence, there is always

an index j such that all minimal elements are in the finite set
⋃j

i=0Mi. Pick
any b ∈ Mk for k > j. Since the element b must be greater than or equal
to some minimal element, there exists an index i with i ≤ j < k and an
element a ∈ Mi with a ≤ b. We have (a, i) ≤ (b, k) in M. �

Definition 1.10. Consider a total ordering ≺ of the set Nn. We write a � b
if a ≺ b or a = b. The ordering ≺ is a monomial order if for all a,b, c ∈ Nn,

• (0, 0, . . . , 0) � a;

• a � b implies a+ c � b+ c.

This gives a total order on monomials in K[x]. Three standard examples are

• the lexicographic order: a ≺lex b if the leftmost nonzero entry of
b− a is positive. This ordering is important for elimination.

• the degree lexicographic order: a ≺deglex b if either |a| < |b|, or
|a| = |b| and the leftmost nonzero entry of b− a is positive.

• the degree reverse lexicographic order: a ≺revlex b if either |a| < |b|,
or |a| = |b| and the rightmost nonzero entry of b− a is negative.

All three orders satisfy x1 � x2 � · · · � xn, but they differ on monomi-
als of higher degree. We recommend that the reader list the 10 quadratic
monomials for n = 4 in each of the three orderings above.

Throughout this book we specify a monomial order by giving the name
of the order and how the variables are sorted. For instance, we might say:
“let ≺ denote the degree lexicographic order on K[x, y, z] given by y ≺ z ≺
x”. Other choices of monomial orders are obtained by assigning positive
weights to the variables; see [10, Exercise 11 in §2.4]. We also note that any
monomial order is a refinement of the coordinatewise partial order on Nn:

if xa divides xb, then a � b.

Remark 1.11. Fix a monomial order ≺ and letM be any nonempty subset
of Nn. Then M has a unique minimal element with respect to ≺. To show
this, we apply Dickson’s Lemma as in Corollary 1.9. Our setM has a finite,
nonempty subset of minimal elements in the componentwise order on Nn.
This finite subset is linearly ordered by ≺. We select its minimal element.

We now fix a monomial order ≺. Given any nonzero polynomial f ∈
K[x], its initial monomial in≺(f) is the ≺-largest monomial xa among those
that appear in f with nonzero coefficient. To illustrate this for the orders
above, let n = 3 with variable order x � y � z: Fix the polynomial f =
x2+xz2+y3. Then in≺lex

(f) = x2, in≺deglex
(f) = xz2 and in≺revlex

(f) = y3.
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1.2. Gröbner Bases 9

For any ideal I ⊂ K[x], we define the initial ideal of I with respect to a
given monomial order ≺ as follows:

in≺(I) = 〈 in≺(f) : f ∈ I\{0} 〉.
This is a monomial ideal, i.e. it is generated by a set of monomials. A priori,
this generating set is infinite. However, it turns out that we can always
choose a finite subset that suffices to generate this monomial ideal.

Proposition 1.12. Fix a monomial order ≺. Every ideal I in the polyno-
mial ring K[x] has a finite subset G such that

in≺(I) = 〈 in≺(f) : f ∈ G 〉.
Such a finite subset G of I is called a Gröbner basis for I with respect to ≺.

Proof. Suppose no such finite set G exists. Then we can create a list of
infinitely many polynomials f1, f2, f3, . . . in I such that none of the initial
monomials in≺(fi) divides any other initial monomial in≺(fj). This would
be a contradiction to Dickson’s Lemma (Theorem 1.8). �

We next show that every Gröbner basis actually generates its ideal.

Theorem 1.13. If G is a Gröbner basis for an ideal I in K[x], then I = 〈G〉.

Proof. Suppose that G does not generate I. Among all polynomials f in the
set I\〈G〉, there exists an f whose initial monomial xb = in≺(f) is minimal
with respect to ≺. This follows from Remark 1.11. Since xb ∈ in≺(I), there
exists g ∈ G whose initial monomial divides xb, say xb = xc · in≺(g). Now,
f − xcg is a polynomial with strictly smaller initial monomial. It lies in I
but does not lie in the ideal 〈G〉. This contradicts our choice of f . �

Corollary 1.14 (Hilbert’s Basis Theorem). Every ideal I in the polynomial
ring K[x] is finitely generated.

Proof. Fix any monomial order ≺. By Proposition 1.12, the ideal I has a
finite Gröbner basis G. By Theorem 1.13, the finite set G generates I. �

Gröbner bases are not unique. If G is a Gröbner basis of an ideal I with
respect to a monomial order ≺, then so is every other finite subset of I that
contains G. In that sense, Gröbner bases differ from the bases we know from
linear algebra. The issue of minimality and uniqueness is addressed next.

Definition 1.15. Fix I and ≺. A Gröbner basis G is reduced if the following
two conditions hold:

(a) The leading coefficient of each polynomial g ∈ G is 1.

(b) For distinct g, h ∈ G, no monomial in g is a multiple of in≺(h).
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10 1. Polynomial Rings

In what follows we fix an ideal I ⊂ K[x] and a monomial order ≺.

Theorem 1.16. The ideal I has a unique reduced Gröbner basis for ≺.

Proof idea. We refer to [10, §2.7, Theorem 5]. The idea is as follows. We
start with any Gröbner basis G and turn it into a reduced Gröbner basis
by applying the following steps. First we divide each g ∈ G by its leading
coefficient to make it monic, so that (a) holds. We then remove from G all
elements g whose initial monomial is not a minimal generator of in≺(I). For
any pair of polynomials with the same initial monomial, we delete one of
them. Next we apply the division algorithm [10, §2.3] to any nonleading
monomial until there are no more nonleading monomials divisible by any
leading monomial. The resulting set is the reduced Gröbner basis. �

Let S≺(I) be the set of all monomials xb that are not in the initial ideal
in≺(I). We call these xb the standard monomials of I with respect to ≺.

Theorem 1.17. The set S≺(I) of standard monomials is a basis for the
K-vector space K[x]/I.

Proof. The image of S≺(I) in K[x]/I is linearly independent because every
nonzero polynomial f whose image is zero in K[x]/I lies in the ideal I. Any
such f has at least one monomial, namely in≺(f), that is not in S≺(I).

We next prove that S≺(I) spans K[x]/I. Suppose not. Then there
exists a monomial xc which is not in the K-span of S≺(I) modulo I. We
may assume that xc is minimal with respect to the monomial order ≺. Since
xc is not in S≺(I), it lies in the initial ideal in≺(I). Hence there exists h ∈ I
with in≺(h) = xc. Each monomial in h other than xc is smaller with respect
to ≺, so it lies in the K-span of S≺(I) modulo I. Hence xc lies in the K-span
of S≺(I) modulo I. This is a contradiction. �

The most well-known tool for computing Gröbner bases is Buchberger’s
algorithm [10, §2.7]. Variants of this algorithm are implemented in all ma-
jor computer algebra systems. The algorithm takes as its input a monomial
order ≺ and a finite set F of polynomials in K[x]. The output is the unique
reduced Gröbner basis G for the ideal I = 〈F〉 with respect to ≺. Experi-
menting with such an implementation is strongly recommended.

In what follows we present some examples of input-output pairs (F ,G)
for n = 3. Here we take the lexicographic monomial order with x � y � z.

Example 1.18. A computer algebra system, such as Maple, Mathematica,
Magma, Macaulay2, or Singular, transforms the input F ⊂ Q[x, y, z] into
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1.2. Gröbner Bases 11

its reduced Gröbner basis G. The initial monomials are always underlined:

• For n = 1, computing the reduced Gröbner basis means computing
the greatest common divisor of the input polynomials:
F = {x3−6x2−5x−14, 3x3+8x2+11x+10, 4x4+4x3+7x2−x−2},
G = {x2 + x+ 2}.

• For linear polynomials, running Buchberger’s algorithm amounts
to Gaussian elimination. For F = {2x+ 3y + 5z + 7, 11x+ 13y +
17z+19, 23x+29y+31z+37}, the reduced Gröbner basis is found
to be G = {x− 16

7 , y +
12
7 , z +

9
7}.

• The input F = {xy − z, xz − y, yz − x} yields the output G =
{x − yz, y2 − z2, yz2 − y, z3 − z}. There are precisely five stan-

dard monomials: S≺(I) = {1, y, z, yz, z2}. The number five also
occurred in Example 1.7, where we saw that F has five zeros in C3.

• Let the input be the curve in the (y, z)-plane parametrized by the
two cubics (x3 − 4x, x3 + x − 1) in one variable x. We write this
as F = {y − x3 + 4x, z − x3 − x + 1}. The Gröbner basis has the
implicit equation of this curve as its second element: G = {x +
1
5y+

1
5z−

1
5 , y

3−3y2z−3y2+3yz2+6yz+28y−z3−3z2+97z+99 }.

• Let z be the sum of x = 3
√
7 and y = 4

√
5. We encode this in the

set F = {x3 − 7, y4 − 5, z − x− y}. The real number z = 3
√
7 + 4

√
5

is algebraic of degree 12 over Q. Its minimal polynomial is the first
element in the Gröbner basis G = {z12 − 28z9 − 15z8 + 294z6 −
1680z5 + 75z4 − 1372z3 − 7350z2 − 2100z + 2276, . . .}.

• The elementary symmetric polynomials F = {x+ y+ z, xy+ xz+
yz, xyz} have the reduced Gröbner basis G = {x + y + z, y2 +

yz + z2, z3 }. There are six standard monomials. The quotient
Q[x, y, z]/I is the regular representation of the symmetric group S3.

For each of the six ideals above, what is the reduced Gröbner basis for the
degree lexicographic order? What are the possible initial monomial ideals?

Many such examples boil down to the fact that lexicographic Gröbner
bases are useful for eliminating variables. We shall see this in Theorem 4.5.

In general, the choice of monomial order can make a huge difference in
the complexity of the reduced Gröbner basis, even for two input polynomials.

Example 1.19 (Intersecting two quartic surfaces in projective 3-space P3).
A random homogeneous polynomial of degree 4 in n = 4 variables has 35
monomials. Consider the ideal I generated by two such random polynomials.
If ≺ is the degree reverse lexicographic order, then the reduced Gröbner basis

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



12 1. Polynomial Rings

G consists of 5 elements of degree up to 7. If ≺ is the lexicographic order,
then G consists of 150 elements of degree up to 73.

Naturally, one uses a computer to find the 150 polynomials above. Many
computer algebra systems offer an implementation of Buchberger’s algo-
rithm for Gröbner bases. We reiterate that readers are strongly encouraged
to experiment with a computer algebra system while studying this book.

For an introduction to Buchberger’s algorithm and many further details
regarding Gröbner bases, we refer to the textbooks by Cox-Little-O’Shea
[10], Greuel-Pfister [23] and Kreuzer-Robbiano [30]. In later chapters we
shall freely use concepts from this area, such as S-polynomials and Buch-
berger’s criterion. After all, our book is nothing but an “invitation”.

1.3. Dimension and Degree

The two most important invariants of an ideal I in a polynomial ring K[x]
are its dimension and its degree. We shall define these invariants, starting
with the case of monomial ideals. In this section we focus on combinatorial
aspects. The geometric interpretation will be presented in Chapter 2.

Definition 1.20 (Hilbert function). Let I ⊂ K[x] be a monomial ideal.
The Hilbert function hI takes nonnegative integers to nonnegative integers.
The value hI(q) is the number of monomials of degree q not belonging to I.

A convenient way to represent a function N → N is by its generating
function. This is a formal power series with nonnegative integer coefficients.
The generating function for the Hilbert function is called the Hilbert series.

Definition 1.21 (Hilbert series). Let I ⊂ K[x] be a monomial ideal. We
fix a formal variable z. The Hilbert series of I is the generating function

HSI(z) =
∞∑
q=0

hI(q)z
q.

We begin with the zero ideal I = {0}. We count all monomials in K[x].

Example 1.22. The Hilbert series of the zero ideal is the rational function

HS{0}(z) =
1

(1− z)n
=

∞∑
q=0

(
n+ q − 1

n− 1

)
zq.

The number of monomials of degree q in n variables is hI(q) =
(n+q−1

n−1

)
.

Note that the Hilbert function h{0}(q) is a polynomial of degree n− 1 in q.
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1.3. Dimension and Degree 13

We next consider the case of a principal ideal.

Example 1.23. Let I = 〈xa11 · · ·xann 〉, where
∑n

i=1 ai = e. We must count
monomials of degree q that are not divisible by the generator of I. To do this,
we count all monomials and then subtract those that are in I. This yields

HSI(z) =
1− ze

(1− z)n
=

∞∑
q=0

[(
n+ q − 1

n− 1

)
−
(
n+ q − e− 1

n− 1

)]
zq.

The second binomial coefficient is zero when q < e. For all q ≥ e, the Hilbert
function hI(q) =

(
n+q−1
n−1

)
−
(
n+q−e−1

n−1

)
is a polynomial in q of degree n− 2.

The highest-order term of this polynomial is found to be e
(n−2)!q

n−2.

Our third example concerns ideals generated by two monomials:

Example 1.24. Fix an ideal I = 〈m1,m2〉 in K[x], where mi is a monomial
of degree ei for i = 1, 2. We count the monomials in I of degree q by

(1) computing the number of monomials divisible by m1,

(2) adding the number of monomials divisible by m2, and

(3) subtracting the number of monomials divisible by both m1 and m2.

Step (3) concerns monomials that are divisible by the least common multiple
m12 = lcm(m1,m2). Let e12 denote the degree of m12. The Hilbert series is

HSI(z) =
1− ze1 − ze2 + ze12

(1− z)n
.

Therefore, the Hilbert function is an alternating sum of binomial coefficients:

hI(q) =
(
n+q−1
n−1

)
−
(
n+q−e1−1

n−1

)
−
(
n+q−e2−1

n−1

)
+
(
n+q−e12−1

n−1

)
.

This expression agrees with a polynomial in q, provided q ≥ e12.

Theorem 1.25. The Hilbert series of a monomial ideal I ⊂ K[x] is

(1.4) HSI(z) =
κI(z)

(1− z)n
,

where κI(z) is a polynomial with integer coefficients and κI(0) = 1. There
exists a polynomial HP in one unknown q of degree ≤ n− 1, known as the
Hilbert polynomial of the ideal I, such that HP(q) = hI(q) for all values of
the integer q that are sufficiently large.

Proof. We prove this result by counting monomials. This is done using
the inclusion-exclusion principle, as hinted at in the three examples above.
Let m1,m2, . . . ,mr be the monomials that minimally generate I. For any
subset τ of the index set {1, 2, . . . , r}, we write mτ for the least common
multiple of the set {mi : i ∈ τ}, and we set eτ = degree(mτ ). This includes
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14 1. Polynomial Rings

the empty set τ = ∅, for which m∅ = 1 and e∅ = 0. The desired numerator
polynomial (1.4) can be written as alternating sums of 2r powers of z:

κI(z) =
∑

τ⊆{1,2,...,r}
(−1)|τ | · zeτ .

The cases r = 0, 1, 2 were seen above. The general case is inclusion-exclusion.
Note that κI ∈ Z[z] with κI(0) = 1. By regrouping the terms of (1.4),

(1.5) hI(q) =
∑

τ⊆{1,2,...,r}
(−1)|τ |

(
n+ q − eτ − 1

n− 1

)
.

This is a polynomial for q � 0. More precisely, the Hilbert function hI(q)
equals the Hilbert polynomial HPI(q) for all q that exceed e{1,2,...,r}. This
bound is the degree of the least common multiple of all generators of I. �
Remark 1.26. The inclusion-exclusion principle carried out in the proof
of Theorem 1.25 is a powerful idea, but it also hints at possible simplifica-
tions. We wrote the numerator polynomial κI(z) and the Hilbert polynomial
HPI(q) as alternating sums of 2r terms. However, in most applications r is
much larger than n, and the vast majority of terms will cancel each other.
Doing the correct bookkeeping leads us to the topic of minimal free resolu-
tions of monomial ideals. This is a main theme in a subject area known as
combinatorial commutative algebra. Yes, please google this.

Example 1.27. Let n = 2 and consider the monomial ideal

I = 〈x〉 ∩ 〈y〉 ∩ 〈x, y〉r+1 = 〈xry, xr−1y2, xr−2y3, . . . , x2yr−1, xyr〉.
Our formula for κI involves 2r terms. After cancellations, only 2r remain:

κI(z) = 1 − rzr+1 + (r − 1)zr+2.

The Hilbert polynomial is the constant HP(q) ≡ 2. This is also the value of
the Hilbert function hI(q) for q > r. Note that hI(q) = q + 1 for q ≤ r.

Definition 1.28 (Dimension and degree). Let I be a monomial ideal and
write

HPI(q) =
g

(d− 1)!
qd−1 + lower-order terms in q.

If the Hilbert polynomial HP is nonzero, the dimension of I is d and the
degree of I is g. Here g is a positive integer. If HPI(q) ≡ 0 then we say
that I is 0-dimensional. In this case, K[x]/I is a finite-dimensionalK-vector
space. We define the degree of I to be the dimension of that vector space.

Remark 1.29. The fact that g is a positive integer is a result in combina-
torics. The proof is omitted here, but we revisit this theme in Chapter 13.
From the inclusion-exclusion formulas above, one can show that the numer-
ator of the Hilbert series factors as κI(z) = λI(z) · (1−z)n−d, where λI(z) is
also a polynomial with integer coefficients. The degree of I equals g = λI(1).
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1.3. Dimension and Degree 15

Remark 1.30. It may seem artificial to define dimension and degree by
distinguishing between the cases where the Hilbert polynomial is zero or
not. However, if the zero polynomial has degree −1, then the two definitions
are compatible. Furthermore, given any ideal I in K[x], the degree of Ĩ in
K[x, z], with one extra variable z but the same generators as I, remains the
same. Hence, we could equivalently define the degree of I by adding z and
extracting the leading coefficient of HPĨ(q). This operation increases the
dimension by 1.

Example 1.31. Let I be a principal ideal as in Example 1.23, generated by a
monomial of degree e > 0. Then the dimension of I is n−1 and the degree of
I is e. This follows from the formula we gave for the Hilbert function, which
reveals that the Hilbert polynomial satisfies HP(I) = e

(n−2)!q
n−2 + O(qn−3).

Example 1.32. Let n = 2m be even and consider the monomial ideal

I = 〈x1x2, x3x4, x5x6, . . . , x2m−3x2m−2, x2m−1x2m 〉.
The dimension of I equals m and the degree of I equals 2m. It is instructive
to work out the Hilbert series and the Hilbert polynomial of I for m = 3, 4.

We now consider an arbitrary ideal I in K[x]. We no longer assume
that I is generated by monomials. Let ≺ be any degree-compatiblemonomial
order. This means that |a| < |b| implies a ≺ b for all a and b.

Lemma 1.33. The number of standard monomials of I of degree q is inde-
pendent of the choice of monomial order ≺, provided ≺ is degree-compatible.

Proof. Let K[x]≤q denote the vector space of polynomials of degree ≤ q.
We write I≤q := I ∩ K[x]≤q for the subspace of polynomials that lie in the
ideal I. Also, consider the set of standard monomials of degree at most q:

S≺(I)≤q = S≺(I) ∩ K[x]≤q.

We claim that S≺(I)≤q is a K-vector space basis for the quotient space
K[x]≤q/I≤q. This set is linearly independent since no K-linear combination
of S≺(I) lies in I. But, given that ≺ is degree-compatible, it also spans. This
is because taking the normal form of a polynomial modulo the Gröbner basis
can never increase the total degree. �

Definition 1.34. Let I be an arbitrary ideal in a polynomial ring K[x].
The function from N to N that associates to q the dimension of the quotient
space dimK[x]≤q/I≤q is known as the affine Hilbert function. We also define
the Hilbert function hI of I to be the Hilbert function of the initial ideal
in≺(I), where ≺ is any degree-compatible term order. For all q ∈ N we have

hI(q) = hin≺(I)(q) = |S≺(I)≤q| − |S≺(I)≤q−1|
= dim(K[x]≤q/I≤q)− dim(K[x]≤q−1/I≤q−1).
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16 1. Polynomial Rings

This is the number of standard monomials whose degree equals q. This num-
ber is independent of ≺, thanks to Lemma 1.33. Thus the affine Hilbert func-
tion q �→

∑q
j=0 hI(j) is determined by the Hilbert function and vice versa.

We also define the Hilbert series and the Hilbert polynomial to be the
series and polynomial of any degree-compatible initial monomial ideal.
Namely, we set

(1.6) HSI(z) := HSin≺(I)(z) and HPI(q) := HPin≺(I)(q).

We similarly define the affine Hilbert series and the affine Hilbert polynomial
of I. These can also be defined by the formulas in (1.6), assuming we take
in≺(I) in a polynomial ring K[x, y] that has one more dummy variable y.

We define the dimension and degree of I as the dimension and degree of
in≺(I). These concepts are now well-defined, thanks to Lemma 1.33.

Example 1.35. Let I be a principal ideal generated by a polynomial f of
degree e in n ≥ 1 variables. The Hilbert series of I is HSI(q) = 1−qe

(1−q)n .

The affine Hilbert series equals 1−qe

(1−q)n+1 . The dimension of I is n− 1. The

degree of I is e. This follows from Example 1.31 because the singleton
{f} is a Gröbner basis and its initial monomial in≺(f) has degree e in any
degree-compatible monomial order ≺.

Remark 1.36. The prefix “affine” for the Hilbert function is important in
order to distinguish affine varieties from projective varieties. We will discuss
these geometric concepts in Chapter 2. Later on in the book, and elsewhere
in algebraic geometry, it will usually be clear from the context whether the
affine version or the projective version is meant. However, in this chapter
we want to be precise and make that distinction.

What we have accomplished in this section is to give a purely combi-
natorial definition of the dimension and degree of an ideal I. In Chapter 2
we shall see that this notion of dimension agrees with the intuitive one for
the associated algebraic variety V(I). Namely, a variety has dimension 0 if
and only if it consists of finitely many points. The number of these points is
counted by the degree of the corresponding radical ideal. Likewise, the ideal
of a curve has dimension 1, the ideal of a surface has dimension 2, etc. The
degree is a measure of how curvy these shapes are. One can show that a
prime ideal has degree 1 if and only if it is generated by linear polynomials.

Example 1.37. Fix the polynomial ring K[x, y, z] and let f = xyz − x2 −
y2 − z2 + 1 as in (1.1). The ideal 〈f〉 has dimension 2 and degree 3. Let I
be the ideal generated by its partial derivatives, as in Example 1.7. Then I
has dimension 0 and degree 5. The ideal I + 〈f〉, whose zeros are the four
singular points of the surface in Figure 1.1, has dimension 0 and degree 4.
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Exercises

(1) Prove that an ideal in a polynomial ring K[x] is principal if and only if
its reduced Gröbner basis is a singleton.

(2) Draw the plane curve {f = 0} that is defined by polynomial f = 5x3 −
25x2y + 25y3 + 15xy − 50y2 − 5x+ 25y − 1. What do you observe?

(3) For n = 2, define a monomial order ≺ such that (2, 3) ≺ (4, 2) ≺ (1, 4).

(4) Let n = 2 and fix the monomial ideals I = 〈x, y2〉 and J = 〈x2, y〉.
Compute the ideals I+J , I ∩J , IJ and I3J4 = IIIJJJJ . How many
minimal generators does the ideal I123J234 have?

(5) The radical rad(I) of an ideal I in a ring R is the smallest radical ideal
containing I. Prove that the radical of a primary ideal is prime.

(6) For ideals in a polynomial ring K[x], prove that
• the radical of a principal ideal is principal;
• the radical of a monomial ideal is a monomial ideal.

(7) Show that the following inclusions always hold and are strict in general:

rad(I) rad(J) ⊆ rad(IJ) and in≺(rad(I) ) ⊆ rad(in≺(I)).

(8) Using Gröbner bases, find the minimal polynomials of 5
√
6 + 7

√
8 and

5
√
6− 7

√
8. This is analogous to the fifth item in Example 1.18.

(9) Find the implicit equation of the curve {(x5− 6, x7− 8) ∈ R2 : x ∈ R}.
(10) Study the ideal I = 〈x3 − yz, y3 − xz, z3 − xy〉. Is it radical? If not,

find rad(I). Regarding I as a system of three equations, what are its
solutions in R3 ?

(11) For the ideals I and rad(I) in the previous exercise, determine the
Hilbert function, Hilbert series, Hilbert polynomial, dimension, and de-
gree. Find these same objects and quantities preceded by the adjective
“affine” where possible.

(12) Find an ideal in Q[x, y] whose reduced Gröbner basis (in lexicographic
order) has cardinality 5 and there are precisely 19 standard monomials.

(13) Let I be the ideal generated by the n elementary symmetric polynomials
in x1, . . . , xn. Pick a monomial order and find the initial ideal in≺(I).

(14) Let X be a 2× 2 matrix whose entries are variables. Let Is be the ideal
generated by the entries of the matrix power Xs for s = 2, 3, 4, . . . .
Investigate these ideals. What are the dimension and the degree of Is?
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18 1. Polynomial Rings

(15) A symmetric 3×3 matrix has seven principal minors: three of size 1×1,
three of size 2×2, and one of size 3×3. Does there exist an algebraic
relation between these minors? Hint: Use the lexicographic Gröbner
basis.

(16) Prove that if in≺(I) is radical then I is radical. Does the converse hold?

(17) Determine all straight lines that lie on the cubic surface in Figure 1.1.

(18) Identify maximal, prime, radical and primary ideals in the ring R = Z.

(19) Let I be the ideal generated by all 2 × 2 minors of a 2 × n matrix
filled with 2n variables. What are the degree and dimension of I for
n = 2, 3, 4?

(20) Find a prime ideal I of degree 3 and dimension 1 in n variables for n = 2
and n = 3. In the latter case, we require further that hI(1) = 3.

(21) Compute the dimension and degree of the ideal generated by two random
homogeneous polynomials of degree 4 in n = 4 variables, as in Example
1.19. Next drop the hypothesis “homogeneous” and redo.
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Chapter 2

Varieties

“Geometry is but drawn algebra”, Sophie Germain

A variety is the set of solutions to a system of polynomial equations in
several unknowns. Varieties are the main objects of study in algebraic ge-
ometry. They are the geometric counterparts of ideals in a polynomial ring.
The latter live on the algebraic side. We distinguish between affine varieties
and projective varieties. The former arise from arbitrary polynomials, while
the latter are the zero sets of systems of homogeneous polynomials. Geome-
ters prefer projective varieties because of their nice properties, explained in
some of the results we present, such as Theorem 2.22. But, for starters,
readers are invited to peruse the pictures shown in this chapter.

2.1. Affine Varieties

Algebraic varieties represent solutions to systems of polynomial equations.
Fix a field K and consider polynomials f1, . . . , fk in K[x] = K[x1, . . . , xn].
The variety defined by these polynomials is the set of their common zeros:

V(f1, . . . , fk) :=
{
p = (p1, . . . , pn) ∈ Kn : f1(p) = · · · = fk(p) = 0

}
.

Different sets of polynomials can define the same variety. For instance,

(2.1) V(f1, f2) = V(f2
1 , f

5
2 ) = V(f1, f1 + f2).

Instead of thinking about the polynomials themselves, we consider the ideal
they generate, I = 〈f1, . . . , fk〉, and we define V(I) := V(f1, . . . , fk). A
subset of Kn is a variety if it has the form V(I) for some ideal I ⊂ K[x].

19
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20 2. Varieties

Given any ideal I ⊂ K[x], by Hilbert’s Basis Theorem (Corollary 1.14), we
can always find a finite set of generators. By Exercise 1, the definition of
V(I) does not depend on the choice of generators of I.

Remark 2.1. Two distinct ideals may define the same variety. Consider two
nonconstant homogeneous polynomials f1 and f2. Then the ideal 〈f2

1 , f
5
2 〉 is

strictly contained in the ideal 〈f1, f2〉 = 〈f1, f1+ f2〉. But these two distinct
ideals define the same variety in (2.1). Chapter 6 on the Nullstellensätze
deals with this issue for fields K that are either algebraically closed, like the
complex numbersK = C, or real closed, like the real numbersK = R. In the
latter case, our variety is unchanged if we pass to the principal ideal 〈f2

1+f2
2 〉.

Algebraic geometry is the study of the geometry of varieties. As in many
branches of mathematics, one considers the basic, irreducible building blocks
for the objects of study. A variety V(I) is called irreducible if it cannot be
written as a finite union of proper subvarieties in Kn. In symbols, V(I) is
irreducible if and only if for any ideals J and J ′ in K[x] we have

V(I) = V(J) ∪ V(J ′) =⇒ V(I) = V(J) or V(I) = V(J ′).

Any variety can be decomposed into irreducible varieties. The relevant al-
gebraic tool is primary decomposition. This is the topic of the next chapter.

Example 2.2. Consider the ideal I = 〈xy〉 ⊂ R[x, y]. Its variety V(I) =
V(x)∪V(y) is a union of two lines in the plane R2. Hence, this is a reducible
variety. Algebraically, I is the intersection of two larger ideals 〈x〉 and 〈y〉.
Their respective varieties V(x) and V(y) are irreducible. This follows from
Proposition 2.3 because 〈x〉 and 〈y〉 are prime ideals.

For any field K, we can turn Kn into a topological space, using the
Zariski topology . In this topology, the closed sets are the varieties in Kn.
In this setting, the definition of an irreducible variety coincides with the
definition of an irreducible topological space. If K = R or K = C, then we
also have the classical Euclidean topology on Kn. The Euclidean topology
is much finer than the Zariski topology because it has many more open sets.

Our aim is to relate geometric properties of the variety V(I) to algebraic
properties of the ideal I. Consider a maximal ideal of the form M :=
〈x1−p1, . . . , xn−pn〉 in K[x]. The point (p1, . . . , pn) lies in V(I) if and only
if I ⊆M . Given any subset W ⊂ Kn, we consider the set of all polynomials
that vanish on W . This set is a radical ideal, denoted by

I(W ) :=
{
f ∈ K[x] : f(p) = 0 for all p ∈W

}
.

The set W is a variety if and only if W = V(I(W )). Furthermore, given any
two varieties V and W in Kn, we have V ⊆W if and only if I(W ) ⊆ I(V ).
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2.1. Affine Varieties 21

Proposition 2.3. A variety W ⊂ Kn is irreducible if and only if its ideal
I(W ) is prime.

Proof. Suppose I(W ) is prime and W = V(J) ∪ V(J ′). If W �= V(J) then
there exists f ∈ J and v ∈ W such that f(v) �= 0. Therefore, f �∈ I(W ).
For any g ∈ J ′ we know that fg vanishes on V(J) and V(J ′), hence on W .
Thus fg ∈ I(W ). As I(W ) is prime, we have g ∈ I(W ). We conclude that
J ′ ⊆ I(W ). By Exercise 2, this implies W = V(I(W )) ⊆ V(J ′).

For the converse, suppose that W is irreducible and fg ∈ I(W ). Hence

W = W ∩ V(fg) = W ∩ (V(f) ∪ V(g)) = (W ∩ V(f)) ∪ (W ∩ V(g)).

Without loss of generality, W = W ∩V(f). This means that W ⊆ V(f) and
hence f ∈ I(W ). This argument proves that I(W ) is a prime ideal. �

Remark 2.4. Proposition 2.3 relates geometry and number theory. Prime
ideals in a polynomial ring K[x] correspond to irreducible varieties, while
prime ideals in the ring of integers Z correspond to prime numbers (or zero).
Hence, irreducible varieties are to varieties what primes are to integers.

Prime ideals appear in applications as the constraints satisfied by a gen-
erative model. Such models are common in statistics. One considers a vector
θ of real parameters and expresses probabilities (or moments of densities) as
functions of θ. These functions are often polynomials or rational functions
in θ, and one is interested in finding all valid polynomial constraints among
the probabilities in question. Geometrically, this corresponds to comput-
ing the closure (in the Zariski topology) of the image of a polynomial map.
This closure is an irreducible variety, so its ideal is prime by Proposition 2.3.
That prime ideal represents the image and hence the generative model. It
is computed as the kernel of the ring map dual to the polynomial map.

Example 2.5. We give an illustration for the most basic generative model,
namely the independence model for two random variables X and Y , each
with state space {1, . . . ,m}. Possible probability distributions ofX (resp. Y )
are represented by vectors (p1, . . . , pm) (resp. (q1, . . . , qm)) in Rm with non-
negative entries that sum to 1. The probability that X (resp. Y ) is in
state i is pi (resp. qi). The joint random variable (X,Y ) has m2 states.
Under the assumption thatX and Y are independent, all possible probability

distributions of (X,Y ) belong to a variety in Rm2
.

Consider the map that takes a distribution of X and a distribution of Y
to the joint distribution of (X,Y ). This map extends to a polynomial map

(2.2)
Rm × Rm → Rm2

,
(p1, . . . , pm, q1, . . . , qm) �→

(
p1q1, p1q2, . . . , p1qm, p2q1, . . . , pmqm

)
.
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22 2. Varieties

In statistics one incorporates the requirement
∑

pi =
∑

qi = 1. We do so
by restricting the domain. We write the resulting map explicitly for m = 3:

(2.3)
(p1, p2, q1, q2) �→

(
p1q1, p1q2, p1(1−q1−q2), p2q1, p2q2,

p2(1−q1−q2), (1−p1−p2)q1, (1−p1−p2)q2, (1−p1−p2)(1−q1−q2)
)
.

In Exercise 9 we ask for the variety and ideal given by the image of this map.

The algebraic study of the independence model was a point of departure
for the development of algebraic statistics. In that subject one employs
prime ideals to represent statistical models. This allows the use of algebraic
invariants (such as dimension and degree) and algebraic methods (such as
Gröbner bases) for data analysis and inference. Readers wishing to learn
more about algebraic statistics should consult the textbooks [19,43,57].

We have argued that prime ideals are basic building blocks in algebraic
geometry and its applications. This motivates the following definition on
the algebra side. We now take R to be any commutative ring with unity.

Definition 2.6. The spectrum of the ring R is the set of proper prime ideals:

Spec(R) :=
{
p � R : p is a prime ideal

}
.

This set is a topological space with the Zariski topology. Its closed sets are
the varieties V(I) =

{
p ∈ Spec(R) : I ⊆ p

}
where I is any ideal in R.

The spectrum of the ring remembers a lot of information: all prime
ideals and how they are related geometrically. Our most basic example of a
ring R is the polynomial ringK[x] in n variables over a fieldK. Its spectrum
is a topological space with a very rich structure. Among the points of the
spectrum are the usual ones, written (p1, . . . , pn) ∈ Kn. These correspond
to maximal ideals of the form 〈x1−p1, . . . , xn−pn〉. However, the spectrum
Spec(K[x]) has points corresponding to all irreducible subvarieties of Kn,
not just those of dimension 0. In this manner, Kn is a proper subset of
Spec(K[x]). Exercise 4 asks you to prove that the Zariski topology on Kn

is the one induced from the Zariski topology on SpecK[x]. An example of
a point in SpecR[x] that is not of the form 〈x− a〉 for a ∈ R is the maximal
ideal 〈x2 + 1〉. Indeed, R[x]/〈x2 + 1〉 � C by identifying x with i.

Our primary example is the coordinate ring R = K[W ] of a subvariety
W ⊂ Kn. By definition, this is the quotient ring R = K[x]/J where J =
I(W ) is the radical ideal in the polynomial ring K[x] that encodes the
variety. We interpret elements of K[W ] as polynomial functions on W .
Indeed, as elements of J vanish on W , the evaluation of f ∈ K[W ] at a point
of W does not depend on the choice of the representative polynomial. The
prime ideals in K[W ] are in natural bijection with the prime ideals in K[x]
that contain J . Geometrically, these correspond to irreducible subvarieties
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2.1. Affine Varieties 23

of W . Among these are the points (p1, . . . , pn) ∈ W , which correspond to
maximal ideals 〈x1− p1, . . . , xn− pn〉 in K[W ], just like before. The Zariski
topologies on W and Spec(K[W ]) are compatible, in the sense of Exercise 4.

Example 2.7. A paraboloid in R3 is defined by the equation z = x2 + y2.
Its ideal is J = 〈z − x2 − y2〉. The coordinate ring of the paraboloid equals
R[x, y, z]/J . Elements of this ring represent polynomial functions on the
paraboloid. What are the Gröbner bases of J and what are the standard
monomials? What about the dimension and the degree?

We briefly discuss the points in SpecR[x, y, z]/J . Recall that this is a
topological space with the Zariski topology. First, there are the classical real
points on the surface. Second, there are pairs of complex conjugate points
satisfying the equation z = x2 + y2. Next, there are all irreducible curves
lying on the surface, one for each nonmaximal prime ideal of R[x, y, z] that
strictly contains J . This includes curves that lie on the surface but have no
real points, such as that for 〈z2+1, x2+y2−z〉. Finally, there is the generic
point corresponding to the zero ideal in R[x, y, z]/J or equivalently to the
ideal J in R[x, y, z]. Note that the closure of the generic point is the whole
space SpecR[x, y, z]/J .

Remark 2.8. We continue the analogy from Remark 2.4 in order to provide
geometric intuition for the Chinese Remainder Theorem. Fix n1, . . . , nk ∈
Z that are pairwise coprime. In the language of varieties, the fact that
〈ni〉 + 〈nj〉 = Z is equivalent to the fact that the associated varieties do
not intersect—recall that the ideal of the intersection is the sum of ideals.
For each ni we are given a residue class ai ∈ Z/niZ, i.e. a function on the
variety associated to ni. As these varieties do not intersect, we expect to
obtain a unique function on their union that restricts to the given functions
on each piece.

The union of varieties is given by the intersection of the ideals, which

corresponds to the product N =
∏k

i=1 ni. This is precisely the Chinese
Remainder Theorem: There exists a unique a ∈ Z/NZ such that a =
ai mod ni. We can push the analogy further. If the varieties intersect
(i.e. the numbers are not pairwise coprime), then we expect the global func-
tion to exist if and only if the functions associated to the varieties agree
on intersections.

Consider two varieties W1 and W2 and a map f : W1 → W2 between
them. Given a function on the target variety, say g : W2 → K, we define its
pull-back to be the function f∗(g) := g◦f from W1 to K. Of course, here we
are interested in polynomial functions, so g is an element of the ring K[W2].
Likewise, we want the pullback f∗(g) to be an element of the ring K[W1].
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24 2. Varieties

Hence, given any polynomial map f : W1 → W2 between varieties, we
would like the map f∗ : K[W2]→ K[W1] to be a well-defined ring morphism.
In Exercise 5 you will show that any ring morphism K[W2] → K[W1] in-
duces a continuous map of topological spaces SpecK[W1] → SpecK[W2].
Hence, we may think of maps between varieties as homomorphisms between
their rings of functions in the opposite direction. In the language of category
theory, our star ∗ is a contravariant functor from varieties to rings. It fur-
nishes an equivalence of categories between irreducible affine varieties (over
K) and finitely generated K-algebras that are integral domains.

Example 2.9. The following ring homomorphism is an isomorphism:

f∗ : R[x, y]/〈y − x2〉 → R[z], x �→ z, y �→ z2.

It arises from a map of varieties that takes a line to a parabola in the plane:

f : R → V(y − x2) ⊂ R2 , λ �→ (λ, λ2).

Under this parametrization of the parabola, the coordinate functions x and
y on R2 pull back to the functions z and z2 on the line R. We use the letter
λ in the parametrization for extra clarity. It can get confusing when you
pass to the map of spectra, a continuous map in the Zariski topologies.

Remark 2.10. Textbooks in algebraic geometry usually define affine va-
rieties to be SpecR, with its Zariski topology, for any (commutative, with
unity) ring R. Here R need not be a finitely generated algebra over a field
K. For us, in this book, affine varieties are zero sets of polynomials in K[x].

The dependence on the field is crucial for geometric properties of maps.
Consider the squaring map K1 → K1, λ �→ λ2, from the affine line to itself.

• If K = C then the squaring map is surjective.

• If K = R then its image is the set of nonnegative real numbers. In
both cases, the Zariski closure of the image is the whole line.

• If K = Fp and p �= 2, then the image is a proper subset of K1. It
is Zariski closed. What if we replace K by its algebraic closure?

• In each case, is the map Spec(K[x])→ Spec(K[x]) surjective?

From the perspective of spectra, it is instructive to study the ideal I =
〈x2 + 1〉 in K[x]. Exercise 6 asks the reader to give a description of V(I).

Example 2.11. Consider the three ideals I1 = 〈x2 − y2〉, I2 = 〈x2 − 2y2〉
and I3 = 〈x2 + y2〉 in K[x, y]. The first one is not prime for any K. The
second one is not prime for K = R or C, but it is a prime ideal when K = Q.
The ideal I3 is not prime for K = C, but it is a prime ideal for K = Q or R.
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2.1. Affine Varieties 25

We prove the last statement. Suppose fg ∈ I3 ⊂ R[x, y]. This means
that fg = (x2+y2)·h, where f, g, h ∈ R[x, y]. By the Fundamental Theorem
of Algebra, every homogeneous polynomial p in two variables has a unique
(up to multiplication by constants) representation as a product of linear
forms with complex coefficients p =

∏
lj . If p has real coefficients, then the

decomposition is stable under complex conjugation: For every j, either lj
has real coefficients or lj must also appear in the decomposition. We have
x2 + y2 = (x+ iy)(x− iy). In the ring C[x, y], without loss of generality, we
may assume (x + iy)|f . But then, by the above argument, also (x − iy)|f .
So f = (x+ iy)(x− iy)

∏
i l̃i for l̃i ∈ C[x, y]. However,

∏
i l̃i is stable under

conjugation, i.e. defines a real polynomial. So x2 + y2 divides f in R[x, y].

Many models arise in applications as images of polynomial maps. It is
important to note that the image need not be closed if K = C. Also, it need
not be dense in its Zariski closure if K = R. This will be discussed in detail
in Chapter 4. The following definition plays an important role.

Definition 2.12. A subset A ⊂ Kn is constructible if it can be described
as a finite union of differences of varieties. Over the real numbers, a subset
B ⊂ Rn is semialgebraic if it can be described as the set of solutions of a
finite system of polynomial inequalities (which may involve both ≥ and >)
or a finite union of such.

Remark 2.13. Every constructible subset of Rn is semialgebraic, but the
converse is not true. See below. The complement of a constructible set is
constructible, and the complement of a semialgebraic set is semialgebraic.

Example 2.14. Take n = 2 and K = R. The singleton V(x, y) = {(0, 0)}
is constructible and hence so is R2\{(0, 0)} = V(0)\V(x, y). The orthant
R2
≥0 = {(u, v) ∈ R2 : u ≥ 0 and v ≥ 0} is semialgebraic. But it is not

constructible, because the Euclidean closure of a constructible set is a va-
riety. Its complement B = {(u, v) ∈ R2 : u < 0 or v < 0} is also semi-
algebraic. Can you write B as the set of solutions to a finite list of polyno-
mial inequalities?

The two most important invariants of a variety V inKn are its dimension
and its degree. We defined these in Section 1.3, via the ideal I(V ) ⊂ K[x].

Example 2.15. Let V be a linear subspace of Kn. The dimension of V as a
variety equals its dimension as a linear space. The degree of V is 1. Indeed,
we may assume I(V ) = 〈x1, . . . , xs〉 where s = n − dim(V ). The result
follows from Example 1.22 because K[x]/〈x1, . . . , xs〉 � K[xs+1, . . . , xn].

Here is an important fact: If V1 � V2 then dim(V1) ≤ dim(V2). The
inequality is strict if V2 is irreducible. The latter is not easy to prove from
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26 2. Varieties

the definition we gave. It helps to consult a textbook in commutative algebra
for alternative (but equivalent) definitions of dimension, e.g. [3, Chapter 11].

Here is a method for computing the dimension of a variety V(I). Note
that V(in≺(I)) is a union of linear spaces in Kn, for any monomial order ≺.

(1) Compute a Gröbner basis of I and hence the monomial ideal in≺(I).

(2) Letm1, . . . ,mk be monomials that generate in≺(I). Find the small-
est (with respect to cardinality) set of variables S = {xi1 , . . . , xid}
such that every generator mj is divisible by some variable in S.

(3) The difference n− d is the dimension of both V(in≺(I)) and V(I).

The second most important invariant of a variety V = V(I) ⊂ Kn is the
degree. We now provide its geometric interpretation. A general subspace
L ⊂ Kn with dim(L) + dim(V ) = n intersects V in finitely many points.
For K algebraically closed, their number is the degree of V . Indeed, this
follows inductively from the fact that a general linear polynomial is not a
zero divisor in K[V ]. Adding it to I changes the Hilbert function in such
a way that the dimension drops by 1 and the degree remains the same. If
dim(I) = 0 and I is radical, then the degree is the cardinality of V = V(I).

The following theorem is a generalization of the above considerations to
polynomials of arbitrary degree. Its first appearance, for two polynomials
in two variables, goes back to Isaac Newton.

Theorem 2.16 (Bézout’s Theorem). Let f1, . . . , fk be general polynomi-
als in n variables of degrees d1, . . . , dk > 0. For I = 〈f1, . . . , fk〉 we have
dim(I) = n− k and degree(I) = d1 · · · dk.

As the reader may have guessed, the crucial point is that each fi is not
a zero divisor in the ring K[x]/〈f1, . . . , fi−1〉. For the complete proof we
refer to [47, §IV.2]. Note that we always have dim〈f1, . . . , fk〉 ≥ n − k.
This follows from Krull’s Principal Ideal Theorem, a result in commutative
algebra. If equality holds, then the ideal I is called a complete intersection.

Some points on a variety are singular, such as the four nodes of the cubic
surface in Figure 1.1. Our aim is now to discuss singularities in general. We
start with the case of a hypersurface defined by one polynomial f ∈ K[x].

A point p ∈ V(f) is singular if all partial derivatives vanish, i.e. ∂f
∂xi

(p) = 0
for i = 1, . . . , n. Thus the singular locus of f is the variety of the ideal
〈f, ∂f

∂x1
, . . . , ∂f

∂xn
〉. If this ideal has no zeros, we say that the hypersurface

V(f) is smooth. Smoothness is a very important condition. It tells us that
our variety can be locally approximated by a linear space: the tangent space.

Let I = 〈f1, f2, . . . , fk〉 ⊂ K[x] be a prime ideal defining an irreducible
variety Y = V(I) in Kn of dimension d. A point p ∈ Y is singular if and
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2.2. Projective Varieties 27

only if the rank of the Jacobian matrix at p is smaller than the codimension:

rank

⎛⎜⎜⎜⎜⎝
∂f1
∂x1

. . . ∂f1
∂xn

∂f2
∂x1

. . . ∂f2
∂xn

...
. . .

...
∂fk
∂x1

. . . ∂fk
∂xn

⎞⎟⎟⎟⎟⎠(p) < n− d.

This definition does not depend on the choice of ideal generators (Exercise
14). A point that is not singular is called smooth. For a smooth point the
inequality above turns into an equality. The singular locus Sing(Y ) is a
variety in Kn. It may be defined by the ideal that is the sum of I and the
ideal generated by (n − d) × (n − d) minors of the Jacobian matrix. The
kernel of this matrix evaluated at the point p is, by definition, the vector
space parallel to the tangent space to Y at p. The definition of smooth point
assures that the tangent space and the variety have the same dimension.

If a variety X ⊂ Kn is reducible and p lies in more than one irreducible
component of X, then p is singular in X. If p belongs to a unique irreducible
component Y , then p is singular in X if and only if it is singular in Y .

By Bézout’s Theorem we know the dimension and degree of an ideal I
that is generated by general polynomials. Bertini’s Theorem tells us that
such an ideal I is prime and its variety V(I) is smooth, provided dim(I) > 0.

2.2. Projective Varieties

The geometric objects we have encountered so far are subsets of Kn. We
called them varieties, but more precisely we should refer to them as affine
varieties. We now change our perspective by focusing on projective varieties.

We start by recalling the construction of the projective space P(V ) over a
vector space V of dimension n+1. The points of P(V ) are the lines through
the origin in V . The symbol [a0 : · · · : an] ∈ P(V ) denotes the line that
also goes through the point (a0, . . . , an) ∈ V . Here not all the ai are zero.
Formally, P(V ) is the set of equivalence classes [v], for v ∈ V \{0}, modulo
the relation v1 ∼ v2 if and only if v1 = λv2 for some λ ∈ K∗ = K\{0}. For
the topological construction over R or C, we note that each line through the
origin in V intersects the unit sphere at precisely two points. Thus P(V )
may be regarded as a quotient of the sphere, identifying antipodal points.
In particular, P(V ) is compact in the classical topology. On the subset
Si = {ai �= 0} of P(V ) we rescale to get ai = 1. We thus identify Si with
Kn. The affine spaces Si = Kn cover Pn := P(V ), because every point has
some nonzero coordinate. We obtain Pn by glueing these n+ 1 charts.
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28 2. Varieties

As before, we are interested in functions on Pn. The first problem is
that it does not make sense to evaluate a polynomial f on [a0 : · · · : an],
as the result depends on the choice of representative. It may even happen
that f vanishes for some representatives but not for others. Thus, we focus
on homogeneous polynomials, i.e. linear combinations of monomials of fixed
degree. If f is a homogeneous polynomial of degree d in n + 1 variables,
then f(ta0, . . . , tan) = tdf(a0, . . . , an). In particular, f vanishes on some
representative of [a0 : · · · : an] if and only if it vanishes on any representative.

Let f1, . . . , fk be homogeneous polynomials in K[x]. They are allowed
to have distinct degrees. We define the associated projective variety

V(f1, . . . , fk) =
{
[a0 : · · · : an] ∈ P(V ) : fi(a0, . . . , an) = 0 for i = 1, . . . , k

}
.

An ideal I in K[x] is homogeneous if it is generated by homogeneous poly-
nomials f1, . . . , fk. Just like in the affine case, we set V(I) := V(f1, . . . , fk).

Remark 2.17. Homogeneous ideals contain (many) nonhomogeneous poly-
nomials. For instance, 〈x+ y2, y〉 is a homogeneous ideal. See Exercise 11.

For any projective variety X ⊂ Pn one defines the affine cone X̂ over it,
i.e. the variety defined by the same ideal but in V = Kn+1. The dimension
and degree of a projective variety can be defined via its affine cone:

(2.4) dim(X) := dim(X̂)− 1 and degree(X) := degree(X̂).

It is usually preferable to work with projective varieties. Algebraic geometry
is simpler in Pn than in Kn. For instance, parallel lines in K2 do not
intersect, but any two lines in P2 intersect. If X is any projective variety of
degree ≥ 2, then the affine cone X̂ is always singular at the point 0 ∈ V .
However, if this is the only singular point of X̂, then X ⊂ Pn is smooth.

If Y is any variety in Kn, then there is an associated projective variety Ȳ
in Pn, called the projective closure of Y , which is defined via its ideal. If I ⊂
K[x1, . . . , xn] is the ideal of Y , then the ideal Ī of Ȳ lives inK[x0, x1, . . . , xn].
It is generated by the following infinite set of homogeneous polynomials:

(2.5)

{
x
deg(g)
0 · g

(x1
x0

, . . . ,
xn
x0

)
: g ∈ I

}
.

Here is an algorithm for computing the ideal Ī of the projective closure Ȳ .

Proposition 2.18. Let I be an ideal in K[x1, . . . , xn] and let G be its re-
duced Gröbner basis for a degree-compatible monomial ordering. Then Ī is
generated by the homogeneous polynomials in (2.5) where g runs over G.

Proof. Let f = f(x0, x1, . . . , xn) be any homogeneous polynomial in Ī.
Suppose G = {g1, g2, . . . , gs}. The dehomogenization f(1, x1, . . . , xn) lies in
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2.2. Projective Varieties 29

I and hence its normal form modulo the Gröbner basis G is zero. This gives
a representation

f(1, x1, . . . , xn) =
s∑

i=1

hi(x1, . . . , xn)gi(x1, . . . , xn),

where deg(higi) ≤ deg(f) for all i. By homogenizing the summands in this
identity we obtain

f(x0, x1, . . . , xn) =
s∑

i=1

x
deg(f)
0 · hi

(x1
x0

, . . . ,
xn
x0

) · gi(
x1
x0

, . . . ,
xn
x0

)
.

Hence, f lies in the ideal generated by the set (2.5) with I replaced by G. �
Corollary 2.19. We fix the degrevlex monomial ordering. The dimension
and degree of an affine variety Y ⊂ Kn are preserved when passing to its
projective closure Ȳ ⊂ Pn:

dim(Ȳ ) = dim(Y ) and degree(Ȳ ) = degree(Y ).

Proof. The initial ideal of Ī and the initial ideal of I have the same gener-
ators. These monomials in x1, . . . , xn determine the dimension and degree.
Note that the ideal Ī belongs to a ring with one more variable which in-
creases the dimension by 1 and does not change the degree. But, by the
definition in (2.4), the dimension of the projective variety is 1 less than that
of the affine cone over it. This implies the corollary. �
Example 2.20. Let I be the ideal generated by xi − xi1 for i = 2, 3, . . . , n.
Then Y = V(I) is a curve of degree n in Kn. For the degree reverse lexi-
cographic monomial order ≺, the reduced Gröbner basis has

(
n
2

)
elements,

and in≺(I) = 〈x1, x2, . . . , xn−1〉2. The ideal Ī is minimally generated by the
2× 2 minors of the 2× n matrix(

x0 x1 x2 · · · xn−1

x1 x2 x3 · · · xn

)
.

The initial monomials of the
(
n
2

)
minors are the antidiagonal products. The

projective variety Ȳ = V(Ī) is the rational normal curve of degree n in Pn.

We now return to discussing desirable properties of projective varieties.

Remark 2.21. IfK = C orK = R, then every projective variety is compact
in the classical topology. Indeed, the projective space Pn is compact, and
every subvariety X is closed in the classical topology. Hence X is compact.
If X is also smooth of dimension d, then X is a compact real manifold, of
dimension d if K = R and of dimension 2d if K = C. Many interesting
manifolds arise in this manner. Well-known examples are the 1-dimensional
complex varieties, which give rise to Riemann surfaces. The case of elliptic
curves corresponding to tori is discussed in Section 2.3.
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30 2. Varieties

One nice property of projective varieties is that their images under poly-
nomial maps are closed. This is known as Chevalley’s Theorem and we will
see the precise statement in Theorem 4.22. Another nice fact about projec-
tive varieties is the following result about their intersections.

Theorem 2.22 ([47, Theorem 6 in Section 6.2]). Fix an algebraically closed
field K. Let X and Y be two projective varieties in the n-dimensional ambi-
ent space Pn, where d1 = dim(X) and d2 = dim(Y ). Then their intersection
X ∩ Y has dimension at least d1 + d2−n. In particular, if d1 + d2 ≥ n then
X ∩ Y is always nonempty.

The hypotheses in this theorem are necessary. Consider the intersection
of two surfaces in P3, where n = 3 and d1 = d2 = 2. Its dimension is at
least d1 + d2 − n = 1. The statement fails in the affine space C3, where we
can take two parallel planes. It also fails in P3 if the field is K = R.

Example 2.23. Consider the two surfaces X = V(x20 + x21 − x22 + x23) and
Y = V(x20 + x21 + x22 − x23) in P3. Over C, their intersection is the union of
four lines, so dim(X∩Y ) = 1 as expected. However, over R, the intersection
consists of two points, so dim(X∩Y ) = 0, which would violate Theorem 2.22.

Many models in the sciences and engineering are given by homogeneous
polynomial equations. Typically, these constraints arise from a construction
familiar from linear algebra. Whenever one encounters such a model, it
makes much sense to regard it as a projective variety. We close this section
with two examples.

Example 2.24 (Nilpotent matrices). An n× n matrix A = (aij) is a point

in a projective space Pn2−1. The set of nilpotent matrices A is an irre-

ducible projective variety X ⊂ Pn2−1. We have dim(X) = n2 − n − 1 and
degree(X) = n!. Indeed, X is a complete intersection. Its prime ideal I(X)
is generated by the coefficients of the characteristic polynomial of A, ex-
cept for the leading coefficient, which is a unit. For instance, if n = 2 then
I(X) = 〈trace(A), det(A)〉.

Example 2.25 (Kalman varieties). In control theory, one is interested in
the set of n×nmatrices A that have an eigenvector in a given linear subspace

of Kn. This set is a projective variety in Pn2−1. For instance, let n = 4 and
consider 4×4 matrices that have an eigenvector with the last two coordinates
equal to zero. This Kalman variety has dimension 13 and degree 4 in P15.
It is defined by the 2× 2 minors of(
a31 a41 a11a31+a21a32+a31a33+a34a41 a11a41+a21a42+a31a43+a41a44
a32 a42 a12a31+a22a32+a32a33+a34a42 a12a41+a22a42+a32a43+a42a44

)
.
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2.3. Geometry in Low Dimensions 31

2.3. Geometry in Low Dimensions

Smooth projective varieties in low dimensions give rise to interesting man-
ifolds. Studying the geometry and topology of these manifolds leads to
insights that are useful also for understanding higher-dimensional scenarios.

We work in projective spaces over the real numbers R and over the
complex numbers C. To distinguish these spaces, we denote them by Pn

R

and Pn
C. We regard both of them as compact real manifolds, of dimensions

n and 2n respectively. Students of topology are encouraged to review the
homology groups of the manifolds Pn

R and Pn
C.

We start with n = 1. The real projective line P1
R is a circle. The complex

projective line P1
C is a sphere, known as the Riemann sphere. Every proper

subvariety of P1
R or P1

C is a finite collection of points defined by a binary form
f(x, y), i.e. a homogeneous polynomial in two variables. For instance, let
f = x11y − 11x6y6 − xy11. The variety V(f) has dimension 0 and degree 12
in P1

C. These 12 points on the Riemann sphere are famous in the history of
geometry and arithmetic. They are the vertices of the icosahedron in Felix
Klein’s Lectures on the Icosahedron. Out of these 12 complex solutions, four
are real. The remaining eight come in four conjugate pairs.

We now move on to n = 2. The real projective plane P2
R is a surface.

However, it cannot be embedded homeomorphically in R3 (only in R4), so it
is impossible to make a good picture. The simplest curve in the projective
plane P2

K is a line L, defined by one linear form in three variables. Of course,
L is a projective line, L � P1

K , so the discussion in the previous paragraph
applies. The complement P2

K\L is the affine plane K2. In particular, this
complement is connected when K = R. The decomposition into L and K2

may be used to give a schematic picture of P2
R. We identify R2 with the

interior of the square. The boundary of the square should represent the line
L. However, we need to identify opposite points of the boundary; this iden-
tification is represented by directed arrows on the boundary as in Figure 2.1.

Figure 2.1. Schematic representation of P2
R.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



32 2. Varieties

Figure 2.2. Six topological ovals in P2
R with shaded interiors. It is

possible to cut out the interior of the lower right oval from the square
and glue together the remaining antipodal points on the boundary. This
shows that the complement of the interior of the oval is the Möbius strip.

For any curve C in P2
C, the complement P2

C\C is connected because C is
a surface in the 4-dimensional manifold P2

C. By contrast, consider a smooth
conic, i.e. a curve of degree 2, C ⊂ P2

R. Then P2
R\C has two connected

components. One is a disk and the other is a Möbius strip (see Figure 2.2).
The former is the inside of C and the latter is the outside of C. A curve D in
P2
R is called a pseudoline if P2

R\D is connected and is called an oval otherwise.
Every oval behaves like a conic in P2

R; it has an inside and an outside.

Theorem 2.26. Let C be a smooth curve of degree d in the projective

plane P2
K . If K = C then C is an orientable surface of genus g = (d−1)(d−2)

2 .
If K = R then C is a curve with at most g + 1 connected components. If d
is even then all components are ovals. If d is odd then one component is a
pseudoline but all others are ovals.

Proof. The first part of the theorem is standard and may be found in many
classical books, including [25, I Ex. 7.2] and [28]. For the statements about
real curves we refer the reader to [6, Chapter 12, §6]. �

Let us illustrate the above theorem for d = 3, i.e. g = 1. For example,
consider a smooth cubic curve given in Weierstrass form, such as

f(x, y, z) = zy2 − x3 + xz2.

Such curves are also known as elliptic curves. We decompose the projective
plane P2

R into a line L given by the equation z = 0 and its complement,
the affine plane A = R2. The cubic has two components: an oval and a
pseudoline. We can see both of them by intersecting C with A, as depicted
in Figures 2.3 and 2.4.
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2.3. Geometry in Low Dimensions 33

Figure 2.3. Real elliptic curve y2 = x3 − x. The connected compo-
nent on the left is an oval. The connected component on the right is a
pseudoline. For a more complete picture see Figures 2.4 and 2.5.

Figure 2.4. The cone zy2 − x3 + xz2 = 0 over an elliptic curve. The
irreducible variety is depicted in orange and blue, representing two con-
nected components in the real projective space. We intersect the cone
with the grey plane given by z = 1. This corresponds to the affine chart.
The red and blue curve C we obtain is exactly the same as in Figure 2.3.

There is an additional point P of the curve that we do not see in Figure
2.3. The point P belongs to the line L. It is given by z = x = 0 and y = 1.
We may consider the surface in R3 that is the affine cone over our curve.
This surface is shown in Figure 2.4.
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34 2. Varieties

Figure 2.5. The cone zy2 − x3 + xz2 = 0 over an elliptic curve, as in
Figure 2.4. The grey sphere represents the projective space P2

R, where
we have to identify the antipodal points. The intersection of the surface
with the sphere has three connected components. When we identify
the antipodal points, the two red connected components become one.
These red components correspond to the oval in P2

R. Indeed, cutting
them out of the sphere separates it into three pieces. After identifying
antipodal points these three pieces become two. The other component,
represented by the thick blue curve, corresponds to a pseudoline. It does
not separate the sphere after identifying antipodal points. The points on
the red and blue curve C in Figure 2.4 correspond to pairs of antipodal
points on the red and blue curve in this picture, with one exception.
The blue curve has one more pair of antipodal points, represented by
the blue dots. Indeed, the line through these points is parallel to the
grey plane in Figure 2.4. This pair of points corresponds to the unique
point of the projective curve that does not belong to the affine chart
given by z = 1. It is given by z = 0, x = 0 and y = 1.

How can we imagine the complex elliptic curve? This is not easy, as the
correct picture of just the affine part would be in C2 � R4. However, there
exists a homeomorphism (but not a polynomial map!) of the complex curve
C with the real topological torus, i.e. the product of two circles, S1 × S1.
It can be described as follows. We fix a point p ∈ C. For any point q ∈ C
consider a path γ from p to q. This is always possible since C is connected
over the complex numbers. To a point q we associate the complex number∫
γ

dx
y . Identifying the complex plane with R2, we obtain a map f : C → R2.

It turns out that f(q) depends on our choice of γ. Indeed, let us choose p
given by z = 1, y = 0 and x = −1. We may choose q = p and γ equal to
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2.3. Geometry in Low Dimensions 35

Figure 2.6. Two pictures showing a real torus that is homeomorphic
to the elliptic curve. The left picture presents the torus as R2/Z2. The
right picture is the familiar figure we know from topology. The two thick
lines on both pictures correspond to the real part of the curve.

the oval depicted in Figure 2.3. The integral
∫
γ

dx
y will be a nonzero real

number λ. Thus f(p) may be equal to any integer multiple of λ. Further,
on the curve C there exists another loop γ′ giving rise to the integral

∫
γ′

dx
y ,

which is a complex number τ . We consider the lattice M in C � R2 whose
elements are the integer combinations aλ + bτ for a, b ∈ Z. We know that
f(p) may be any point in M . Let π : R2 → R2/M be the natural projection.
The map π ◦ f : C → R2/M is now well-defined!

As R2/M may be identified with the torus, we indeed obtain a home-
omorphism C � R2/M . The real part of the curve C is mapped to two
disjoint circles, as shown in Figure 2.6. Indeed, both the oval and the pseu-
doline are circles; they are distinguished only by their embedding into P2

R.

Remark 2.27. We contrast the topological torus mentioned here with the
algebraic torus (C∗)n playing a central role in Chapters 8 and 10. Indeed, a
variety with a dense algebraic torus action will be called toric. The elliptic
curve C is a basic example of a smooth projective variety that is not toric.

Remark 2.28. Elliptic curves made their first appearance in the third cen-
tury. Diophantus of Alexandria asked for, in modern terms, a (positive)
rational point on a specific elliptic curve y(6 − y) = x3 − x. As we argued
above, an elliptic curve has the structure of a group (torus). The geometric
interpretation of this was already well known in the 19th century. Since the
early 20th century, elliptic curves have played a central role in (modern)
number theory (studied mainly over fields of finite characteristic or ratio-
nal numbers). By the end of the 20th century, the group structure (over
fields of finite characteristic!) had started to be used intensively in applied
cryptography.

Example 2.29. Let us consider a cuspidal curve defined by x3 − y2. Over
R it is presented in Figure 2.7 on the left. How can we draw it over C? If
we identify C with R2 we obtain a surface in R4. Indeed,

(x1+ ix2)
3−(y1+ iy2)

2 = 0⇔ x31−3x1x
2
2 = y21−y22 and 3x21x2−x32 = 2y1y2.
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Figure 2.7. Real part of a cuspidal curve.

Hence, interpreted as a surface in R4, the variety is cut out by two polyno-
mials. Although we cannot draw a picture in R4, we can project the given
surface onto R3. The result is the surface presented in Figure 2.7 on the
right, together with the black line, which is the real part.

The surface seems more singular; this is the result of projection. The
original surface in R4 has just one singular point. In Chapter 4 methods for
the computation of projections of algebraic varieties are presented.

Exercises

(1) Prove that the definition of V(I) does not depend on the choice of gen-
erators of I.

(2) (a) Show that J ⊆ I implies V(I) ⊆ V(J).
(b) Show that for any subsets A,B ⊆ Kn, if A ⊆ B then I(B) ⊆ I(A).
(c) Give counterexamples to both opposite implications.

(3) Prove that varieties (in Kn) satisfy the axioms of closed sets.

(4) By identifying the point (p1, . . . , pn) ∈ Kn with the prime ideal 〈x1 −
p1, . . . , xn − pn〉, we view Kn as a subset of SpecK[x]. Show that the
Zariski topology induced from SpecK[x] is the Zariski topology on Kn.

(5) Show that a morphism of rings f : R1 → R2 gives a map f∗ : SpecR2 →
SpecR1, by proving that the preimage of a prime ideal is prime. Show
that the induced map is continuous with respect to the Zariski topology.
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(6) Describe the variety V(I) in the affine line K1 for I = 〈x2 + 1〉 when
K = C,R,Q. Also, describe V(I) ⊂ Spec(K[x]) for each of these fields.

(7) Realize the set of n× n nilpotent matrices as an affine variety. What is
its dimension? What is its degree?

(8) (a) Consider a polynomial f ∈ K[x]. Let D be the (open) set Df =
{p ∈ Kn : f(p) �= 0}. Construct an affine variety V and a polyno-
mial map inducing a bijection V → D.

(b) Realize nondegenerate n× n matrices as an affine variety.

(9) (a) Use (or not) your favorite computer algebra system to determine
the ideal of the image of the map given by formula (2.3). What is
the meaning of the lowest-degree polynomial in this ideal?

(b) Describe the ideal of the image of the map given by formula (2.2).
(c) Generalize the previous point to more (independent) variables, pos-

sibly with different (but finite) numbers of states.

(10) Determine the set of all prime numbers p such that I = 〈x2 − 2y2〉 is a
prime ideal in the polynomial ring Fp[x, y] over the finite field Fp.

(11) Consider a polynomial f =
∑

a cax
a. Its degree-k part is the homoge-

neous polynomial
∑

a:|a|=k cax
a.

(a) Provide an example of a homogeneous ideal generated by nonho-
mogeneous polynomials.

(b) Prove that an ideal I = 〈f1, . . . , fj〉 is homogeneous if and only if
for any i and k the degree-k part of fi belongs to I.

(c) Propose an algorithm that, given a set of generators of I ⊂ K[x],
decides whether I is a homogeneous ideal.

(12) (a) Let I ⊂ K[x] be a monomial ideal. Prove that V(I) is a union of
(some) vector subspaces of Kn spanned by standard basis vectors.

(b) How do you characterize the sets of basis vectors that span a sub-
space belonging to V(I)?

(13) Draw various pseudolines in P2
R, in analogy to Figure 2.2. Topologically,

what is the complement of a pseudoline?

(14) Prove that the rank of the Jacobian matrix does not depend on the
choice of generators of the ideal.

(15) Can you solve the problem of Diophantus of Alexandria in Remark 2.28?
Hint: Consider a tangent line to the elliptic curve at the point (−1, 0).

(16) Extending Example 2.25, determine the Kalman variety of all 6 × 6
matrices that have an eigenvector whose last three coordinates are zero.

(17) Let X ⊂ C4 be the variety defined by two random polynomials of degree
3 in four variables. What do we learn about X from Bézout’s Theorem,
and what do we learn about X from Bertini’s Theorem?
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Chapter 3

Solving and
Decomposing

“Divide et impera”, Roman principle

Solving systems of polynomial equations is a key task in nonlinear al-
gebra. But what does it mean to solve such a system? How should the
solutions be presented? The answers to these questions depend on the di-
mension of the variety of solutions. If the variety is 0-dimensional, then it
consists of finitely many points in Kn and we aim to list each point explic-
itly. If K = R or K = C, then this is done in applications by displaying a
floating point approximation to each of the n coordinates of a solution.

If the solution variety has positive dimension, then it has infinitely many
points and we cannot list them all. In that case, the answer consists of a
description of each irreducible component. Algebraically, this leads us to
the topic of primary decomposition. If the given ideal is not radical, then its
constituents are primary ideals, and we distinguish between minimal primes
and embedded primes. To some readers, these objects may seem unnatural
at first. However, they become quite natural when we interpret multivariate
polynomials as linear partial differential equations with constant coefficients.

3.1. 0-Dimensional Ideals

Let K be a field and consider the polynomial ring K[x] in one variable x.
Every ideal in K[x] is principal, so it has the form I = 〈f〉. The variety V(I)
consists of the zeros of f and is 0-dimensional (unless f = 0). The polyno-

mial f has a unique factorization f =
∏k

i=1 g
ai
i , where each gi is irreducible

39
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40 3. Solving and Decomposing

and the ai are positive integers. The set of solutions decomposes as

V(I) = V(g1) ∪ · · · ∪ V(gk).
On the level of ideals we have the following decomposition as an intersection:

I = 〈g1〉a1 ∩ · · · ∩ 〈gk〉ak .
This primary decomposition remembers the multiplicity ai of each factor gi,
so it contains more information than the irreducible decomposition of V(I).

The decomposition depends on the field K. If K is algebraically closed,
such as K = C, then each factor gi is a linear polynomial gi(x) = x − ui,
where u1, . . . , uk are the zeros of f . If K = R then each gi is either linear or
quadratic. If K = Q then gi can have arbitrarily high degree. In each case,
the quotient ring K[x]/〈gi〉 is a field. It is an algebraic extension of K.

Example 3.1. The polynomial f = x3 − 2x2 + x− 2 ∈ R[x] satisfies

〈f〉 = 〈x− 2〉 ∩ 〈x2 + 1〉.
The first ideal in the intersection corresponds to the real zero 2, while the
second ideal corresponds to the pair of complex zeros i and −i. Such fac-
torizations are easy to find using a computer algebra system when the
given polynomial is not too large. What if we now replace the given f
by g = x3 − 2x2 + x − 1? How does the ideal 〈g〉 decompose in R[x]?
And in C[x]?

Polynomials of degree m in one variable can have up to m zeros. The
number m can be large. Often we are not interested in all the zeros, but
only in specific ones. For instance, we might only be interested in solutions
that are real and positive. This restriction is very important for many
applications, e.g. in statistics where the solutions represent probabilities.

Example 3.2. Let I = 〈xm − x − 1〉, where m ≥ 2. The variety V(I)
consists of m complex numbers, but only one of them is real and positive.
Thus, V(I) ∩ R>0 is a singleton. This follows from Descartes’ rule of signs,
which states that the number of positive real solutions is bounded above by
the number of sign alternations in the coefficient sequence. If m is even then
there is also one negative solution.

In many applications one encounters polynomials whose coefficients de-
pend on parameters. For instance, let ε be an unknown that represents a
small positive real number. Let Q(ε) be the field of rational functions in

that unknown and K = Q(ε) its algebraic closure. Elements in K can be
expressed as series in ε with rational exponents. These are known as Puiseux
series. Expressing in Puiseux series is analogous to floating point expansion
of numbers in R.
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3.1. 0-Dimensional Ideals 41

Example 3.3. The polynomial f = ε2x3+x2+x−ε is irreducible in Q(ε)[x].
It factors into three linear factors, f = ε2(x− u1)(x− u2)(x− u3) in K[x],
where

u1 = −ε−2 + 1 + ε2 + ε3 + 2ε4 + 3ε5 + 5ε6 + 10ε7 + · · · ,
u2 = −1− ε− 3ε3 + 3ε4 − 16ε5 + 32ε6 − 121ε7 + · · · ,
u3 = ε− ε2 + 2ε3 − 5ε4 + 13ε5 − 37ε6 + 111ε7 + · · · .

Each of these three roots is an algebraic number over Q(ε). We have written
them as Puiseux series. If we think of ε as a very small positive quantity,
then u1 ∼ −ε−2, u2 ∼ −ε0 and u3 ∼ ε1. The exponents −2, 0 and 1 tell us
the asymptotic behavior. These exponents are known as tropical solutions;
cf. Chapter 7.

We have seen that solving a polynomial equation f = 0 amounts to
decomposing the principal ideal I = 〈f〉, i.e. presenting it as an intersection
of simpler ideals. The situation is analogous for systems of polynomials in
n ≥ 2 variables, i.e. ideals I ⊂ K[x] where x = (x1, . . . , xn). Suppose now
that K is algebraically closed and assume that V(I) is 0-dimensional. This
means that the quotient ring K[x]/I is a finite-dimensional vector space
over K. By Theorem 1.17, a basis is given by the standard monomials for
a given monomial order. The number of standard monomials is an upper
bound for the cardinality of V(I). Equality holds if and only if I is radical.

In the next section we will decompose our 0-dimensional ideal I as

I =
k⋂

i=1

qi,

where rad(qi) is a prime ideal. Every prime ideal of dimension 0 in K[x] is a
maximal ideal, so each rad(qi) is a maximal ideal. Since K is algebraically
closed, V(qi) is a point in Kn. These points are the solutions to our system.

Example 3.4. Let n = 2 and I = 〈xy, x2− x, y2− y〉. This ideal is radical:
I = 〈x, y〉 ∩ 〈x− 1, y〉 ∩ 〈x, y − 1〉.

The variety of this ideal consists of three points: V(I) = {(0, 0), (1, 0), (0, 1)}.

If the given ideal is not radical, then we cannot express it as an intersec-
tion of maximal ideals. This should not be surprising; already in the case of
one variable, if a root has a multiplicity then we need a power of its ideal.

Example 3.5. Let I = 〈xy, y2 − y, x2y − x2〉. We have the decomposition

I = 〈x, y − 1〉 ∩ 〈x2, y〉.
The varieties of both ideals are points: (0, 1) and (0, 0) respectively. How-
ever, the second ideal remembers additional data. It is not just 〈x, y〉 but
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also indicates a multiplicity of the solution (0, 0). We are now equipped to
measure this multiplicity! The degree of I equals 3. The first ideal in the
decomposition contributes with degree 1, while the second contributes with
degree 2.

We now discuss an example that was seen in Exercise 10 of Chapter 1.

Example 3.6. Fix the field K = Q and I = 〈x3 − yz, y3 − xz, z3 − xy〉 in
K[x, y, z]. This ideal is a nonredundant intersection of 11 distinct ideals:

I = Q ∩ 〈x− 1, y − 1, z − 1〉 ∩ 〈x+ 1, y + 1, z − 1〉 ∩ 〈x+ y, y2 + 1, z − 1〉
∩ 〈x+ 1, y − 1, z + 1〉 ∩ 〈x− 1, y + 1, z + 1〉 ∩ 〈x− y, y2 + 1, z + 1〉

∩ 〈x− 1, y + z, z2 + 1〉 ∩ 〈x+ 1, y − z, z2 + 1〉
∩ 〈y − 1, x+ z, z2 + 1〉 ∩ 〈y + 1, x− z, z2 + 1〉.

The first intersectand is a primary ideal with radical rad(Q) = 〈x, y, z〉:
Q =

〈
x2y, x2z, xy2, xz2, y2z, yz2, x3 − yz, y3 − xz, z3 − xy

〉
.

Each of the other 10 intersectands is a prime ideal. If we replace K by the
complex numbers C, then six of the prime ideals decompose further:

〈x− 1, y + z, z2 + 1〉 = 〈x− 1, y − i, z + i〉 ∩ 〈x− 1, y + i, z − i〉.
We learn that V(I) consists of 17 complex points. Only five are real.

The idea of decomposing a mathematical object into simpler pieces is
important. In the next section we present a theory of decomposing ideals.
We shall express ideals as intersections of simpler ideals. Our point of de-
parture is the following proposition. It shows how algebraic varieties may
be decomposed. This proposition applies to varieties of any dimension.

Proposition 3.7. Any variety in Kn can be uniquely represented as a finite
union of irreducible varieties (pairwise not contained in each other).

Proof. We start by proving the existence of such a decomposition. Any
variety W is either irreducible or a union W1 ∪ V1. In the latter case we
apply the same reasoning to the pieces. For instance, we may write W1

as a union W2 ∪ V2, and so on. We obtain an ascending chain of ideals,
I(W1) ⊆ I(W2) ⊆ · · · . This chain stabilizes by Hilbert’s Basis Theorem.
Thus the decomposition finishes with finitely many irreducible varieties.

Suppose we have two irreducible decompositions of the same variety:

V1 ∪ · · · ∪ Vk = W1 ∪ · · · ∪Ws.

Fix any index i0 in {1, . . . , s}. The identity implies Wi0 =
⋃k

j=1(Vj ∩Wi0).
Since Wi0 is irreducible, there exists an index j0 such that Wi0 = Vj0 ∩Wi0 ,
and hence Wi0 ⊆ Vj0 . But we similarly find that Vj0 ⊆ Wi1 for some
i1 ∈ {1, . . . , k}. We cannot have Wi0 � Wi1 , so Wi0 = Vj0 . Hence, for every
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3.2. Primary Decomposition 43

component Wi0 on the right there is a unique component Vj0 on the left that
is equal to Wi0 . The uniqueness of the decomposition follows. �

3.2. Primary Decomposition

This section develops a generalization of the following two basic facts:

(1) Every integer n > 1 can be uniquely decomposed as a product of
powers of prime numbers:

n = pa11 · · · p
ak
k .

(2) Any variety can be uniquely decomposed as a union of irreducible
varieties. We saw this in Proposition 3.7.

The algebraic notion of an ideal connects the first (number-theoretic)
fact and the second (geometric) fact. Indeed, any integer n can be identified
with the ideal 〈n〉 in the ring Z. The elements of 〈n〉 are the integer multiples
of n. The ideal 〈n〉 is prime in Z if and only if n is a prime number. We can
restate fact (1) in terms of intersections of powers of prime ideals as follows:

(1’) Every nonzero ideal I ⊂ Z has a unique decomposition

I = (I1)
a1 ∩ · · · ∩ (Ik)

ak

where the Ij are prime ideals.

Over an algebraically closed field, we have an identification of varieties with
radical ideals (see Chapter 6). This yields the following restatement of (2):

(2’) Every radical ideal I ⊂ C[x] has a unique decomposition as an
intersection of prime ideals that are pairwise not contained in each
other:

I = p1 ∩ · · · ∩ pk.

These examples suggest that our aim should be to decompose ideals I
in a ring R. Here, a decomposition of I is a presentation as an intersection
of other ideals. At this point, we need to answer the following questions:

(1) What kind of ideals should be allowed in the intersection?

(2) What restrictions should be put on the ring R?

(3) Can we expect the decomposition to be unique?

We start with the first question. The number-theoretic example suggests
that all ideals are intersections of powers of prime ideals. But this is not true.
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Example 3.8. The ideal I = 〈x2, y〉 is not an intersection of powers of
prime ideals in C[x, y]. Indeed, suppose I =

⋂
i p

ai
i . For all i, we have

pi ⊃ I. Hence pi = 〈x, y〉, as this is the only prime ideal containing I. The
ideal

⋂
i〈x, y〉ai would be a power of 〈x, y〉, whereas I is no such power.

The correct constituents are primary ideals. Recall that I is primary if
and only if ab ∈ I and a �∈ I implies bn ∈ I for some n, given any a, b ∈ R.

Next consider question (2): which rings R to take? Clearly, Z and K[x]
share a lot of nice properties. But there is a larger class of rings that works.

Definition 3.9. A ring R is Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
stabilizes, i.e. there exists k such that Ik = Ik+1 = Ik+2 = · · · .

Noetherian rings are named after the German algebraist Emmy Noether.
A hint as to how important they are is given in Exercise 4. Note that Z and
K[x] are Noetherian rings because their ideals are finitely generated. Before
stating our main existence theorem, let us introduce a technical definition.

Definition 3.10. An ideal I in a ring R is irreducible if and only if whenever
I = J1 ∩ J2 for some ideals J1 and J2 in R, we have I = J1 or I = J2.

Theorem 3.11. Let I be an ideal in a Noetherian ring R. Then there exist
primary ideals q1, q2, . . . , qk in R such that

I = q1 ∩ q2 ∩ · · · ∩ qk.

Proof. First we show that every ideal in R is a finite intersection of irre-
ducible ideals. Suppose not, and let I1 be an ideal that cannot be presented
in this way. In particular, it is not irreducible. Thus, I1 = J1 ∩ J2 and each
Ji strictly contains I1. If J1 and J2 are finite intersections of irreducible
ideals, then so is I1. Hence, we may assume that J1 cannot be presented as
such a finite intersection. Let I2 := J1. We have I1 � I2. We repeat the
construction starting with I2 and get an ideal I3 with I1 � I2 � I3, where I3
is not a finite intersection of irreducible ideals. Continuing, we get a chain of
strictly ascending ideals. However, this is not possible in a Noetherian ring.

We next prove that every irreducible ideal q is primary. By replacing
the ring R with R/q, we may assume q = {0}. Suppose ab = 0 and a �= 0.
We must prove that b is nilpotent. Consider the following ascending chain:

{x ∈ R : bx = 0} =: Ann(b) ⊆ Ann(b2) ⊆ Ann(b3) ⊆ · · · .
Since R is Noetherian, ascending chains of ideals become stationary. Hence
Ann(bn) = Ann(bn+1) for some n. We claim that 〈a〉 ∩ 〈bn〉 = {0}. Indeed,
suppose λa = μbn ∈ 〈a〉 ∩ 〈bn〉 for some λ, μ ∈ R. Clearly,

0 = λab = μbn+1.
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Hence, μ ∈ Ann(bn+1) = Ann(bn). Thus, μbn = 0. As {0} was assumed to
be irreducible and 〈a〉 � {0}, we have bn = 0. This completes the proof. �

We now turn to the third question, concerning uniqueness. We need
not assume that R is Noetherian, as long as the ideal I in question is an

intersection of finitely many primary ideals: I =
⋂k

i=1 qi. Here it is assumed
that each qi is necessary, i.e.

⋂
j �=i0

qj �⊂ qi0 for all 1 ≤ i0 ≤ k. The next two
lemmas suggest grouping the primary ideals qi by their radical.

Lemma 3.12. The radical of a primary ideal q is the unique smallest prime
ideal containing it.

The proof is left as Exercise 5 for the reader. A primary ideal q whose
radical equals a given prime ideal p is called p-primary. In many cases, the
powers of a prime ideal p are primary. This is the case for polynomial rings
in one variable; see Exercise 2. However, it is not true in general that the
power of a prime ideal is a primary ideal, even in the polynomial ring C[x].

Example 3.13. Let P be the ideal generated by the nine 2 × 2 minors of
a 3 × 3 matrix X = (xij) of unknowns. This ideal is prime and contains
none of the xij . We claim that the ideal P 2 is not primary. To see this, we
verify (using Gröbner bases) that xij · det(X) lies in P 2 for all 1 ≤ i, j ≤ 3.
However, P 2 is generated by quartics and contains no cubics. Thus, neither
det(X) nor any power of xij is in P 2. We conclude that P 2 is not primary.

We next focus on p-primary ideals for a fixed prime ideal p.

Lemma 3.14. If q1, . . . , qk are p-primary ideals, then so is q1 ∩ · · · ∩ qk.

Proof. The following shows that the radical of I :=
⋂k

i=1 qi equals p:

a ∈ rad(I) ⇐⇒ ∃n : an ∈ I ⇐⇒ ∃n∀i : an ∈ qi
⇐⇒ ∀i : a ∈ rad(qi) = p ⇐⇒ a ∈ p.

To see that I is primary, we assume that ab ∈ I and a �∈ I. Then a �∈ qi0
for some i0. Since ab ∈ qi0 and qi0 is primary, b ∈ rad(qi0) = p = rad(I).
Hence bn ∈ I for some n. �

Lemma 3.14 suggests that given any primary decomposition I =
⋂k

i=1 qi,
we aggregate the qi’s with the same radical and replace them by their inter-
section. The result is still a primary decomposition of I. This motivates the
following definition. A minimal primary decomposition is a representation

(3.1) I = q1 ∩ q2 ∩ · · · ∩ qk

where the qi’s are primary ideals that have pairwise distinct radicals whose
intersection is nonredundant, meaning

⋂
j �=i0

qj �⊂ qi0 for all 1 ≤ i0 ≤ k.
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To sum up, we have proved the following result for a Noetherian ring R:

(1) every ideal has a (finite) primary decomposition, and

(2) every (finite) primary decomposition of an ideal can be changed to
a minimal one (apply Lemma 3.14 and remove unnecessary ideals).

We next show that minimal primary decompositions may still not be unique.

Example 3.15. The following are two minimal primary decompositions:

(3.2) 〈x2, xy〉 = 〈x〉 ∩ 〈x, y〉2 = 〈x〉 ∩ 〈x2, y〉 ⊂ C[x, y].

It turns out that while the primary ideals qi in the decomposition (3.1)
need not be unique, their radicals are unique. Recall that the quotient of
an ideal I by a ring element a is the ideal (I : a) = {b ∈ R : ab ∈ I}.

Theorem 3.16. For any ideal I in a ring R with a minimal primary de-
composition (3.1), the k prime ideals rad(qi) do not depend on the choice of
that decomposition. They are precisely the prime ideals that have the form
rad(I : a) for some element a in R. If R is Noetherian then the last radical
is not needed: They are precisely the prime ideals (I : a) for some a ∈ R.

Remark 3.17. The ideal (I : a) is usually not prime. It is prime only for
some very special elements a ∈ R. It is those special a we are interested in.

Proof. Fix a minimal primary decomposition I =
⋂k

i=1 qi. Intersection com-

mutes with ideal quotients, so (I : a) =
⋂k

i=1(qi : a) =
⋂

a �∈qj (qj : a). It also

commutes with radicals: rad(I : a) =
⋂

a �∈qj rad(qj : a). We next argue that

a �∈ qi implies rad(qi : a) = rad(qi). Suppose b ∈ rad(qi : a), i.e. b
na ∈ qi.

As qi is primary and a �∈ qi, we have (bn)m ∈ qi, i.e. b ∈ rad(qi). Hence,
rad(qi : a) ⊆ rad(qi). The other inclusion is obvious. We conclude that
rad(I : a) equals the intersection of the prime ideals rad(qj) satisfying a �∈ qj .

By Exercise 7, if rad(I : a) is prime then it is equal to rad(qj) for
some j. Next, consider any rad(qi0). As the primary decomposition is
minimal, there exists a ∈

⋂
j �=i0

qj\qi0 . The conclusion above shows that

rad(I : a) = rad(qi0).

It remains to prove the last assertion. If (I : a) is prime, then it is equal
to its radical. Thus, we must consider a prime ideal of the form rad(I : a)
and show that it equals (I : a′) for some a′ ∈ R. We already know that
rad(I : a) = rad(qi0) for some i0. By Exercise 8, rad(qi0)

n ⊂ qi0 for some
positive integer n. Hence, there exists n such that (

⋂
j �=i0

qj)·(rad(qi0))n ⊆ I.
We fix the smallest n with this property. Then we pick an element

a′ ∈
(
(
⋂
j �=i0

qj) · (rad(qi0))n−1

)
\ I.
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(Here, if n = 1, then rad(qi0)
n−1 is the ring R.) By definition, a′ · rad(qi0) ⊆

I, and thus rad(qi0) ⊆ (I : a′). However, a′ ∈ (
⋂

j �=i0
qj)\I, so a′ �∈ qi0 . We

have the inclusions rad(qi0) ⊆ (I : a′) ⊆ rad(I : a′) = rad(qi0), which are in
fact equalities. The last equation follows from the previous paragraph. �

Definition 3.18. The associated primes of an ideal I are the radicals of the
primary ideals appearing in a minimal primary decomposition. Equivalently,
these are the prime ideals of the form rad(I : a) for some element a of the
ring. If the ring is Noetherian, these are the prime ideals of the form (I : a).

Before going further, let us discuss the geometric meaning of the as-

sociated primes. If I =
⋂k

i=1 qi then rad(I) =
⋂k

i=1 rad(qi). Thus, every
component in the irreducible decomposition of the variety V(I) corresponds
to one of the associated primes of I. However, the converse is not true.

Example 3.19. Let I = 〈x2, xy〉 as in Example 3.15. We have rad(I) = 〈x〉.
The variety V(I) is irreducible. It is a line in a plane. However, the minimal
primary decompositions (3.2) reveal that I has two associated primes: the
expected prime 〈x〉 and the unexpected prime 〈x, y〉, which is a point on the
line. Thus, the associated primes remember more information than just the
variety. There is a point corresponding to the ideal 〈x, y〉 on the line defined
by 〈x〉. This point is hidden, or embedded, inside the line.

The formal replacement of varieties (corresponding to radical ideals)
by arbitrary ideals made possible a tremendous advance of 20th century
algebraic geometry. One is now able to work with functions that are nonzero
but have square zero, using basic well-understood algebra. This advance
should be compared to the development of complex numbers in the 18th
and 19th centuries. Basically in the same way, instead of answering the
question “does there exist a square root of −1?” one introduces imaginary
numbers and shows how to use them in an efficient way. Still, we should not
forget the classical geometry we started from. The line from Example 3.19
is of a different nature than the point, and the two should be distinguished.

Definition 3.20. For an ideal I, let Ass(I) be the set of associated primes.
The minimal (with respect to inclusion) elements of Ass(I) are the minimal
primes of I. Associated primes that are not minimal are called embedded .

In what follows, our standing assumption is that R is a Noetherian ring.
An embedded prime p of an ideal I must contain a minimal prime p′. This
means that the irreducible component V(p′) of V(I) strictly contains the ir-
reducible variety V(p). We say that V(p) is embedded in V(p′). It is not nec-
essary to describe V(I) as a set. The minimal primes correspond exactly to
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irreducible components of V(I). They are the nonredundant intersectands in

rad(I) =

k⋂
i=1

rad(qi).

The next lemma offers another explanation for the name minimal primes.

Lemma 3.21. A prime ideal is a minimal prime of I if and only if it is a
minimal element (with respect to inclusion) among the primes that contain I.

Proof. It is enough to prove that every prime p containing I also contains a
prime in Ass(I). Then p also contains a minimal prime. They are equal if p

is minimal with respect to inclusion. Thus, suppose p contains I =
⋂k

i=1 qi.
By Exercise 7, p ⊇ qi0 for some some i0. Hence, p = rad(p) ⊃ rad(qi0). �

The geometry that distinguishes embedded and minimal primes suggests
an idea of how to get additional uniqueness properties in primary decomposi-
tions. Indeed, in Example 3.15 it is the ideal corresponding to the embedded
component that changes, while the minimal prime remains the same.

Theorem 3.22. Let I =
⋂k

i=1 qi be a minimal primary decomposition. The
primary ideals qi corresponding to the minimal primes are determined by I.

Proof. Let qi0 be such that rad(qi0) is a minimal prime. We claim that

(3.3) qi0 =
{
a : ab ∈ I for some b �∈ rad(qi0)

}
.

We already saw that the right-hand side does not depend on the decomposi-
tion of I. Thus the equation implies the theorem. We prove both inclusions.

Let a ∈ qi0 . For every i �= i0 we have qi �⊂ rad(qi0). Otherwise, rad(qi) ⊂
rad(qi0), which would contradict the hypothesis that rad(qi0) is minimal.
Hence, there exists bi ∈ qi\ rad(qi0). We define b :=

∏
j �=i0

bj . As rad(qi0)

is prime, we have b �∈ rad(qi0). However, ab ∈ qj for j �= i0, as b ∈ qj .

Furthermore, ab ∈ qi0 , as a ∈ qi0 . This implies ab ∈ I =
⋂k

i=1 qi, which
means that a is contained in the right-hand side of (3.3).

Now we pick a and b �∈ rad(qi0) such that ab ∈ I. In particular, ab ∈ qi0 .
If a �∈ qi0 then we get a contradiction to the fact that qi0 is primary. This
shows that the right-hand side is contained in the left-hand side. �

Let I and J be ideals in a Noetherian ring R. Using the definition in
Proposition 1.3, we consider the following chain of ideal quotients in R:

(I : J) ⊆ (I : J2) ⊆ (I : J3) ⊆ · · · .
This chain stabilizes and we set (I : J∞) = (I : Jm) for m ∈ N sufficiently
large. The ideal (I : J∞) is called the saturation of I with respect to J . If
J = 〈f〉 is a principal ideal, then the notation (I : f∞) is also used for this.
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Corollary 3.23. Let I be the ideal in Theorem 3.22. The primary ideal qi
corresponding to a minimal prime pi = rad(qi) of I can be computed as

qi =
(
I : (a1 · · · ai−1ai+1 · · · ak)∞

)
,

where aj is an element of pj\pi for j ∈ {1, . . . , k}\{i}.

Proof. This is equivalent to (3.3) when i = i0, since pi = rad(qi). By
definition, the saturation on the right-hand side consists of all ring elements
b such that b(a1 · · · ai−1ai+1 · · · ak)m ∈ I for some positive integer m. �

Primary decomposition for monomial ideals is easier than for general
polynomial ideals. The associated primes are generated by subsets of the
variables and can be characterized combinatorially. We here just show this
for one example. For more information we refer to the textbook [41].

Example 3.24. Let n = 3 and I = 〈xy2z3, x2yz3, xy3z2, x3yz2, x2y3z, x3y2z〉.
This has seven associated primes. A minimal primary decomposition is

I = 〈x〉 ∩ 〈y〉 ∩ 〈z〉 ∩ 〈x2, y2〉 ∩ 〈x2, z2〉 ∩ 〈y2, z2〉 ∩ 〈x3, y3, z3〉.
This example generalizes to n ≥ 4 as follows. The ideal I is generated by
the n! monomials

∏n
i=1 x

πi
i , indexed by permutations π ∈ Sn, and Ass(I)

consists of all 2n − 1 ideals generated by nonempty subsets of {x1, . . . , xn}.

There are many algorithms and implementations for computing primary
decompositions. The input is an ideal I in a polynomial ring K[x], and the
output is the set Ass(I) and primary ideals q1, . . . , qk satisfying (3.1). Tra-
ditionally, these are symbolic methods built upon Gröbner bases. In recent
years, numerical tools for decomposing ideals and varieties have received
much attention. Solving polynomial systems means running such software.

3.3. Linear PDEs with Constant Coefficients

In this section, we offer an alternative perspective on the problem of solv-
ing systems of polynomial equations. This highlights the role of embedded
primes and primary ideals in a context of practical importance.

Every polynomial with real or complex coefficients can be interpreted
as a linear differential operator with constant coefficients. This operator
is obtained by replacing xi with the differential operator ∂

∂xi
. Every ideal

I in R[x1, x2, . . . , xn] can thus be interpreted as a system of linear partial
differential equations (PDEs) with constant coefficients. Suppose we are
interested in the solutions to these PDEs within some nice class of functions,
such as polynomial functions, real analytic functions Rn → R, or complex
holomorphic functions Cn → C. Then the set of solutions to our PDEs is
a linear space over R or C. We are interested in computing a basis of that
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50 3. Solving and Decomposing

solution space. This computation rests on the primary decomposition of
the ideal I. Both minimal primes and embedded primes will play a role,
and all primary components will contribute to our basis of the solution
space. However, first of all, let us interpret the usual points of V(I) in
terms of PDEs.

Lemma 3.25. Let I be an ideal in C[x]. A point (a1, . . . , an) ∈ Cn lies in
the variety V(I) if and only if the exponential function exp(a1x1+· · ·+anxn)
is a solution of the system of partial differential equations given by I.

Proof. Let f(x) = exp(a1x1 + · · · + anxn). Then ∂f
∂xi

= ai · f for all i.

Let g be any polynomial in n variables and g
(

∂
∂x

)
the corresponding dif-

ferential operator. By induction on the degree of g, with degree 1 as the
base case, we find that applying the operator g

(
∂
∂x

)
to the function f(x)

yields g(a1, . . . , an) times f(x). This is zero for all g ∈ I if and only if
(a1, . . . , an) ∈ V(I). �

Lemma 3.25 embeds the classical solutions of a polynomial system into
the solution space of the associated linear PDEs. But if the ideal is not
radical, then it has more solutions, which are governed by the primary
decomposition. We shall explain this for an ideal that was already encoun-
tered twice.

Example 3.26. We revisit Example 3.6 and Exercise 10 of Chapter 1. Let
n = 3 and I = 〈x3 − yz, y3 − xz, z3 − xy〉. The corresponding system of
linear PDEs asks for all functions f = f(x, y, z) that satisfy

(3.4)
∂3f

∂x3
=

∂2f

∂y∂z
,

∂3f

∂y3
=

∂2f

∂x∂z
and

∂3f

∂z3
=

∂2f

∂x∂y
.

To make this problem precise, we must specify the class of functions f that
are allowed. For instance, we might take all holomorphic functions f : C3 →
C. Alternatively, we might seek real analytic solutions f : R3 → R or,
among these, all polynomial solutions. Let’s leave this unspecified for now.

The degree of our ideal I is 27 = 3×3×3, which comes from the degrees
of the three generators of I. The number 27 is also the dimension of the
space of holomorphic solutions f to (3.4). A basis of that solution space
consists of

(3.5)

1 , x , y , z , x2 , y2 , z2 , x3+6yz , y3+6xz, z3+6xy, x4+y4+z4+24xyz,
exp(x− y − z) , exp(x+ y + z) , exp(−x− y + z) , exp(−x+ y − z) ,
exp(x−iy+iz) , exp(x+iy−iz) , exp(−x−iy−iz) , exp(−x+iy+iz) ,

exp(ix− y + iz) , exp(ix+ y − iz) , exp(ix− iy + z) , exp(ix+ iy − z) ,
exp(−ix−y−iz) , exp(−ix+y+iz) , exp(−ix−iy−z) , exp(−ix+iy+z).

The subspace of polynomial solutions has dimension 11 and is spanned by
the first row in (3.5). The larger subspace of real analytic solutions has
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3.3. Linear PDEs with Constant Coefficients 51

dimension 15 and is spanned by the first two rows. All other basis functions
are exponentials of linear forms that have i =

√
−1 among their coefficients.

The 16 basis solutions in the last four rows of (3.5), along with the solu-
tion 1 = exp(0x + 0y + 0z), are explained by Lemma 3.25. They are the
exponential functions corresponding to the 17 distinct points in V(I) ⊂ C3.

The basis in (3.5) was derived from the minimal primary decomposition

I = Q ∩
⋂

a+b+c≡ 0
mod 4

〈
x− ia, y − ib, z − ic

〉
in C[x, y, z].(3.6)

This decomposition is obtained by refining the primary decomposition over
the rational numbers shown in Example 3.6. The 16 ideals in the intersec-
tion on the right-hand side of (3.6) are maximal and hence prime. They
correspond to the 16 exponential solutions in (3.5). The ideal Q is primary
to the maximal ideal rad(Q) = 〈x, y, z〉. Since all associated primes are
minimal, by Theorem 3.22 this primary ideal is uniquely determined by I:

Q =
〈
x2y, x2z, xy2, xz2, y2z, yz2, x3 − yz, y3 − xz, z3 − xy

〉
.

This 0-dimensional primary ideal has degree 11. It contributes the 11 poly-
nomial solutions to the three partial differential equations in (3.4).

Below is a general result explaining our observations from Example 3.26.

Theorem 3.27. Let I be a 0-dimensional ideal in C[x1, . . . , xn], here inter-
preted as a system of linear PDEs. The space of holomorphic solutions has
dimension equal to the degree of I. There exist nonzero polynomial solutions
if and only if the maximal ideal M = 〈x1, . . . , xn〉 is an associated prime of
I. In that case, the polynomial solutions are precisely the solutions to the
system of PDEs given by the M -primary component (I : (I : M∞)).

Proof. Fix a degree-compatible monomial order and let in(I) be the initial
ideal of I for that order. The set S of standard monomials is finite. For each
xu ∈ S we will construct explicitly a power series solution to the PDE given
by I. We will also show that these solutions form a basis for the space of
holomorphic solutions. These are the solutions represented by power series.

Regarding I as a C-vector space, it has a basis consisting of elements
of the form xv +

∑
xu∈S λux

u, where xv �∈ S. Consider a polynomial p̃
that is a C-linear combination of monomials in S. We claim that p̃ can be
uniquely extended to a power series p that is a solution to the associated
PDEs. Indeed, the above basis operators uniquely determine the coefficients
of all other monomials, so p is unique. Further, p has the property that when
differentiated with any operator from I, the constant term in the result is
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zero. Thus, all operators in I annihilate p. Hence, the dimension of the
solution space equals |S| = degree(I). The basis of this space is given by

(3.7) pu(x1, . . . , xn) = xu + higher-order terms, where xu runs over S.

The series (3.7) is a polynomial if and only if it is annihilated by (∂/∂xi)
d

for some d and i = 1, 2, . . . , n. This is always the case when I is M -primary.

Suppose now that I is primary in C[x]. Since I is 0-dimensional, its rad-
ical is the maximal ideal 〈x1 − a1, . . . , xn − an〉, where V(I)={(a1, . . . , an)}
in Cn. By translating (a1, . . . , an) to the origin (0, . . . , 0), we can apply the
analysis in the previous paragraph. From this and Lemma 3.25, we obtain
degree(I) many polynomials pu with xu ∈ S as in (3.7) such that

(3.8) pu(x1, . . . , xn) · exp(a1x1 + · · ·+ anxn)

solves the PDEs given by I. These functions form a basis of the holomorphic
solutions to I. None of them is a polynomial unless (a1, . . . , an) = (0, . . . , 0).

Next, let I be an arbitrary 0-dimensional ideal. Its minimal primary
decomposition (3.1) is unique, by Theorem 3.22. The solution space to I,
regarded as a system of linear PDEs, contains the solution spaces of its
primary components q1, q2, . . . , qk. For each of these primary ideals, we
construct a basis of holomorphic solutions (3.8). The union of these bases
is a basis of the solution space of I, and its cardinality equals degree(I).

Finally, we argue that if M ∈ Ass(I), then the M -primary component
of I is the double quotient (I : (I : M∞)). Actually, this is a special
case of Corollary 3.23 since every maximal ideal is prime. In the primary
decomposition (3.1), suppose that q1 is M -primary. Then (I : M∞) =
q2∩ · · · ∩ qk. Taking the ideal quotient of I by q2 ∩ · · · ∩ qk recovers the ideal
q1. Hence q1 = (I : (I : M∞)) as desired. This completes the proof. �

In the preceding discussion, we studied the solutions to 0-dimensional
polynomial systems in the guise of linear PDEs with constant coefficients.
We saw that the solution space of such an ideal I is a vector space of di-
mension equal to the degree of I. This is different from the situation of
solving polynomial equations. The variety V(I) of classical solutions in
Cn changes its cardinality depending on whether I is radical or not. The
solution space to the PDEs, on the other hand, always has the expected
dimension degree(I), independently of whether the ideal I is radical or not.

The solution spaces to our PDEs vary gracefully with parameter changes.
This underscores the utility of primary decompositions in the context of
solving equations. We demonstrate this perspective in a simple example.
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3.3. Linear PDEs with Constant Coefficients 53

Example 3.28 (n = 2). Consider the ideal I = 〈x2 − δ2, y2 − ε2〉 ⊂ R[x, y],
where δ and ε are small real parameters. We view I as a PDE system:

∂2f

∂x2
= δ2f and

∂2f

∂y2
= ε2f.

For δ, ε �= 0, the solution space is spanned by the four exponential functions

fij := exp
(
(−1)iδx+ (−1)jεy

)
where i, j ∈ {0, 1}.

However, these four functions become linearly dependent when δε = 0. We
therefore change the basis of our 4-dimensional solution space as follows:

g00 = 1
4(f00 + f01 + f10 + f11) = 1 + δ2

2 x
2 + ε2

2 y
2 + · · · ,

g01 = 1
4ε(f00 − f01 + f10 − f11) = y + δ2

2 x
2y + ε2

6 y
3 + · · · ,

g10 = 1
4δ (f00 + f01 − f10 − f11) = x+ δ2

6 x
3 + ε2

2 xy
2 + · · · ,

g11 = 1
4εδ (f00 − f01 − f10 + f11) = xy + δ2

6 x
3y + ε2

6 xy
3 + · · · .

This family remains linearly independent for all values of δ and ε. In par-
ticular, for δ = ε = 0, we obtain the standard basis S = {1, x, y, xy} modulo

the ideal in(I) = 〈x2, y2〉. This is a basis of the solutions to ∂2f
∂x2 = ∂2f

∂y2
= 0.

We next briefly discuss the PDEs arising from polynomial ideals I that
are not 0-dimensional. It is still true that the primary decomposition of
I reveals the solution space of these PDEs. The precise statement is an
important result in analysis known as Ehrenpreis’s Fundamental Principle
or the Palamodov-Ehrenpreis Theorem. The details of this theorem are
outside the scope of this book. For the statement see [53, §10.5] and the
references given therein.

We here illustrate the role of primary decomposition in one example. The
key observation is that embedded primes reveal spurious solution spaces.

Example 3.29. Let n = 4 and consider the ideal

J = 〈xw, xz + yw, yz〉.

Somewhat surprisingly, this is not radical. Its radical is the monomial ideal
√
J = 〈x, y〉 ∩ 〈z, w〉 = 〈xw, xz, yw, yz〉.

The given ideal J has three associated primes. The primes 〈x, y〉 and 〈z, w〉
are minimal primes, and the maximal ideal 〈x, y, z, w〉 is an embedded prime.
A minimal primary decomposition of the given ideal is

J = 〈x, y〉 ∩ 〈z, w〉 ∩ (J + 〈x, y, z, w〉3).

The third primary ideal is not unique. If we replace the third power of the
maximal ideal by any higher power, then the intersection remains the same.
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54 3. Solving and Decomposing

As before, we interpret the generators of J as a system of linear PDEs:

∂2f

∂x∂w
=

∂2f

∂x∂z
+

∂2f

∂y∂w
=

∂2f

∂y∂z
= 0.

The linear space of solutions f(x, y, z, w) is infinite-dimensional. It is
spanned by all functions of the form g(w, z) and h(x, y), together with
the one special function xz − yw. The former correspond to the two mini-
mal primes. The latter spurious solution arises from the embedded primary
component.

Whenever one encounters a system of polynomial equations with special
structure and one is curious about the variety of solutions, it pays to explore
the primary decomposition and ponder the solutions to the associated PDEs.
Students who struggle with schemes in an algebraic geometry class may find
our PDE interpretation a useful way to understand their structure.

Given a system of polynomial equations, the primary decomposition
often reveals interesting structures. Most importantly, it tells us how to
break up the solutions into meaningful pieces. As an illustration, we examine
the following question from linear algebra: Let A,B and C be 2×2 matrices.
In which ways is it possible for the triple product ABC to be the zero matrix?

We approach this problem as follows. We set n = 12 and fix the polyno-
mial ring R[aij , bij , cij ] whose variables are the 12 entries of the matrices A,
B and C. Let I be the ideal in R[aij , bij , cij ] that is generated by the four
entries of the matrix product ABC. For example, one of the four generators
of I is the upper left entry of ABC. This is the trilinear form

(3.9) a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21.

In the back of our minds, we think of this as a partial differential equation

(3.10)
∂3f

∂a11∂b11∂c11
+

∂3f

∂a12∂b21∂c11
+

∂3f

∂a11∂b12∂c21
+

∂3f

∂a12∂b22∂c21
= 0.

The scheme-theoretic version of our linear algebra question is this: Which
functions on matrix triples satisfy these four partial differential equations?

A computation with a computer algebra system reveals that the ideal I
is radical. It is the intersection of six prime ideals. Three of them are the
ideals respectively generated by the entries of A, B and C. The next two
associated primes are generated by the 2× 2 minors of the matrices(

a11 a21 −b21 −b22
a12 a22 b11 b12

)
and

(
b11 b21 −c21 −c22
b12 b22 c11 c12

)
.

Finally, the last associated prime of I is the ideal I+〈det(A), det(C)〉. Thus
Ass(I) consists of six primes, and all are minimal. Using computer algebra,
we check that I is indeed equal to the intersection of these six prime ideals.
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Geometrically, we are studying a variety V(I) in the affine space C12. It
is the solution set of four cubic equations. We found that V(I) is the union
of six irreducible components. Three of them are linear spaces of dimension
8. The other three irreducible components have dimension 9 and are not
linear spaces. Their degrees are 4, 4 and 8. In response to the original linear
algebra question, the six irreducible components of V(I) correspond to the
following six scenarios for a triple of 2× 2 matrices:

rank(A) = 0 or rank(B) = 0 or rank(C) = 0 or
rank(A) = rank(B) = 1 or rank(B) = rank(C) = 1

or rank(A) = rank(C) = 1.

Each of the six irreducible components V(I) admits a parametrization with
polynomials. In particular, it is a rational variety. Using Lemma 3.25, we
can then write down all exponential solutions to the four partial differential
equations, like (3.10), that are given by I. The solutions come in six families.

The solutions contributed by the first irreducible component, {rank(A) =
0}, are the functions f(B,C) that do not depend on the matrix A. The
solutions contributed by the last irreducible component have the form

f(A,B,C) = exp
[
r1s1a11 + r1s2a12 + r2s1a21 + r2s2a22 + (t11u2−s2t12)b11
+ (s2t21−t11u1)b12 + (s1t12−t22u2)b21 + (t22u1−s1t21)b22

+ u1v1c11 + u1v2c12 + u2v1c21 + u2v2c22
]
,

where ri, sj , tij , ui and vj are arbitrary complex numbers. The functions
f above satisfy the PDEs because the coefficients of a11, a12, . . . , c22
furnish a parametrization of the irreducible variety {ABC = 0, rank(A) =
rank(C) = 1}.

Here is our conclusion for this example, valid for the entire book: Taking
a fresh look at linear algebra offers a point of entry to nonlinear algebra.

Exercises

(1) Let R = C[x, y]/〈x2, xy, y2〉. Is {0} an irreducible ideal? Is it primary?

(2) Let n = 1. Prove that an ideal I in the univariate polynomial ring Q[x]
is a power of a prime ideal if and only if I is primary.

(3) Prove that a ring is Noetherian if and only if every ideal is finitely
generated.

(4) (a) Prove that if R is Noetherian, then so is R/I for any ideal I.
(b) Prove Hilbert’s Basis Theorem: If R is Noetherian, then so is R[x].

(5) Prove Lemma 3.12.
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(6) Check that Example 3.15 provides two distinct minimal primary decom-
positions. What are all primary decompositions of this ideal?

(7) (a) Prove that a prime ideal p cannot be equal to an intersection of
(finitely many, more than one, incomparable) ideals.

(b) More generally, prove that if a prime ideal contains an intersection
of finitely many ideals, then it contains one of them.

(8) Prove that in a Noetherian ring every ideal contains a power of its rad-
ical. Give a counterexample in the case of a non-Noetherian ring.

(9) Find three polynomials in three unknowns, each having degree precisely
5, whose variety in C3 consists of precisely 37 complex solutions.

(10) Find all solutions (x, y) of the two equations x2+ y = ε and y2+x = ε
over the algebraic closure of the field Q(ε). Write down series solutions.

(11) Let n = 10 and K = R, and consider the ideal generated by the 10
polynomials xiyj + xjyi where 1 ≤ i < j ≤ 5. These are the 2 × 2
subpermanents of a 2× 5 matrix of unknowns. Find a minimal primary
decomposition of I. Interpret your result in terms of solving partial
differential equations.

(12) Which 2× 3 matrices A and B satisfy ABT = BAT ? What about 3× 2
matrices?

(13) Let K = F2 be the field with two elements. Find an ideal I in K[x, y]
that has precisely 10 associated primes, of which five are embedded.

(14) Consider the ideal I = 〈x + y + z, xy + xz + yz, xyz〉 generated by the
three elementary symmetric polynomials in Q[x, y, z]. Interpret these as
linear PDEs and determine the solution space of the PDEs.

(15) Interpret the ideal P 2 in Example 3.13 as a system of linear PDEs and
determine the solution space. How do we see that P 2 is not primary?

(16) Let A,B and C be 3 × 3 matrices. How is it possible for the triple
product ABC to be the zero matrix? In other words, write down the
nine trilinear equations like (3.9) and describe their variety of solutions.

(17) What is numerical primary decomposition?
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Chapter 4

Mapping and
Projecting

“A technique is a trick that works”, Gian-Carlo Rota

A frequently encountered challenge is to compute the image of a poly-
nomial map. Such an image need not be an algebraic variety. However,
a natural outer approximation of the image is given by its Zariski closure.
The Zariski closure of the image is a variety, described by the polynomials
that vanish on it. In this chapter we show how this variety can be found
by eliminating variables. Gröbner bases and resultants serve as our primary
tools. Further, we provide theorems that enable us to understand the dif-
ference between the image and its closure. The answer we obtain depends
heavily on the setting, whether we work over the complex numbers C or over
the real numbers R, and whether the given polynomials are homogeneous
or nonhomogeneous.

4.1. Elimination

In this section we introduce elimination of variables for polynomial ideals.
This is our main tool for computing the closure of the image of a polynomial
map. We show how to carry it out in practice using Gröbner bases.

We fix an algebraically closed field K and the polynomial ring K[x] =
K[x1, . . . , xn]. Every ideal I ⊂ K[x] has an associated affine variety

V(I) = {p ∈ Kn : f(p) = 0 for all f ∈ I }.

57
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58 4. Mapping and Projecting

We consider the projection from Kn onto the linear subspace Km that is
given by the first m coordinates:

π : Kn → Km, (p1, . . . , pm, pm+1, . . . , pn) �→ (p1, . . . , pm).

If V is a variety in Kn, its image π(V ) need not be a variety.

Example 4.1 (n = 2,m = 1). The image of the hyperbola V = V(xy − 1)
under the projection K2 → K1 from the plane to the x-axis is π(V ) =
K1\{0}. This is not a variety in K1. Note that the image becomes closed if,
prior to projecting, we first perform a change of coordinates. For instance, if
we replace V by the hyperbola V ′ = V

(
(x+y)(x−y)− 1

)
, then π(V ′) = K1.

The Zariski closure π(V ) of the image π(V ) is a variety in Km. It is the

smallest variety containing π(V ). We call the variety π(V ) the closed image
of V under the map π. A more general case, where π is an arbitrary polyno-
mial map instead of a coordinate projection, is discussed in the next section.
The following theorem characterizes the ideal of the closed image π(V ).

Theorem 4.2. Let I ⊂ K[x] be an ideal and V = V(I) its variety in Kn,
where K is an algebraically closed field. Then the closed image of V in Km

is the variety π(V ) = V(J) that is defined by the elimination ideal

(4.1) J = I ∩ K[x1, . . . , xm].

If I is radical or prime, then the elimination ideal J has the same property.

Proof. If J is not a prime ideal, then there exist polynomials f and g in
K[x1, . . . , xm] such that fg ∈ J but f, g �∈ J . The same polynomials show
that I is not prime. Similarly, if J is not radical, then there exist f in
K[x1, . . . , xm] and r ≥ 2 such that f r ∈ J but f �∈ J . The same f shows
that I is not radical. Similar reasoning shows that all ideals I ⊂ K[x] satisfy

Rad(I) ∩ K[x1, . . . , xm] = Rad
(
I ∩ K[x1, . . . , xm]

)
.

Since passing to the radical does not change the variety of a given ideal, we
may assume that I and J are radical ideals. We shall now make a forward
reference and use the Nullstellensatz (Chapter 6). A polynomial belongs
to I if and only if it vanishes on V = V(I). This holds, in particular, for
polynomials f in the subring K[x1, . . . , xm]. Such an f belongs to J if and
only if it vanishes on π(V ), which is the case if and only if it vanishes on

π(V ). The latter condition means that f lies in the radical ideal of π(V ).

We conclude that the radical ideal of the closed image π(V ) is precisely the
elimination ideal J . For further details we refer to [10, §4.4, Theorem 3]. �

Theorem 4.2 says that the algebraic operation of elimination corresponds
to the geometric operation of projection. This holds in many settings, not
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4.1. Elimination 59

just in algebraic geometry. For instance, Gaussian elimination in linear al-
gebra corresponds to projection of linear subspaces, and Fourier-Motzkin
elimination in convex geometry corresponds to projection of polyhedra. Al-
ternatively, from the perspective of logic, we can think of our projection as
quantifier elimination. We are eliminating the n−m existentially quantified
variables from the first-order logic statement ∃xm+1, . . . , xn : x ∈ V .

Elimination and projection are fundamental operations in many appli-
cations. One good example is the problem of matrix completion or tensor
completion, which arises frequently in data science. Here is an illustration.

Example 4.3 (Matrix completion). Fix n = 15 and let V be the irreducible
variety of symmetric 5 × 5 matrices X = (xij) of rank ≤ 2. Its prime ideal
I = I(V ) is minimally generated by 50 homogeneous cubic polynomials,
namely the 3 × 3 minors of the matrix X. In fact, these 50 cubics form a
Gröbner basis for the degree reverse lexicographic order.

We now order the 15 variables xij in the given polynomial ring so that the
five diagonal entries x11, x22, x33, x44, x55 come last. We wish to eliminate
these five variables from the prime ideal I. So, in the notation above, we
have m = 10. A computation reveals that the elimination ideal is principal:

J = 〈x14x15x23x25x34 − x13x15x24x25x34 − x14x15x23x24x35
+x13x14x24x25x35 + x12x15x24x34x35 − x12x14x25x34x35
+x13x15x23x24x45 − x13x14x23x25x45 − x12x15x23x34x45
+x12x13x25x34x45 + x12x14x23x35x45 − x12x13x24x35x45 〉.

The ideal generator of degree 5 is known as the pentad in algebraic statistics
[19, Example 4.2.8]. Its 12 terms correspond to the 12 Hamiltonian cycles
in the complete graph K5. The hypersurface V(J) equals the closed image
π(V ) of the determinantal variety V under the projection from K15 onto
the subspace K10 whose coordinates are the off-diagonal entries.

Our result has the following interpretation in terms of matrix completion.
If the 10 off-diagonal entries of a symmetric 5 × 5 matrix are given, then
they can be completed to a matrix of rank ≤ 2 only if the pentad vanishes.
This pentad constraint appears in the statistical theory of factor analysis.

Our next example shows how to find algebraic relations via elimination.

Example 4.4. The first four power sums in three variables x, y, z are the
polynomials xi + yi + zi for i = 1, 2, 3, 4. These four polynomials must be
algebraically dependent since they involve only three variables. But what is
the algebraic relation satisfied by these four power sums?

We approach this question by setting n = 7 and m = 4, with the ideal

I = 〈x+y+ z−p1, x2+y2+ z2−p2, x3+y3+ z3−p3, x
4+y4+ z4−p4 〉.
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This ideal lives in a polynomial ring in seven variables. We wish to eliminate
the three original variables x, y, z. Thus, we ask for the elimination ideal

J = I ∩ K[p1, p2, p3, p4].

This is a principal prime ideal. Its generator is a polynomial of degree 4:

J = 〈 p41 − 6p21p2 + 3p22 + 8p1p3 − 6p4 〉.

This is the desired relation, as you can check by plugging in the power sums.

The computations in Examples 4.3 and 4.4 were carried out using
Gröbner bases. Here is how this works. We first fix the lexicographic mono-
mial order ≺ on K[x] with x1 ≺ x2 ≺ · · · ≺ xn. We then compute the
reduced Gröbner basis for the ideal generated by the given polynomials.
And, finally, we select those polynomials from the output that use only the
first m variables. This method is justified by the following theorem.

Theorem 4.5. If G is a lexicographic Gröbner basis for an ideal I in the
polynomial ring K[x], then its elimination ideal J in (4.1) has the Gröbner
basis G′ = G ∩ K[x1, . . . , xm]. If G is the reduced Gröbner basis of I, then
G′ is the reduced Gröbner basis of J .

Proof. Clearly, the set G′ is contained in J = I ∩ K[x1, . . . , xm]. Consider
any nonzero polynomial f ∈ J . The initial monomial in≺(f) is divisible by
in≺(g) for some g ∈ G. None of the variables xm+1, . . . , xn appears in the
monomial in≺(g). Every nonleading term of g is lexicographically smaller
and so cannot use any of the last n−m variables. Hence, g lies in G′.

We have shown that some initial monomial from G′ divides in≺(f). Since
the polynomial f was chosen arbitrarily from J\{0}, this means that G′ is
a Gröbner basis for J . If the given Gröbner basis G is reduced, then G′ also
satisfies the two requirements for being a reduced Gröbner basis. �

This result shows that the lexicographic Gröbner basis G solves the elim-
ination problem simultaneously for all m. Thus, computing G means trian-
gularizing a given system of polynomial equations. We saw in Example 1.19
that it can be costly to compute a lexicographic Gröbner basis. One there-
fore often uses different strategies to carry out the elimination process. But
Theorem 4.5 represents the main idea that underlies these strategies. Lexico-
graphic elimination is a key tool for solving systems of polynomial equations.
It is instructive to try this procedure for some 0-dimensional varieties.

Example 4.6. Here is a simple question: Can you find three real numbers
x, y and z whose ith power sum equals i for i = 1, 2, 3 ? To answer this
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question, we compute the lexicographic Gröbner basis of the following ideal:

I = 〈x+ y + z − 1, x2 + y2 + z2 − 2, x3 + y3 + z3 − 3 〉.
This Gröbner basis is

G = { 6z3 − 6z2 − 3z − 1, 2y2 + 2yz − 2y + 2z2 − 2z − 1, x+ y + z − 1 }.
Theorem 4.2 says that we can solve our equations by back-substitution.
Indeed, the equations have six complex zeros. We first compute the three
roots of the cubic in z, we substitute them into the second equation and
solve for y, and then we set x = 1− y − z. The cubic has one real root and
two complex conjugate roots:

z ∈
{
1.4308,−0.21542− 0.26471i,−0.21542 + 0.26471i

}
.

By symmetry, the zeros of I are precisely the six points in C3 whose coor-
dinates are permutations of the three complex numbers above. Hence, the
answer to our question is “no”. The variety V(I) has no real points.

4.2. Implicitization

Implicitization is a special instance of elimination. Here, the problem is to
compute the image of a polynomial map between two affine spaces. This
can be done by forming the graph of the map and then projecting onto the
image coordinates. To be precise, we consider a map of the form

(4.2) f : Kn → Km, p = (p1, . . . , pn) �→
(
f1(p), . . . , fm(p)

)
,

where f1, . . . , fm are polynomials in K[z1, . . . , zn] and K is an algebraically
closed field. We write image(f) for the image of Kn under this map. This
subset of Km need not be a variety, as the following example shows:

Example 4.7. Let n=2 andm=3, and consider the map f=(z1, z1z2, z1z
2
2)

from the plane K2 into 3-space K3. The Zariski closure of the image is the
surface V = V(x1x3 − x22). The point (0, 0, 1) is in the surface but not in
image(f). For K = C we can approximate (0, 0, 1) by a sequence of points
that do lie in the image, e.g. by taking z1 = ε2 and z2 = ε−1 for ε→ 0.

The closed image of the map f : Kn → Km is the Zariski closure of the
set image(f). The closed image is denoted by image(f) ⊂ Km.

Corollary 4.8. Given the map f in (4.2), let I be the ideal in the polynomial
ring K[x, z] in n+m variables which is generated by fi(z1, . . . , zn)− xi for
i = 1, 2, . . . ,m. The closed image of f : Kn → Km is the variety defined
by the elimination ideal J = I ∩ K[x]. In symbols, image(f) = V(J).
Similarly, let X ⊂ Kn be a variety and IX its ideal. The closed image f(X)
of X is the variety defined by the elimination ideal J = (I + IX) ∩ K[x].
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Proof. Allowing X to be the whole space, it is enough to prove the last
statement. The graph of f restricted to X is Zariski closed in Kn+m, and
I + IX is the ideal that defines it. The image of X is the projection of the
graph into Km. With this, the claim follows from Theorem 4.2. �

Example 4.9 (Plücker relations). What are the algebraic relations be-
tween the 2 × 2 minors of a 2 × 5 matrix? We answer this question by
setting m = n = 10 and considering the map f : K10 → K10 that takes

a matrix

(
z11 z12 z13 z14 z15
z21 z22 z23 z24 z25

)
to the vector (x12, x13, . . . , x45) where

xij = z1iz2j − z1jz2i for 1 ≤ i < j ≤ 5. The graph of f is described by
an ideal I in the polynomial ring K[x, z] in 20 variables. Note that I is
generated by 10 polynomials. The desired elimination ideal equals

I ∩ K[x] = 〈 x12x34 − x13x24 + x14x23 , x12x35 − x13x25 + x15x23 ,
x12x45 − x14x25 + x15x24 , x13x45 − x14x35 + x15x34 ,

x23x45 − x24x35 + x25x34 〉.
These five quadrics are the Plücker relations between the maximal minors.
They play a key role in our study of Grassmannians in Chapter 5. The 10
variables in K[x] can be written as the entries of a skew-symmetric matrix

X =

⎛⎜⎜⎜⎜⎝
0 x12 x13 x14 x15

−x12 0 x23 x24 x25
−x13 −x23 0 x34 x35
−x14 −x24 −x34 0 x45
−x15 −x25 −x35 −x45 0

⎞⎟⎟⎟⎟⎠ .

The Plücker relations are the Pfaffians of size 4×4, that is, the square roots
of the principal 4× 4 minors of X. Thus V(I ∩K[x]) is the variety of skew-
symmetric 5× 5 matrices of rank ≤ 2. We shall see in Chapter 5 that, as a
projective variety in P9, this is the Grassmannian of lines in P4. Each such
line is written in Plücker coordinates as the image of the rank-2 matrix X.

The notion of determinant is central to linear algebra. In nonlinear
algebra, there is an analogous notion of hyperdeterminant for tensors.

Example 4.10 (Hyperdeterminant). Let X = (xijk) be a tensor of format
2× 2× 2, where the m = 8 tensor entries are variables. Tensors will be dis-
cussed in Chapter 9. We here just view X as an element of an 8-dimensional
linear space, with basis elements indexed by three numbers 0 ≤ i, j, k ≤ 1.

The tensor represents a polynomial in three variables z1, z2 and z3:

f = x000+x100z1+x010z2+x001z3+x110z1z2+x101z1z3+x011z2z3+x111z1z2z3.

For any fixed X, this polynomial defines a surface V(f) in K3. We are
interested in determining the condition under which this surface is singular.
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It is singular at the point z if and only if the pair (X, z) ∈ K11 lies in the
variety of

I =
〈
f,

∂f

∂z1
,
∂f

∂z2
,
∂f

∂z3

〉
.

The elimination ideal I ∩ K[x] is principal. We find that its generator is

x2
110x

2
001+x2

100x
2
011+x2

010x
2
101+x2

000x
2
111+ 4x000x110x011x101+ 4x010x100x001x111

− 2x100x110x001x011 − 2x010x110x001x101 − 2x010x100x011x101

− 2x000x110x001x111 − 2x000x100x011x111 − 2x000x010x101x111.

This quartic is the 2× 2× 2 hyperdeterminant. It vanishes when the surface
V (f) fails to be smooth in K3. Hyperdeterminants exist for tensors of many
larger formats. Their study is a fascinating topic in nonlinear algebra. A
standard reference is the book by Gel’fand, Kapranov and Zelevinsky [22].

The most basic scenario in elimination arises when m variables are elim-
inated from a system of m + 1 equations. One expects the result to be a
single equation in the coefficients of that system. We saw this for m = 3
in Examples 4.4 and 4.10. The theory of resultants is custom-designed to
predict the eliminant in such cases. We shall explain this in the remainder
of the section. To set this up, we work over the field Q of rational numbers.

Let i ∈ {1, 2, . . . ,m+1} and fix a general inhomogeneous polynomial fi
of degree di in z1, . . . , zm. This polynomial has

(
di+m
m

)
unknown coefficients

xi,u, one for each monomial zu of degree ≤ di. The total number of unknown

coefficients equals n =
∑m+1

i=1

(
di+m
m

)
. We write Q[x, z] for the resulting

polynomial ring in n+m variables. Inside this ring we consider the ideal

I = 〈 f1, f2, . . . , fm, fm+1 〉 ⊂ Q[x, z].

We are interested in the ideal inQ[x] found by eliminating them variables zi.
This ideal describes the polynomial conditions on the coefficients of m + 1
polynomials in m variables which represent the statement that these poly-
nomials have a common root over the algebraic closure Q of our field Q. To
be very precise, in the affine space Q

m
, the condition of having a common

root is not closed. Therefore, the geometric interpretation is best seen after
projectivization.

Theorem 4.11. The elimination ideal I ∩ Q[x] is principal. Its generator
is an irreducible polynomial in the entries of the coefficient vector x, denoted
by Res(f1, . . . , fm+1) and called the resultant. The degree of the resultant in
the coefficients of fi equals d1 · · · di−1di+1 · · · dm+1 for i = 1, 2, . . . ,m+ 1.

Proof. We refer to [11, Chapter 3] for the proof. In that source, and in
many others, the fi are taken to be homogeneous polynomials in m + 1
variables. We here prefer the inhomogeneous case, since it admits a simpler
formulation as an elimination ideal. The two versions are equivalent.
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64 4. Mapping and Projecting

Here, we just briefly explain where the formula for the degree comes
from. To obtain the degree Di of the resultant in the coefficients of fi, let us
fix general coefficients of f1, . . . , fi−1, fi+1, . . . , fm+1. The degree Di is the
degree of the polynomial P we obtain from the resultant after substituting
all of these coefficients. By Bézout’s Theorem 2.16, the m fixed polynomials
define D′

i := d1 · · · di−1di+1 · · · dm+1 many points in the affine space Q
m
.

The condition that fi passes through one of these points is a linear condition
in the coefficients of fi. Hence, P vanishes if and only if its variables satisfy
one of D′

i linear conditions. Thus the degree Di of P equals D′
i. �

Example 4.12 (Determinants). Let d1 = · · · = dm+1 = 1. The m+1 poly-
nomials fi are affine-linear. They can be written as a matrix-vector product:⎛⎜⎜⎜⎜⎜⎝

f1
f2
...
fm
fm+1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
x1,1 x1,2 · · · x1,m x1,m+1

x2,1 x2,2 · · · x2,m x2,m+1
...

...
. . .

...
...

xm,1 xm,2 · · · xm,m xm,m+1

xm+1,1 xm+1,2 · · · xm+1,m xm+1,m+1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
z1
z2
...
zm
1

⎞⎟⎟⎟⎟⎟⎠ .

The resultant Res(f1, . . . , fm+1) is the determinant of the coefficient matrix
(xi,j). This determinant is a homogeneous polynomial of degree m + 1 in
n = (m+1)2 unknowns with (m+1)! terms. It has degree 1 in the coefficients
of each fi. Note that if we set all columns but the last to zero, then the
determinant clearly vanishes. The polynomials in this case become constants
and do not have a common zero. To better understand this, one could pass
to the projective space, i.e. homogenize the affine-linear forms fi.

Example 4.13 (Eliminating one variable from two quadratic polynomials).
Let m = 1 and d1 = d2 = 2 and write simply z for z1. Our system consists
of two univariate polynomials of degree 2 with six unspecified coefficients:

f1 = x11z
2 + x12z + x13 and f2 = x21z

2 + x22z + x23.

The generator of the elimination ideal 〈f1, f2〉∩Q[x] is the Sylvester resultant

(4.3) Res(f1, f2) = det

⎛⎜⎜⎝
x11 x12 x13 0
0 x11 x12 x13
x21 x22 x23 0
0 x21 x22 x23

⎞⎟⎟⎠ .

This determinant is a polynomial of degree 4, and its expansion has seven
terms. It vanishes if the two quadrics have a common zero. Note that the
resultant Res(f1, f2) is homogeneous of degree 2 in the three coefficients
of f1, and it is also homogeneous of degree 2 in the three coefficients of
f2. We say that this resultant is a bihomogeneous polynomial of bidegree
(d1, d2) = (2, 2).
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The formula (4.3) generalizes to two polynomials in z of arbitrary degrees
d1 and d2. The resultant is the determinant of the Sylvester matrix of format
(d1+d2)×(d1+d2). This matrix is denoted by Syld1,d2 and is displayed below.
The first d2 rows are formed by the coefficients of the first polynomial f1,
suitably shifted and padded with zeros. The last d1 rows are similarly formed
by the coefficients of the second polynomial f2. The matrix is as follows:

Syld1,d2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 · · · · · · x1,d1+1 0 · · · 0

0 x11 x12
. . .

. . . x1,d1+1 0 0
...

. . .
. . .

. . . · · · . . .
. . .

...
0 0 · · · x11 x12 · · · · · · x1,d1+1

x21 x22 · · · · · · x2,d2+1 0 · · · 0

0 x21 x22
. . .

. . . x2,d2+1
. . . 0

...
. . .

. . .
. . . · · · . . .

. . .
...

0 · · · 0 x21 x22 · · · · · · x2,d2+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(4.4)

For d1 = d2 = 2 this is the 4× 4 matrix seen in (4.3).

Theorem 4.14. The determinant of the Sylvester matrix Syld1,d2 is equal
to the resultant Res(f1, f2) of the two univariate polynomials

f1(z) = x11z
d1 + · · ·+ x1,d1z + x1,d1+1

and f2(z) = x21z
d2 + · · ·+ x2,d2z + x2,d2+1.

Proof. We first note that det(Syld1,d2) is a nonzero polynomial. We can

see this by taking f1 = zd1 and f2 = 1. Here the Sylvester matrix Syld1,d2
specializes to the identity matrix, so its determinant is nonzero.

Let Z denote the column vector with entries zd1+d2−1, zd1+d2−2, . . . , z, 1
and F the column vector with entries zd2−1f1, . . . , zf1, f1, z

d1−1f2, . . . , zf2,
f2. Both vectors have length d1 + d2. They are related by the Sylvester
matrix:

Syld1,d2 · Z = F.

Multiplying on the left by the adjugate of the Sylvester matrix, we obtain

det(Syld1,d2) · Z = adj(Syld1,d2) · F.
The last coordinate of the column vector Z equals 1. Thus, the last co-
ordinate in this equation shows that det(Syld1,d2) is a polynomial linear
combination of the entries of F , and hence it lies in the ideal 〈f1, f2〉.

The Sylvester determinant is a nonzero homogeneous polynomial of de-
gree d1+d2 that lies in the ideal 〈f1, f2〉 ∩Q[x]. We know from Theorem 4.11
that this ideal is principal, and its generator Res(f1, f2) has degree d1 + d2
as well. This implies that the resultant Res(f1, f2) is equal to the Sylvester
determinant det(Syld1,d2), up to a nonzero multiplicative constant. �
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Example 4.15. Let f1(z) and f2(z) be univariate polynomials of degrees
d1 and d2 in Q[z]. This defines a map f : C → C2 whose closed image is
an algebraic curve in the plane C2 with coordinates (x1, x2). The implicit
equation of this curve is the resultant Resz

(
x1 − f1(z), x2 − f2(z)

)
, taken

with respect to the variable z. For a concrete example consider the plane
cubic curve given parametrically by f = (z3 + 4z, z2 − 3). Its equation is

det

⎛⎜⎜⎜⎜⎜⎝
−1 0 −4 x1 0

0 −1 0 −4 x1

−1 0 x2 + 3 0 0

0 −1 0 x2 + 3 0

0 0 −1 0 x2 + 3

⎞⎟⎟⎟⎟⎟⎠ = x32 − x21 + 17x22 + 91x2 + 147.

If m ≥ 2 then the resultant Res(f1, f2, . . . , fm+1) is more difficult to
compute, and there does not always exist a formula as a determinant whose
entries are linear expressions in the coefficients of f1, f2, . . . , fm+1. In some
cases, however, such formulas are available in the literature. For instance,
Sylvester already gave such a formula for m = 2 and d1 = d2 = d3. A
considerable body of information on matrix formulas for resultants can be
found in the excellent book by Gel’fand, Kapranov and Zelevinsky [22].

4.3. The Image of a Polynomial Map

We have discussed methods for computing the Zariski closure of the image
of a polynomial map. Can we say something about the image itself? The
answer is yes, but the situation very much depends on the field K and
whether we are in the projective case or the affine case. In this section we
discuss methods for computing such images. We begin by highlighting the
difference between the real numbers and the complex numbers with regard
to this problem.

We start with a brief discussion of the situation over the real numbers R.
Let X be an affine variety in Rn. We would like to understand the image
f(X) of X under a polynomial map f = (f1, . . . , fm) : Rn → Rm. Easy
examples show that the Zariski closure of the image and the image itself
can differ a lot. For instance, this happens for n = m = 1, X = R and
f(z) = z2. Then f(X) = R≥0 is the set of nonnegative real numbers.

Is there a chance in general of describing the image using polynomials?
The following example confirms that inequalities are needed to describe
the image. Its conclusion is familiar from the quadratic formula learned
in high school.

Example 4.16. Let n = 4 and let X be the hypersurface defined by

ax2 + bx+ c = 0,
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4.3. The Image of a Polynomial Map 67

where (a, b, c, x) are coordinates on R4. We take m = 3 and define f to be
the projection R4 → R3 onto the coordinates (a, b, c). The image is

f(X) =
{
(a, b, c) ∈ R3 : b2 − 4ac ≥ 0

}
\
{
(0, 0, c) : c �= 0

}
.

In particular, we see that the image f(X) is not a closed subset of R3.

The following theorem provides an answer to our question. It refers to
the concept of semialgebraic sets, which was introduced in Definition 2.12.

Theorem 4.17 (Tarski-Seidenberg). Working over the field of real numbers,
the image of a variety in Rn under the map f is a semialgebraic set in Rm.

Proof. See [6, §1.4]. �

Thus, to provide a description of the image over R we need two ingredi-
ents, polynomial equations and polynomial inequalities, suitably combined.

Example 4.18. Let n = 6 and m = 9, and let f be the map that multiplies
a 3× 2 matrix Z by its transpose to get a 3× 3 matrix X = (xij):

Z =

[
z11 z12
z21 z22
z31 z32

]
�→ X =

[
z211 + z212 z11z21 + z12z22 z11z31 + z12z32

z11z21 + z12z22 z221 + z222 z21z31 + z22z32
z11z31 + z12z32 z21z31 + z22z32 z231 + z232

]
.

The image of f is the set of positive semidefinite symmetric 3× 3 matrices
of rank ≤ 2. This is a 5-dimensional semialgebraic set in the space R9 of
3× 3 matrices. Its polynomial description consists of the four equations

(4.5) x12 = x21 , x13 = x31 , x23 = x32 and det(X) = 0

and the six inequalities

x11 ≥ 0 , x22 ≥ 0 , x33 ≥ 0 , x11x22 ≥ x212 , x11x33 ≥ x213 , x22x33 ≥ x223.

It is generally difficult to compute the semialgebraic set f(X) when we
are given a real variety X and a polynomial map f . One algorithm that ac-
complishes this is known as cylindrical algebraic decomposition (CAD). We
refer to [4, Chapter 5] for a textbook introduction to CAD. A friendly case
study (with soccer balls) can be found in [31]. See [31, Example 6] for an il-
lustration of how to call CAD in the computer algebra system Mathematica.

We now return to the setting of an algebraically closed field K, such as
the complex numbers K = C. Here, the situation is a bit easier than in the
Tarski-Seidenberg Theorem 4.17. For instance, the image of f : C6 → C9

in Example 4.18 is closed; it is precisely the subvariety defined by (4.5).
However, the image is generally not closed. We saw this in Examples 4.1
and 4.7. Recall from Definition 2.12 that a subset of Kn is constructible if
it is a finite union of differences of varieties. We now present a counterpart
of Theorem 4.17, where the field K is assumed to be algebraically closed.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



68 4. Mapping and Projecting

Theorem 4.19 (Chevalley). The image of a constructible set X ⊂ Kn

under a polynomial map f : Kn → Km is a constructible set.

Proof. As in Section 4.2, we realize f(X) as the image under a projection
Km+n → Km of the intersection of X ×Km and the graph of f . Hence, by
induction on m, it is enough to prove that the image of a constructible set
X ⊂ Km+1 under the projection f : Km+1 → Km is constructible. In our
proof we focus on the most important case, where X is a variety in Km+1.
We proceed by induction on dimX. The base case dimX = 0 is trivial.

By decomposing X into irreducible components (Proposition 3.7), we
may assume that X is irreducible. Let Y be the closed image of X. This is
the irreducible variety whose prime ideal is I(Y ) = I(X) ∩K[x1, . . . , xm].

We claim that there exists a nonempty Zariski open set U ⊂ Y which is
contained in f(X). Before proving the claim, we note that it will allow us to
finish the proof. Indeed, Y \U is a variety whose preimage is a proper subva-
riety X ′ ⊂ X. By induction, f(X ′) is constructible and f(X) = f(X ′) ∪ U .

To prove the claim, we consider a reduced lexicographic Gröbner basis G
of the ideal I(X), as in Theorem 4.5. Each element gi of G can be written as

gi = hi(x1, . . . , xm)xbim+1 + terms of lower degree in xm+1.

If all of the bi are zero, then I(X) = I(Y ) and hence f(X) = Y . So we may
assume b1 > 0. We set U = Y \V(h1). This is a Zariski open subset of Y .

We first note that U is nonempty. Otherwise, h1 would vanish on Y
and hence h1 ∈ I(X). This is not possible, since b1 > 0 and the Gröbner
basis G is reduced. Our claim is that U ⊆ f(X). Hence, for any y ∈
U , we must find x ∈ K such that (y, x) ∈ X ⊂ Km+1. Fix the ideal
I = {q(y, xn+1) : q ∈ I(X)} in K[xm+1]. We have I = 〈p〉 for some
p ∈ K[xm+1]. If p has positive degree or equals zero, then there exists
x ∈ K such that p(x) = 0. We claim that (y, x) ∈ X. Indeed, if we pick
any q ∈ I(X), then q(y, xm+1) = p(xm+1)p

′(xm+1) for some p′ ∈ K[xm+1].
Thus, q(y, x) = p(x)p′(x) = 0. Hence, (y, x) ∈ X.

It remains to exclude the case of p ∈ K\{0}. Suppose for contradic-
tion that q(y, xm+1) ∈ K\{0} for some q ∈ I(X). We regard g1 and q
as polynomials in xm+1 and compute their resultant R ∈ K[x1, . . . , xm].
In other words, we replace xij in the Sylvester matrix (4.4) with the co-
efficients of g1 and q. Then R is the determinant. By Theorem 4.11,
R belongs to the elimination ideal 〈g1, q〉 ∩ K[x1, . . . , xm]. This implies
R ∈ I(X) ∩ K[x1, . . . , xm] = I(Y ). In particular, R(y) = 0. However,
R(y) is the determinant of the matrix that is obtained from (4.4) by eval-
uating the coefficients of g1 and q at y. As q(y, xm+1) is a nonzero con-
stant, we see that each row in the lower part of the matrix has precisely
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4.3. The Image of a Polynomial Map 69

one nonzero entry, corresponding to x2,d2+1 = q(y, xm+1). Hence, the
Sylvester matrix is zero below the diagonal and its determinant equals

R(y) = h1(y)
degxm+1

q
q(y, xm+1)

b1 , which is a product of nonzero numbers.
This is a contradiction, and it finishes the proof. �

More information about Chevalley’s Theorem 4.19 and its proof can be
found in [10, §§3.6 and 5.6] and [60, §§7.4.6–7.4.8].

Corollary 4.20. In Theorem 4.19, if K = C and X ⊂ Cn is a variety, then
the Zariski closure of the image f(X) ⊂ Cm equals the Euclidean closure.

Proof. Using bars for Zariski closure, the set U in the proof above satisfies

U = f(X)\V(h1) ⊆ f(X) ⊆ f(X) ⊆ Cm.

However, the complement of a proper subvariety of a complex affine variety
in Cm is dense in that variety with respect to the Euclidean topology. This
shows that U is dense in f(X) for the familiar Euclidean topology on Cm. �

Suppose we want to check whether a given point y ∈ Km lies in the image
f(X). This can be done by examining a system of polynomial equations

(4.6) x ∈ X and f(x) = y.

These are equations in n unknowns x1, . . . , xn, and we must decide whether
a solution exists. According to the Nullstellensatz (Theorem 6.1), this
amounts to deciding whether 1 lies in the ideal of K[x] specified by (4.6).

Computing the full image is a more difficult task. The desired output is
a description as a constructible set. We approach this problem as follows:

• Compute the closed image X0.

• Subtract from it a proper subvariety X1.

• Add back X2, a proper subvariety of X1, etc.

This procedure must finish in a finite number of steps, by Hilbert’s Basis
Theorem. For a recent algorithm and its implementation we refer to [24].

Example 4.21. Let m = n = 3 and consider the map

f : C3 → C3, (z1, z2, z3) �→ (z1z2, z1z3, z2z3).

Its image is Zariski dense in C3. Here is a description as a constructible set:

image(f) = (C3\V(x1x2x2)) ∪ V(x1x2, x1x3, x2x3).
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70 4. Mapping and Projecting

Note the difference between Chavelley’s Theorem and the Tarski-Seidenberg
Theorem. Over the real numbers, we also need the inequality x1x2x3 ≥ 0.

Applied mathematicians tend to wonder why algebraic geometers restrict
themselves to complex numbers and projective varieties. One explanation is
that images of polynomial maps behave more nicely in that setting. The fol-
lowing result, which is known as the Main Theorem of Elimination Theory,
makes this statement precise. It can be regarded as an algebraic analogue
of the fact that images of compact sets under continuous maps are compact.

Theorem 4.22. Let X be a projective variety over an algebraically closed
field K. Then the image of X under a regular map f is (Zariski) closed.

Here being regular means that the map is defined by homogeneous poly-
nomials of the same degree and these polynomials never vanish simultane-
ously on the domain X. The nonvanishing condition ensures that each point
has a well-defined image in projective space. The map f in Example 4.21
does not define a regular map from the projective plane P2 to itself. This
map would not be defined at the points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1).

Proof. We refer to [47, §5.2]. If we work over C, then the projective variety
X is compact in the Euclidean topology. Therefore, the image of X is
also compact and hence closed. However, by Corollary 4.20 to Chevalley’s
Theorem 4.19, the Zariski closure and the Euclidean closures of the image
coincide. We conclude that the image is also Zariski closed. �

Theorem 4.22 is a powerful result. For instance, it implies the following.
Consider a map f = (f1, . . . , fm) given by homogeneous polynomials of the
same degree. Assume that the affine variety V(f1, . . . , fm) equals {0}. Then
the image of f is Zariski closed—we can compute it using elimination. For
an application see Exercise 20. In general, the following theorem holds.

Theorem 4.23. Consider a map f = (f1, . . . , fm) : Cn+1 → Cm given by
homogeneous polynomials of the same degree. Let dimV(f1, . . . , fm) = b+1.
Suppose that the closed image of f has affine dimension d + 1, i.e. the
projective dimension is d. If d+ b < n, then the image of f is closed.

Proof. We regard f as a map from Pn\V(f1, . . . , fm) to Pm−1. Let Pd ⊂ Pn

be a general projective subspace of dimension d < n− b. It is disjoint from
V(f1, . . . , fm). Thus we may assume that f is well-defined on Pd. The image
of Pd under f is closed by Theorem 4.22. It is contained in the closed image
of Pn under f . The two have the same dimension and are both irreducible.
So the images coincide, and we conclude that the image of f is closed. �
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Exercises

(1) Eliminate the variable z from the equations x3y3z3 − x− y− z = 1 and
x5 + y5 + z5 = 2. Discuss the resulting curve in the (x, y)-plane.

(2) If an ideal I in a polynomial ring is prime, then so are its elimination
ideals, and the same is true for being radical. Find examples which show
that the converse does not hold. What is the geometric meaning of these
facts?

(3) Compute the determinants of the Sylvester matrices Syl1,5, Syl2,4 and
Syl3,3. Each is a polynomial of degree 6 in eight unknowns. Which of
these three polynomials has the most terms?

(4) You are given a plane curve with parametrization z �→
(
f(z), g(z)

)
where

f and g are polynomials of degree 10. At most how many terms do you
expect the implicit equation of that plane curve to have?

(5) Can you find an invertible 5× 5 matrix that is skew-symmetric?

(6) You are given all entries of a skew-symmetric 5 × 5 matrix X = (xij)
except for x12 and x45. Under what condition on the eight visible entries
can you complete the matrix with rank(X) ≤ 2?

(7) Let π be the linear map from C3 to C2 given by the matrix

(
1 2 3
3 2 1

)
.

Given an algebraic curve V in C3, explain how one can compute the
plane curve π(V ) ⊂ C2. What happens if you replace C by R?

(8) Consider the Fermat curve V = V(x3 + y3 + z3) in P2. Compute the
prime ideal that defines the closed image of V under the Veronese map

P2 → P5 , (x : y : z) �→ (x2 : xy : xz : y2 : yz : z2).

(9) You are given a complex 3×3 matrix and asked whether it is the square
of a traceless 3× 3 matrix. Write this question in the formulation (4.6).
What does Chavelley’s Theorem tell us about a general answer?

(10) Determine the prime ideal of relations between the 3 × 3 minors of a
3× 6 matrix. Where in the next chapter does this prime ideal appear?

(11) Consider the map f : R4 → R3 in Example 4.16, but now take X to be
the hypersurface given by ax4+ bx+ c = 0. Verify that the image f(X)
is a semialgebraic set. Find an explicit polynomial description of f(X).

(12) Let V1 and V2 be algebraic curves in C3 and let V1+V2 be their pointwise
sum. The Zariski closure V1 + V2 is an algebraic variety in C3. Explain
how one can compute the vanishing ideal of this variety.
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72 4. Mapping and Projecting

(13) Following Example 4.10, how would you define the hyperdeterminant of
a 2× 2× 3 tensor (xijk)? This hyperdeterminant is a polynomial in the
12 unknowns xijk. Can you compute it? How many terms does it have?

(14) Use the resultant method in Example 4.15 to compute the implicit equa-
tion of the plane cubic curve that has the parametrization

z �→
(
2z3 + 3z2 + 5z + 7, 11z3 + 13z2 + 17z + 19

)
.

(15) Let m = 2, d1 = 1 and d2 = d3 = 2. The resultant Res(f1, f2, f3) is a
polynomial in n = 15 = 3 + 6 + 6 unknowns, one for each coefficient of
f1, f2 and f3. What is the degree of this polynomial? How many terms
does it have?

(16) What constraints hold for off-diagonal entries of a rank-1 3× 3 matrix?

(17) What constraints hold for the off-diagonal entries of a nilpotent 3 × 3
matrix? Answer this question for the field of complex numbers C.

(18) What constraints hold for the off-diagonal entries of an orthogonal 3×3
matrix? Answer this question for the field of real numbers R. What does
the Tarski-Seidenberg Theorem tell us about the form of the answer?

(19) Let m = 2 and d1 = d2 = d3 = 2. Then Res(f1, f2, f3) is the resultant of
three quadrics in the plane. This is a polynomial in 18 = 6 + 6 + 6
variables of degree 12 = 4 + 4 + 4. How many terms does it have?
Find a good formula for Res(f1, f2, f3). Hint: See [11, Chapter 3] or
[22, §3.4.D].

(20) Let V be the space of homogeneous polynomials in n variables of degree
d. The dth powers of linear forms form a subset of V . Is it Zariski closed
for any n and d? What happens over the field of real numbers?

(21) Why is Theorem 4.22 called the Main Theorem of Elimination Theory?
Where does elimination come in? What is the geometric interpretation?
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Chapter 5

Linear Spaces and
Grassmannians

“Geometry is not true, it is advantageous”, Henri Poincaré

In previous chapters we saw the construction of projective space. We
argued that projective varieties are preferable to affine varieties in many
applications. Points in a projective space correspond to lines through the
origin in the underlying vector space. In this chapter we replace lines with
higher-dimensional linear subspaces. The role of the projective space is
now played by a Grassmannian. This is a smooth projective variety whose
points correspond to linear subspaces of a fixed dimension. For instance, the
Grassmannian of lines in projective 3-space is a 4-dimensional variety. Its
subvarieties represent families of lines. Counting lines that satisfy a certain
property (e.g. lying on a cubic surface) leads us to enumerative algebraic
geometry, a subject in which Grassmannians play a fundamental role.

5.1. Coordinates for Linear Spaces

Let V be a vector space of dimension n over a field K. In Chapter 2 we
constructed the projective space P(V ). Its points are the 1-dimensional
subspaces of V . We note that P(V ) is the key example of a compact alge-
braic variety when K = C. Our aim is to generalize this construction from
lines to subspaces of arbitrary dimension k with 0 < k ≤ dimV . We will
construct a projective variety G(k, V ) whose points correspond bijectively
to k-dimensional subspaces of V . This variety is called the Grassmannian,
after the 19th-century mathematician Hermann Grassmann. If V = Kn,

73
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74 5. Linear Spaces and Grassmannians

then we use the notation Pn−1 for the projective space P(V ), and we write
G(k, n) for the Grassmannian G(k, V ).

We start with an explicit construction in coordinates, by fixing a basis
e1, . . . , en of V . Consider any k linearly independent vectors v1, . . . , vk ∈ V .
We represent them in the form of a k × n matrix M of rank k. To these
vectors, or equivalently to a full-rank k × n matrix, we associate the linear
subspace W := K{v1, . . . , vk} in V . This association is surjective but not
injective, as we may replace the vi’s by linear combinations. In other words,
the group GL(k) of invertible k×k matrices acts on the set of k×n matrices
by left multiplication, and this does not change the linear span of the rows.

We know some polynomial functions that do not change (up to rescaling)
upon taking linear combinations of the rows; these are the k × k minors of
the k × n matrix. Suppose that W is a k-dimensional subspace of V . Pick
any basis and express W as the row space of a k×n matrix. We then write
i(W ) for the vector of all k × k minors of that matrix, up to scaling.

Example 5.1. Let k = 2 and n = 5, and let W be the linear subspace
of V = K5 that is spanned by (1, 1, 1, 1, 1) and (a1, a2, a3, a4, a5) for some

scalars ai that are not all identical. Then i(W ) is the point in P9 = P(K(52))
whose 10 homogeneous coordinates are ai − aj for 1 ≤ i < j ≤ 5.

Forming the vector of all k×k minors of the k×n matrix defines a map

i : {k-dimensional subspaces of V } → P(K(nk)).

This is well-defined since i(W ) does not depend on the chosen basis of W .

Lemma 5.2. The map i is injective.

Proof. Consider two k-dimensional subspaces W1,W2 ⊂ V . Assume i(W1)
= i(W2). The matrices MW1 and MW2 that represent W1 and W2 have
rank k. Without loss of generality we may assume that the first k columns
are linearly independent. By performing linear operations on the rows of
both matrices, we transform MWi to a matrix M̃Wi whose leftmost k × k

submatrix is the identity. We observe that any entry of M̃Wi not in the
first k columns is equal to some maximal minor or its negative. Thus, if
i(W1) = i(W2) then the two matrices M̃W1 and M̃W2 must be equal. This
implies W1 = W2. �
Example 5.3. The reasoning in the proof above is illustrated by the matrix

(5.1) M̃W =

⎛⎝ 1 0 0 p234 p235 p236
0 1 0 −p134 −p135 −p136
0 0 1 p124 p125 p126

⎞⎠ .

Let k = 3 and n = 6. Each entry pijk in the 3× 3 block on the right equals

the 3× 3 minor of the matrix M̃W given by the column indices i, j, k.
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5.1. Coordinates for Linear Spaces 75

The image of i is the Grassmannian G(k, n). Its inclusion in P(K(nk))
is the Plücker embedding. For readers familiar with the exterior power of a
vector space, here is a more invariant description of the Grassmannian:

G(k, n)={[v1∧· · ·∧vk] ∈ P(
k∧
V ) : v1, . . . , vk ∈ V are linearly independent}.

Indeed, first we may identify P(K(nk)) with P(
∧k V ) by fixing a basis of V and

the induced basis of
∧k V . Expanding v1 ∧ · · · ∧ vk in that basis, we indeed

obtain the k × k minors of the n× k matrix [v1, . . . , vk]. The group GL(V )
acts naturally on V , taking subspaces to subspaces. This induces an action

on P(
∧k V ) which restricts to the Grassmannian. A matrix g ∈ GL(V )

transforms v1 ∧ · · · ∧ vk to g(v1) ∧ · · · ∧ g(vk). We note that this action
is transitive: For every pair p1, p2 ∈ G(k, V ) there exists a (nonunique)
automorphism g ∈ GL(V ) such that g(p1) = p2. This holds because any set
of k linearly independent vectors may be transformed by an invertible linear
map to any other such set. Hence, G(k, V ) is an orbit under the action of

GL(V ) on P(
∧k V ). In fact, G(k, V ) is the unique closed orbit in this space.

Projective varieties that are orbits of algebraic matrix groups are said
to be homogeneous. The Grassmannians are prominent instances of homo-
geneous varieties. We will study algebraic groups and their representations
as matrix groups in Chapter 10. Homogeneous varieties are always smooth.
Indeed, any algebraic variety always contains a smooth point, and an action
of a group must take a smooth point to a smooth point. A version of this
statement is given in Exercise 2.

Our next aim is to show that the Grassmannian is a projective variety.
Equivalently, we need to express the property that

(
n
k

)
given numbers are

the minors of a k × n matrix in terms of the vanishing of (homogeneous)
polynomials.

Theorem 5.4. The Grassmannian G(k, n) is Zariski closed and irreducible.

Proof. Lemma 5.2 gives us an idea of how to proceed. Namely, first let us
assume that the matrix MW representing W has the form seen in (5.1),

(5.2)

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 · · · 0 1

A
⎤⎥⎥⎥⎦ ,

where A is a k × (n − k) matrix. Each maximal minor of MW is now, up
to sign, a minor of A of some size. Further, by Laplace expansion, a q × q
minor of A for q > 1 may be expressed, as a quadratic polynomial, in terms of

smaller minors. This gives
∑min(k,n−k)

q=2

(k
q

)(n−k
q

)
inhomogeneous quadratic
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76 5. Linear Spaces and Grassmannians

equations in the minors of the k × (n− k) matrix A. These define the part

of the image of our map i that lies in the affine open set K(nk)−1 ⊂ P(K(nk))
given by the nonvanishing of the first Plücker coordinate.

If i(W ) has first coordinate zero, then some other coordinate will be
nonzero, as the matrix MW must have some invertible k × k submatrix. If
we multiply MW on the left by the inverse of that matrix, then we obtain a
matrix that looks like (5.2) but with its columns permuted. The same con-

struction as before gives us a system of
∑min(k,n−k)

q=2

(
k
q

)(
n−k
q

)
inhomogeneous

quadratic equations in the k(n− k) entries of the new matrix A.

Each of the quadratic equations in k(n − k) variables obtained above

can be written as a homogeneous quadric in the
(
n
k

)
coordinates on P(K(nk)).

Namely, a minor of A is replaced by the corresponding maximal minor of
MW , and then the quadric is homogenized by the special minor that corre-
sponds to the identity matrix in (5.2). Each of the homogenized polynomials
vanishes on the Grassmannian. Indeed, each set of polynomials, by construc-
tion, vanishes on the part of the Grassmannian that corresponds to matrices
with a fixed nonzero minor. However, any full-rank matrix is in the Zariski
closure of the set of full-rank matrices with all minors nonvanishing.

We also know that our equations define the Grassmannian on each open

affine chart of the projective space P(K(nk)). Hence, the collection of all
constructed quadrics gives a full polynomial description of G(k, n) as a set.

The affine cone over the Grassmannian G(k, n) is the image of a polyno-

mial map W �→ i(W ) from the matrix space Kk×n to the affine space K(nk).
This map takes all maximal minors of a k× n matrix W . In particular, the
image is irreducible and hence so is the Grassmannian G(k, n). �

5.2. Plücker Relations

We have proved that the set G(k, n) is cut out by quadratic equations. In
fact, with slightly more effort one can show that I(G(k, n)) may be generated
by quadratic polynomials. These are known as Plücker relations [39, Chap-
ter 3]. Further below we will discuss the Plücker relations for k = 2.

From a more algebraic perspective the equations vanishing on G(k, n)
are exactly the polynomial relations between maximal minors. We point
out that finding the ideal of polynomial relations between the nonmaximal
minors of a fixed size is an open problem in commutative algebra.

Our argument shows that the intersection G(k, n)∩K(nk)−1 of the Grass-

mannian with the open affine set K(nk)−1 is the affine space Kk×(n−k) in-
dicated in (5.2). Just like the usual projective space, the Grassmannian
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5.2. Plücker Relations 77

G(k, n) is glued together from affine spaces. In the same way, as a point in
Pn−1 has a nonunique representation as an n-tuple of numbers, a point in
G(k, n) may be represented by a k × n matrix. To make the representation
unique, for the projective space one chooses xi �= 0 and sets xi = 1. This
corresponds to choosing a nonzero maximal minor in the matrix and taking
the submatrix to be the identity. Thus, our constructions are generaliza-
tions of those known for the projective space Pn−1 = G(1, n) to arbitrary
Grassmannians.

Corollary 5.5. The dimension of the Grassmannian G(k, n) equals k(n−k).

Remark 5.6. The Grassmannian G(k, n) parametrizes k-dimensional vec-
tor subspaces of an n-dimensional vector space or, equivalently, (k − 1)-
dimensional projective subspaces of an (n−1)-dimensional projective space.

Example 5.7 (k = 2, n = 4). The Grassmannian G(2, 4) is the image of
the map[
a b c d
e f g h

]
�→ (af−be : ag−ce : ah−de : bg−cf : bh−df : ch−dg) ∈ P5.

Alternatively, after fixing a basis (v1, v2, v3, v4) of the vector space V � K4,

the following identity holds in its second exterior power
∧2 V :

(av1 + bv2 + cv3 + dv4) ∧ (ev1 + fv2 + gv3 + hv4)

= (af − be)v1 ∧ v2 + (ag − ce)v1 ∧ v3 + (ah− de)v1 ∧ v4

+ (bg − cf)v2 ∧ v3 + (bh− df)v2 ∧ v4 + (ch− dg)v3 ∧ v4.

The Grassmannian G(2, 4) has dimension 4. It is a hypersurface in P5. We
write the coordinates on P5 as (p12 : p13 : p14 : p23 : p24 : p34). The indices
refer to the minors of a 2 × 4 matrix. Following the proof of Theorem 5.4,
we look at the matrices (5.2). Here, they take the form[

1 0 c d
0 1 g h

]
.

The expansion of the rightmost 2× 2 minor yields the inhomogeneous qua-
dratic equation p34 = ch−dg = (−p23)p14− (−p24)p13. We homogenize this
equation with the extra variable p12. We conclude that the Grassmannian
G(2, 4) is the hypersurface in P5 that is defined by the Plücker quadric

(5.3) p23p14 − p13p24 + p12p34.

We now discuss the homogeneous prime ideal I(G(k, n)) of the Grass-
mannian G(k, n). A complete description is known in terms of certain qua-
dratic relations that form a Gröbner basis. These are known as straightening
relations. For a derivation and explanation see e.g. [51, Chapter 3].
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78 5. Linear Spaces and Grassmannians

We here present the answer in the special case of k = 2. The correspond-
ing Grassmannian G(2, n) is the space of lines in Pn−1. The ambient space

in this case is P(
∧2Cn). The vector space

∧2Cn is simply the space of skew-
symmetric n× n matrices. Hence, it is convenient to write the

(
n
2

)
Plücker

coordinates as the entries of a skew-symmetric n × n matrix P = (pij).
The (affine cone over the) Grassmannian G(2, n) consists of special skew-
symmetric n× n matrices. Below we prove that these are exactly matrices
of rank 2. As a skew-symmetric matrix cannot have odd rank, we consider
the submatrices of P of size 4× 4. To bound the rank of a skew-symmetric
matrix, it is enough to consider principal submatrices, i.e. those that have
the same index set of rows and columns. One such submatrix is obtained
by taking the first four rows and first four columns. The determinant of
that matrix is the square of the Plücker quadric (5.3). One refers to the
square root of the determinant of a skew-symmetric matrix of even order as
its Pfaffian. Thus the 4× 4 Pfaffians of our matrix P are the

(
n
4

)
quadrics

(5.4) pilpjk − pikpjl + pijpkl for 1 ≤ i < j < k < l ≤ n.

Theorem 5.8. The
(n
4

)
quadrics in (5.4) form the reduced Gröbner basis of

the Plücker ideal I(G(2, n)), for any monomial ordering on the polynomial
ring in the

(n
2

)
variables pij that selects the underlined leading terms.

Proof. The argument in the proof of Theorem 5.4 shows that the quadrics

(5.4) cut out G(2, n) as a subset in P(
n
2)−1. In other words, our Grass-

mannian is given as the set of skew-symmetric n × n matrices whose 4 × 4
Pfaffians vanish. These are the skew-symmetric matrices of rank 2.

By Hilbert’s Nullstellensatz (proved in Chapter 6), we can conclude that
the ideal I(G(2, n)) is the radical of the ideal generated by (5.4). We need to
argue that the latter ideal is radical. However, this follows from the assertion
that (5.4) is a Gröbner basis. Indeed, the leading monomials pilpjk are
square-free, so they generate a radical monomial ideal. However, if the
initial ideal in(J) of an ideal J is radical, then J itself is also radical. So all
we need to do is verify the Gröbner basis property for our quadrics. That
Gröbner basis is then automatically reduced, because neither of the two
nonleading terms in (5.4) is a multiple of some other leading term.

To verify the Gröbner basis property, we reason as follows. For n = 4
the property is trivial because there is only one generator. For n = 5, 6, 7,
verifying the property is a direct computation, e.g. using Macaulay2. One
checks that the S-polynomial of any two quadrics in (5.4) reduces to zero.
Suppose that n ≥ 8 and consider two Plücker quadrics. These involve at
most 8 distinct indices. If the number of distinct indices is 7 or less, then we
are done by the aforementioned computation, which verified the claim for
n ≤ 7. Hence we may assume that all 8 indices occurring in the two Plücker
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5.3. Schubert Calculus 79

quadrics are distinct. In that case, the two underlined leading monomials
are relatively prime. Here, Buchberger’s second criterion applies, and we can
conclude that the S-polynomial automatically reduces to zero. In conclusion,
all S-polynomials formed by pairs from (5.4) reduce to zero. This completes
the proof. �

The Plücker relations for arbitrary Grassmannians are hardwired into
the computer algebra system Macaulay2. One finds generators for the ideal
I(G(k, n)) with the convenient command Grassmannian(k-1,n-1). Here,
the parameters k and n are decreased by 1 because Macaulay2 refers to the
projective geometry interpretation: Points in G(k, n) correspond to projec-
tive spaces of dimension k − 1 in an ambient projective space of dimension
n − 1. Another thing that is tricky about the command Grassmannian is
the ordering of the Plücker coordinates in Macaulay2. Here is how it works.

Example 5.9 (k = 3, n = 6). The following two command lines yield equa-
tions defining the Grassmannian of 3-dimensional vector subspaces in K6.

R = QQ[p123,p124,p134,p234,p125,p135,p235,p145,p245,

p345,p126,p136,p236,p146,p246,p346,p156,p256,p356,p456];

I = Grassmannian(2,5,R)

This produces 35 quadratic relations. Note that G(3, 6) is a smooth projec-
tive variety of dimension 9 and degree 42 in P19, as is seen by also typing

dim I, degree I, betti mingens I

Among the 35 minimal generators of I(G(3, 6)), there are 30 trinomials, such
as p134p125 − p124p135 + p123p145, plus five additional relations that involve
all six indices, such as p345p126− p125p346 + p124p356− p123p456. What is the
combinatorial pattern? Can you generalize it to larger values of k and n?
You will find answers and much more information in the books [39,41,51].

5.3. Schubert Calculus

We now show how Grassmannians can help us to answer enumerative ques-
tions. We would like to know how many lines or planes in space satisfy cer-
tain properties. This subject area is known as enumerative geometry, and
the specific answers we provide are based on Schubert calculus. Schubert
calculus furnishes an intersection theory for subvarieties of a Grassmannian.

We illustrate the concepts for the special case of G(2, 4). Here is the
simplest question of Schubert calculus: How many lines L intersect four
general lines L1, L2, L3, L4 in P3? The answer to this question is two. To
see this, we represent the line L by its corresponding point p = (p12 : p13 :
p14 : p23 : p24 : p34) in G(2, 4) ⊂ P5. As we will see, the condition that L
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80 5. Linear Spaces and Grassmannians

intersects a fixed Li is a linear condition in p. We must solve four such linear
equations, and these have general coefficients since L1, L2, L3, L4 are general
lines. Hence, we are intersecting the Grassmannian G(2, 4) defined by the
quadric p12p34 − p13p24 + p14p23 = 0 with four general hyperplanes. Over
an algebraically closed field, the number of points we obtain is the degree
of the variety, which in our case equals 2. Each of the two points represents
a line that is a solution to the starting problem. Note that this is also the
bound from Bézout’s Theorem applied to polynomials of degrees 1, 1, 1, 1, 2.

To study such intersection problems more systematically, one introduces
some special subvarieties of Grassmannians. We continue with the example
of G(2, 4), the manifold of all lines in P3. We fix a complete flag in P3,
consisting of a point in a line in a plane: f0 = P0 ⊂ f1 = P1 ⊂ f2 = P2 ⊂
P3. Our aim is to group families of projective lines according to how they
intersect that flag. These will be subvarieties Xi of dimension i in G(2, 4).

First, the flag distinguishes a point in G(2, 4), namely X0 := {f1} ⊂
G(2, 4). It also distinguishes a curve X1 in the Grassmannian G(2, 4). The
points of X1 are the lines l such that f0 ∈ l ⊂ f2. The most interesting is
the case of surfaces in our family. There are two types of those in G(2, 4):

(1) the surface X2 consisting of all lines l such that f0 ∈ l; and

(2) the surface X2′ consisting of all lines l such that l ⊂ f2.

Finally, there is also one 3-dimensional variety X3, consisting of all lines that
intersect the given line f1. The varieties X1, X2, X2′ and X3 we described
are called the Schubert varieties in G(2, 4). In Exercise 1 you will generalize
the construction of Schubert varieties to larger Grassmannians.

Let us now fix a basis v1, v2, v3, v4 for K4 and take fi to be the linear
subspace in P3 spanned by v1, . . . , vi+1. The point f1 ∈ G(2, 4) is given in P5

by the vanishing of all coordinates pij apart from p12. We have f0 ∈ l ⊂ f2
if and only if the line l is spanned by the rows of a matrix of the form[

1 0 0 0
0 f g 0

]
.

Hence, the curve X1 is a line P1 in G(2, 4) ⊂ P5, defined by the vanishing
of all pij apart from p12 and p13. Similarly, X2 is the P2 with coordinates
p12, p13, p14, and X2′ is a different P2 with coordinates p12, p13, p23. The
common span of these two planes is the 3-dimensional variety X3 = V(p34).

The relationship between X2, X2′ and X1 inside G(2, 4) can also be un-
derstood as follows. For any integer k ≥ 1, let Q be a nonsingular quadratic
hypersurface in P2k+1 and consider a linear subspace L = Pk−1 that is con-
tained in Q. Then there exist precisely two k-dimensional subspaces that
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5.3. Schubert Calculus 81

Figure 5.1. Every (red) point on a smooth quadratic surface lies on
two (green) lines contained in the surface. This is a cartoon of the rela-
tionship between the Schubert subvarieties X1, X2 and X2′ of G(2, 4).

contain L and are contained in Q. For k = 2 and Q = G(2, 4) containing
the line L = X1 in P5, the two subspaces are the planes X2 and X2′ in P5.

For k = 1, our statement is a classical fact from projective geometry. A
quadratic surface in P3 is isomorphic to P1 × P1. For point p = L in the
quadric, there are precisely two lines that contain p and lie on the quadric.
In Figure 5.1, the blue quadric contains the red point p, and the two lines are
green. This 3-dimensional picture is obtained by intersecting G(2, 4) with
the subspace H = P3 that is defined by p12 = p34 = 0 inside P5. The red
point p equalsH∩X1. The quadric is simplyH∩G(2, 4) = V(p23p14−p13p24),
and the two green lines are the intersections X2 ∩H and X2′ ∩H.

The Schubert subvarieties of a Grassmannian represent a basis for the
cohomology ring of the Grassmannian when the underlying field is K =
C. One learns in algebraic topology that multiplication in a cohomology
ring corresponds to intersection of submanifolds. This can then be used to
answer enumerative questions, i.e. for counting the number of points in an
intersection that turns out to be 0-dimensional. Schubert calculus is the art
of making this precise when the ambient manifold is a Grassmannian.

When intersecting Schubert varieties Xi as cohomology classes [Xi], one
should think of them as coming from distinct general flags. For instance,
consider the two surfaces X2 and X2′ . They intersect in the line X1. How-
ever, when thinking of the classes, the former represents all lines through
some arbitrary point in P3 and the latter represents all lines contained in
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82 5. Linear Spaces and Grassmannians

some entirely unrelated plane in P3. There are no lines satisfying both con-
ditions, so the intersection of [X2] and [X2′ ] is the class of the empty set.
We write this as [X2] · [X2′] = 0. On the other hand, if we ask for lines going
through two distinct points, or for lines contained in two distinct planes,
then there is one solution. The self-intersections of the classes [X2] and
[X2′] give one point. That one point is represented by the element 1 in the
cohomology ring. Our discussion is summarized by the following relations
that hold in the cohomology ring of the Grassmannian G(2, 4) of lines in P3:

[X3][X3] = [X2] + [X2′ ], [X2][X2] = [X2′ ][X2′] = [X3][X1] = 1,

[X2][X2′] = 0.

Recall that multiplication represents intersection and sum represents union.
The fact that the Schubert classes [Xi] form a basis for the cohomology ring
means that the class [Z] of any subvariety Z is a linear combination of the
[Xi]. Finding that linear combination for a given Z is similar to computing
the degree of a subvariety in Pn, as discussed at the end of Chapter 1.

We now have a conceptual framework for studying enumerative questions
like How many lines pass through four general lines in P3? The set of such
lines is a finite subset in G(2, 4). It is the intersection of four hypersurfaces,
all of the form X3. Since intersections are represented by multiplication in
the cohomology ring, the following formal computation reveals the answer:

[X3]
4 = ([X3][X3])

2 = ([X2] + [X2′ ])
2

= [X2]
2 + 2[X2][X2′ ] + [X2′ ]

2 = 1 + 2 · 0 + 1 = 2.

Here is another question to be answered by Schubert calculus: How many
lines are simultaneously tangent to four general quadratic surfaces in P3?

Consider a quadric Q in P3, represented as a symmetric 4 × 4 matrix.
Let

∧2 Q be the symmetric 6 × 6 matrix with entries given by the 2 × 2
minors of the matrix representing Q. This is known as the second compound
matrix of Q. The condition for a line to be tangent to Q is expressed by
the vanishing of the quadratic form P (

∧2Q)P T in the Plücker coordinates
P = (p12, p13, . . . , p34) of that line. This defines a threefold in G(2, 4). The
cohomology class of that threefold is 2[X3], since its equation is quadratic.

We conclude that the number of lines that are tangent to four given
general quadratic surfaces in P3 is

(2[X3])
4 = 16[X3]

4 = 16 · 2 = 32.

In order to actually compute the 32 lines over C, given four concrete quadrics
in P3, we would need to carry out some serious Gröbner basis computations.
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5.3. Schubert Calculus 83

Exercise 1 says that Schubert varieties in G(k, n) correspond to Young
diagrams contained in a k×(n−k) rectangle. Young diagrams play a funda-
mental role in representation theory. A formal definition appears in Defini-
tion 10.21. The classes of Schubert varieties form a Z-basis for the cohomol-
ogy ring of a Grassmannian. There is a purely combinatorial rule, named
after Littlewood and Richardson, for multiplying (i.e. intersecting) Schubert
varieties. This is expressed via Young diagrams [21, Appendix A.1].

The number of boxes in a Young diagram corresponds to the codimension
of the Schubert variety. In particular, as there is only one Young diagram
with one box, there is only one codimension-one class: the class of a hyper-
plane section under the Plücker embedding. The full k × (n− k) rectangle
corresponds to the class of a point. We will not present the full Littlewood-
Richardson rule here. Instead, we focus on the simpler Pieri’s rule.

Let μ be any Young diagram and let λ be the Young diagram with s
boxes contained in one column (resp. row). The product μ · λ is the sum of
all Young diagrams obtained by adding s boxes to μ, no more than one in a
row (resp. column). Of course, if we work with the Grassmannian G(k, n),
then we disregard all diagrams that do not fit in a k × (n− k) rectangle.

Example 5.10. For k = 3 and n = 6, Pieri’s rule gives the identity

· = + + .

We close this section by deriving the degree of the Grassmannian G(k, n)

as a projective variety in P(
n
k)−1. There are two different methods to do this.

The first method is geometric. Recall that the degree is the cardinal-
ity of the finite set that is obtained by intersecting G(k, n) with k(n − k)

general hyperplanes in P(
n
k)−1. The intersection of G(k, n) with one hy-

perplane gives the hyperplane class in cohomology. The desired degree is
found by multiplying the hyperplane class by itself k(n − k) times. Each
successive multiplication step is done using Pieri’s rule. This leads us to
Young tableaux.

Definition 5.11. A Young diagram with s boxes filled with the numbers
1, 2, . . . , s is a standard Young tableau if the entries are increasing in every
row and column. These tableaux are ubiquitous in algebraic combinatorics.

Proposition 5.12. The degree of the Grassmannian G(k, n) ⊂ P(
n
k)−1

equals the number of standard Young tableaux of rectangular shape
k × (n− k).
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84 5. Linear Spaces and Grassmannians

Proof. The entries in such a standard Young tableau indicate where the
box in each step is added when we apply Pieri’s rule k(n− k) times. �

The second method is more algebraic, utilizing a Gröbner basis for the
ideal I(G(k, n)). We explain this for k = 2. By Theorem 5.8, the initial
monomial ideal is M =

〈
pilpjk : 1 ≤ i < j < k < l ≤ n

〉
. The variety V(M)

is a union of coordinate subspaces of dimension 2n− 3; see e.g. Exercise 12
in Chapter 2. The number of these subspaces is the degree of M and hence
the degree of G(2, n). We find that this is the Catalan number :

(5.5) degree(G(2, n)) =
1

n− 1

(
2n− 4

n− 2

)
.

By Proposition 5.12, this equals the number of standard Young tableaux
of shape 2 × (n − 2). For more on Catalan numbers we refer to the entry
A000108 in the Online Encyclopedia of Integer Sequences. In general, a
closed formula for the degree of the Grassmannian may be derived from the
hook-length formula for the number of standard Young tableaux [21, 4.12].

Theorem 5.13. The degree of the Grassmannian G(k, n) ⊂ P(
n
k)−1 equals

(k(n− k))!∏k
j=1 j · (j + 1) · · · (j + n− k − 1)

.

Remark 5.14. Grassmannians are named after Hermann Grassmann. How-
ever, it was Julius Plücker who first noted that lines in 3-space may be
studied as a 4-dimensional object. Yet, Grassmann’s earlier discoveries were
fundamental; he was the one to realize that the algebraic setting of geome-
try allows us to consider objects not only in 3-dimensional space, but in any
dimension. Can you imagine data science without Grassmann’s insight?

Exercises

(1) Fix a complete flag in Pn−1. Construct a bijection between
• subvarieties of G(k, n) that consist of l ∈ G(k, n) that intersect each
element of the flag in at least the given dimension, and

• Young diagrams contained in a k × (n− k) rectangle.
Either the codimension or the dimension of the subvariety in G(k, n)
should equal the number of boxes in the corresponding Young diagram.

(2) Let G be a subgroup of the general linear group GL(V ), and let X ⊂ V
be a variety such that the action of G on V restricts to X. Prove that
if x is a smooth point of X and g ∈ G, then gx is also a smooth point.
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(3) Consider the inclusion G(2, 4)×G(2, 4) ⊂ P5×P5. Using Plücker coordi-
nates, describe the locus of pairs of lines (l1, l2) ∈ G(2, 4)×G(2, 4) such
that l1 intersects l2 in P3. Hint: Represent both lines as 2× 4 matrices.
Note that two lines in P3 intersect if and only if they do not span the
whole ambient space. Apply Laplace expansion of the determinant.

(4) Fix a variety X ⊂ Pn. The spaces Pk ⊂ X form a subvariety of G(k +
1, n+1). This is known as the Fano variety of k-dimensional subspaces
in X. Fix a nondegenerate quadric Q ⊂ P3. Describe the Fano variety
of lines in it. Hint: One may solve this exercise either theoretically or by
using algebra software. Also, Figure 5.1 gives a hint about the answer.

(5) How many real lines in 3-space can be simultaneously tangent to four
given spheres? It is best to start by computing some explicit examples.

(6) The two lines incident to four given real lines in P3 can be either real or
complex. In the latter case they form a complex conjugate pair. Write
down a polynomial in the 24 = 4 · 6 Plücker coordinates of four given
lines whose sign distinguishes the two cases.

(7) How many lines in P3 are simultaneously incident to two given lines and
tangent to two given quadratic surfaces?

(8) Consider the set of all lines in P3 that are tangent to the cubic Fermat
surface {x31 + x32 + x33 + x34 = 0}. This set is an irreducible hypersurface
in the Grassmannian G(2, 4). Compute a polynomial in p12, p13, . . . , p34
that defines this hypersurface.

(9) Find a minimal generating set for the ideal of the Grassmannian G(3, 7).

(10) Prove that the determinant of a skew-symmetric n× n matrix is zero if
n is odd, and is the square of a polynomial when n is even.

(11) Examine the monomial ideal that is generated by the underlined initial
monomials in (5.4). Express this ideal as the intersection of prime ideals.
How many primes occur? Use this result to derive the identity in (5.5).

(12) Fix six general planes P2 in P4. How many lines in P4 intersect all six
planes? Describe Schubert calculus for the Grassmannian G(2, 5).

(13) Let n = 2k and suppose that the k × k matrix A = (aij) in (5.2)
is symmetric, i.e. its entries satisfy the equations aij = aji. Express

these equations in terms of the
(2k
k

)
Plücker coordinates. The resulting

subvariety of G(k, 2k) is known as the Lagrangian Grassmannian.
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86 5. Linear Spaces and Grassmannians

(14) Can you find four smooth quadratic surfaces in real 3-space such that
32 real lines are tangent to all four of the surfaces? Are these surfaces
ellipsoids?

(15) The identity in Example 5.10 expresses a geometric statement about
intersections inside the Grassmannian G(3, 6) ⊂ P19. Explain this state-
ment in your own words. Illustrate it by computing an explicit example.
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Chapter 6

Nullstellensätze

“This is not mathematics, it is theology!”, Paul Gordan

The German noun Nullstellensatz refers to a theorem that characterizes
the existence of a zero (Nullstelle) for a system of polynomials. The classical
version, due to Hilbert, works over algebraically closed fields. It says that the
nonexistence of zeros is equivalent to the existence of a partition of unity for
the given polynomials. A more general version furnishes a bijection between
varieties and radical ideals. In this chapter we also discuss the analogous
version over the field of real numbers. Here the main results are the real
Nullstellensatz and the Positivstellensatz. These theorems give criteria for
polynomial equations and inequalities to have no real solutions. This leads
us to real radical ideals and their characterization via sums of squares.

6.1. Certificates for Infeasibility

In Chapter 3 we discussed how to find and represent solutions to a system of
polynomial equations. But what if a solution does not exist? In this chapter
we present methods of proving that a given system has no solution.

Throughout this section, we fix an algebraically closed field K, such as
the complex numbers K = C. We write K[x] = K[x1, . . . , xn] for its poly-
nomial ring in n variables. For an ideal I ⊂ K[x] we denote the associated
variety in Kn by V(I), as in Chapter 2. We begin with the following version
of the Nullstellensatz. This result appears as Theorem 1 in [10, §4.1].

Theorem 6.1. If I is an ideal in K[x] that is proper, i.e. 1 �∈ I, then its
variety V(I) in Kn is nonempty. Equivalently, if V(I) = ∅ then 1 ∈ I.

87
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88 6. Nullstellensätze

Proof. Suppose 1 �∈ I. We use induction on n. For n = 1, the desired
conclusion V(I) �= ∅ holds because K[x1] is a PID and every nonconstant
polynomial in one variable has a zero in the algebraically closed field K.

Now let n ≥ 2. For a ∈ K, we write Ixn=a for the ideal inK[x1, . . . , xn−1]
obtained by setting xn = a in each element of I. One easily checks that this
is indeed an ideal. We claim that there exists a scalar a ∈ K such that
1 �∈ Ixn=a. In such a case, by induction, there is a point (a1, . . . , an−1) in
V(Ixn=a). This implies that (a1, . . . , an−1, a) is a point in the variety V(I).

Consider the elimination ideal I ∩K[xn]. To prove the claim, we distin-
guish two cases. First suppose that this ideal is not the zero ideal. Since
1 �∈ I, the principal ideal I∩K[xn] is generated by a nonconstant polynomial

f(xn) =
r∏

i=1

(xn − bi)
mi .

Suppose that 1 ∈ Ixn=bi for i = 1, 2, . . . , r. If this is not the case then we are
done. Hence there exist B1, . . . , Br ∈ I such that Bi(x1, . . . , xn−1, bi) = 1
for all i. Note that Bi is congruent to 1 modulo 〈xn − bi〉 in K[x]. This
implies that the product

∏r
i=1(Bi − 1)mi belongs to the ideal 〈f〉. Since

f ∈ I and Bi ∈ I, the following identity holds modulo the ideal I:

0 =
r∏

i=1

(Bi − 1)mi =
r∏

i=1

(−1)mi = ±1, i.e. 1 ∈ I.

Next suppose I ∩ K[xn] = {0}. Let {g1, . . . , gt} be a Gröbner basis for I
under the lexicographic order with x1 > · · · > xn. Write gi = ci(xn)x

αi

+ lower-order terms, where xαi is a monomial in x1, . . . , xn−1. The set
{g1, . . . , gt} is also a Gröbner basis for the ideal generated by I in
K(xn)[x1, . . . , xn−1], a polynomial ring in n−1 variables over the fieldK(xn).
By Buchberger’s criterion, this means that every S-pair among the gi re-
duces to zero. The number of S-pairs and reductions involved is finite. The
set of coefficients appearing in this process is a finite subset of K(xn).

Since K is infinite, we can find a scalar a ∈ K at which none of these ra-
tional functions vanishes. Consider g′i=g(x1, . . . , xn−1, a)∈K[x1, . . . , xn−1].
The set {g′1, . . . , g′t} generates the ideal Ixn=a in K[x1, . . . , xn−1]. We claim
that it is a Gröbner basis. Indeed, the monomials in x1, . . . , xn−1 that ap-
pear in the reduction process for S-pairs among the g′i over K are exactly
the same as those for the gi over K(xn). Note that the Gröbner basis ele-
ment g′i has the leading monomial xαi . None of the t monomials xαi equals
1, since I ∩K[xn] = {0}. This implies that 1 is not in the ideal Ixn=a. �

Theorem 6.1 gives a certificate for the nonexistence of solutions to a sys-
tem of polynomial equations, namely the partition of unity we had promised.
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6.1. Certificates for Infeasibility 89

Corollary 6.2. Either a collection of polynomials f1, . . . , fr ∈ K[x] has a
common zero in Kn or there exists an identity g1f1 + · · · + grfr = 1 with
polynomial multipliers g1, . . . , gr ∈ K[x]. This is the desired certificate.

Proof. Let I = 〈f1, . . . , fr〉. Then either V(I) �= ∅ or V(I) = ∅. In the latter
case, 1 ∈ I, and hence 1 is a polynomial linear combination of the fi. �

Example 6.3. Let n = 2 and consider the three polynomials

f1 = (x+y−1)(x+y−2), f2 = (x−y+3)(x+2y−5), f3 = (2x−y)(3x+y−4).
These do not have a common zero. This is proved by a Nullstellensatz
certificate g1f1 + g2f2 + g3f3 = 1. One choice of multipliers is given by

g1 =
895

756
x2 − 6263

2160
x− 2617

2520
y +

4327

1008
,

g2 =
5191

3780
x2 +

358

945
xy − 6907

3024
x− 2123

15120
y +

3823

7560
,

g3 = −
179

420
x2 − 716

945
xy +

1453

1080
x− 716

945
y +

13771

7560
.

There are two possible methods for computing the multipliers (g1, . . . , gr)
for the Nullstellensatz certificate, as in Corollary 6.2. The first method is to
use the extended Buchberger algorithm. This is analogous to the extended
Euclidean algorithm for the ring of integers or the ring of polynomials in
one variable. For instance, given any collection of relatively prime integers,
this method writes 1 as a Z-linear combination of these integers.

In the extended Buchberger algorithm one keeps track of the polynomial
multipliers that are used to generate new S-polynomials from current basis
polynomials. In the end, each element in the final Gröbner basis is written
explicitly as a polynomial linear combination of the input polynomials. If
V(I) = ∅, then that final reduced Gröbner basis is the singleton {1}.

The second method for computing Nullstellensatz certificates is to use
degree bounds together with linear algebra. Let d be any integer that exceeds
the degree of each fi. Let gi be a polynomial of degree d − deg(fi) with
coefficients that are unknowns, for i = 1, 2, . . . , r. The desired identity∑r

i=1 gifi = 1 translates into a system of linear equations in all of these
unknowns. We solve this system. If a solution is found, then this gives
a certificate. If not, then there is no certificate in degree d, and we try a
higher degree.

The two methods, in complete generality, can be very complicated to
carry out in practice. The computation of Gröbner bases does not run in
polynomial time. Worst-case complexity bounds for Gröbner bases are dou-
bly exponential in the number of variables. Furthermore, the degrees of the
multipliers gi above are not polynomial in the input degrees either. Many
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mathematicians and computer scientists believe that there is no polynomial-
time algorithm for deciding whether a given polynomial system has a com-
plex solution. This is an active area of research. The situation is even worse
if we want solutions with coordinates in R, Q or Z. In the last case, it is
known that there exists no algorithm at all—irrespective of complexity—
for deciding whether a system has an integral solution. This was Hilbert’s
10th problem.

6.2. Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz provides a characterization of the set of all polyno-
mials that vanish on a given variety. This classical result from 1890 is valid
over any algebraically closed field K, such as the complex numbers K = C.
In this section we present this theorem and discuss some of its ramifications.

Recall that the radical of an ideal I in K[x] is the (possibly larger) ideal
√
I =

{
f ∈ K[x] : fm ∈ I for some m ∈ N

}
.

This is a radical ideal, and hence it is an intersection of prime ideals.

Example 6.4. Consider the ideal I = 〈x1x3, x1x4 + x2x3, x2x4 〉 in the
polynomial ring in four variables. It is not radical. To see this, note that
the monomial f = x1x4 is not in I but f2 is in I. The radical of I is

√
I = 〈x1x3, x1x4, x2x3, x2x4 〉 = 〈x1, x2〉 ∩ 〈x3, x4〉.

How many associated primes does the ideal I have? Do Gröbner bases of I
give any hints? We refer to Example 3.29 for the answer.

We now show that
√
I comprises all polynomials that vanish on V(I).

Theorem 6.5 (Hilbert’s Nullstellensatz). For any ideal I in the polynomial
ring K[x] in n variables over an algebraically closed field K, we have

(6.1) I
(
V(I)

)
=

√
I.

Proof. The radical
√
I is contained in the vanishing ideal I

(
V(I)

)
, because

fm(a) = 0 implies f(a) = 0 for all a ∈ Kn. We must show that the left-
hand side is a subset of the right-hand side in (6.1). Let I = 〈f1, . . . , fr〉
and suppose that f is a polynomial which vanishes on V(I). Let y be a
new variable and consider the ideal J = 〈f1, . . . , fr, yf − 1〉 in the enlarged
polynomial ring K[x, y] = K[x1, . . . , xn, y]. The variety V(J) in Kn+1 is the
empty set because f = 0 on every zero of f1, . . . , fr and f �= 0 on every zero
of yf − 1.
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6.2. Hilbert’s Nullstellensatz 91

By Theorem 6.1, there exist multipliers g1, . . . , gr, h in K[x, y] such that

r∑
i=1

gi(x, y) · fi(x) + h(x, y) · (yf(x)− 1) = 1.

We now substitute y = 1/f(x) into this identity. This yields the following
identity of rational functions in n variables:

r∑
i=1

gi
(
x,

1

f(x)

)
· fi(x) = 1.

The common denominator is f(x)m for some m ∈ N. Multiplying both sides
by this common denominator, we obtain a polynomial identity of the form

r∑
i=1

pi(x) · fi(x) = f(x)m.

This shows that fm lies in I, and hence f lies in the radical
√
I. �

Example 6.6. Which polynomial functions vanish on all nilpotent 3 × 3
matrices? We set n = 9 and take I to be the ideal generated by the entries
of X3, where X = (xij) is a 3×3 matrix with variables as entries. These are
nine homogeneous cubic polynomials in nine unknowns xij . One of them is

x311+2x11x12x21+x12x21x22+2x11x13x31+x12x23x31+x13x21x32+x13x31x33.

But what are all the polynomials that vanish on nilpotent matrices? Can
they be written as polynomial linear combinations of these nine cubics? The
answer is no. The ideal I

(
V(I)

)
=
√
I is larger than I. The radical of I is〈

x11+x22+x33 , x11x22+x11x33−x12x21−x13x31+x22x33−x23x32 , det(X)
〉
.

In words, the ideal
√
I is generated by the three coefficients of the nonleading

terms in the characteristic polynomial of X. This reflects the fact that a
square matrix is nilpotent if and only if it has no eigenvalues other than
zero. Theorem 6.5 implies that every polynomial that vanishes on nilpotent
3× 3 matrices is a polynomial linear combination of the three generators.

The Nullstellensatz implies a one-to-one correspondence between vari-
eties in affine n-space and radical ideals in the polynomial ring in n variables.

Corollary 6.7. The map V �→ I(V ) defines a bijection between varieties in
Kn and radical ideals in K[x]. The inverse map that takes radical ideals to
varieties is given by I �→ V(I).

Proof. A variety V is Zariski closed and hence satisfies V = V(I(V )). The
Nullstellensatz yields I = I(V(I)). These identities imply that both maps
are one-to-one and onto, and that they are the inverses of each other. �
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92 6. Nullstellensätze

Corollary 6.8. The map V �→ I(V ) defines a bijection between irreducible
varieties in the affine space Kn and prime ideals in the polynomial ring
K[x]. As before, the inverse map is given by I �→ V(I).

Proof. By Proposition 2.3, a variety V is irreducible if and only if its asso-
ciated radical ideal I(V ) is prime. �

Example 6.9 (n = 2). There are only two kinds of proper irreducible subva-
rieties in the affine plane K2. First, we have the points (a, b), corresponding
to maximal ideals I = 〈x − a, y − b〉. Second, there are irreducible curves,
one for each principal ideal I = 〈f〉 where f is an irreducible polynomial in
K[x, y]. Arbitrary varieties are unions of these types. For instance, consider

J = 〈x4 + 2x2 + y2 + 1〉 ∩ 〈y3 − 4, 2x− y2〉 in C[x, y].

This ideal is radical. Its variety V(J) in C2 has five irreducible components,
namely two quadratic curves and three points. Check that I(V(J)) = J .

In many applications one is interested in solving polynomial equations
over the real numbers, and one cares less about nonreal complex solutions.
This raises the following important question: Does there exist an analogue
of Hilbert’s Nullstellensatz over an ordered field, such as the real numbers
K = R? We shall see that the answer is affirmative. In the next section we
discuss the real Nullstellensatz and the Positivstellensatz. These concern
systems of polynomial equations and inequalities over the real numbers.
They generalize linear programming duality for systems of linear equations
and linear inequalities over R. Moreover, as we shall see in Chapter 12, the
Positivstellensatz plays an important role in nonlinear optimization.

The theorems above are false when K = R is the field of real numbers.
To see this, let n = 2 and consider varieties in the plane R2. Theorem 6.1
fails for I = 〈x2 + y2 + 1〉. This is a proper ideal in R[x, y], but VR(I) = ∅.
Theorem 6.5 is also false for I = 〈x2 + y2〉. This is a radical ideal, but

I
(
VR(I)

)
= 〈x, y〉 strictly contains

√
I = I.

We ask these two questions about ideals I in R[x] and their varieties in Rn:

• How can one best certify that the real variety VR(I) is empty?

• How can one compute the ideal I
(
VR(I)

)
from generators of I?

The goal of the next section is to give answers to these questions.

6.3. Let’s Get Real

We here present the real Nullstellensatz. Our point of departure is the fact
that a polynomial f in R[x] which is a sum of squares must be nonnegative,
i.e. the inequality f(u) ≥ 0 holds for all u ∈ Rn. A natural question is
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6.3. Let’s Get Real 93

whether the converse holds: Can every nonnegative polynomial be written
as a sum of squares? The answer depends on what is being squared.

Hilbert showed in 1893 that the answer is no if one asks for squares of
polynomials. However, it is yes if one allows squares of rational functions.
This was the 17th problem in Hilbert’s famous list from the International
Congress of Mathematicians in 1900. It was solved by Emil Artin in 1927.

Theorem 6.10 (Artin’s Theorem). If f ∈ R[x] is nonnegative on Rn, then
there exist polynomials p1, p2, . . . , pr, q1, q2, . . . , qr ∈ R[x] such that

f =

(
p1
q1

)2
+

(
p2
q2

)2
+ · · · +

(
pr
qr

)2
.

Example 6.11 (n = 2). The Motzkin polynomial M(x, y) is

x4y2 + x2y4 + 1− 3x2y2 =
(x2+y2+1) · x2y2(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2
.

Distributing the three terms of the factor (x2 + y2 + 1), we see that the
right-hand side is a sum of four squares of rational functions. This shows
that M(x, y) is nonnegative. However, it is not a sum of squares in R[x, y].
Suppose it were equal to

∑
i f

2
i where the fi’s are polynomials. None of the

fi’s may contain a monomial xd or yd for d > 0; otherwise the largest such
d would contribute positively to the coefficient of x2d in M(x, y). We have

fi = αi + βixy + f̃i, where all terms of f̃i have degree ≥ 3 and αi, βi ∈ R.
Further, f̃i cannot have terms of degree strictly greater than 3. Indeed, let
us fix any degree-compatible monomial order. The leading term of

∑
f2
i

is the sum of squares of the top leading term in any of the fi’s that may
contribute to it. In particular, the terms of top degree do not cancel. Hence,
the coefficient −3 of x2y2 in M(x, y) would then be equal to

∑
i β

2
i ≥ 0.

We shall derive Artin’s Theorem 6.10 as a special case of the following
more general statement. Theorem 6.12 is the real number analogue of the
weak form of the Nullstellensatz which was established in Theorem 6.1.

Theorem 6.12. Let I be an ideal in R[x] whose variety VR(I) is empty.
Then −1 is a sum of squares of polynomials modulo I, i.e. we have

(6.2) 1 + p21 + p22 + · · ·+ p2r ∈ I for some p1, p2, . . . , pr ∈ R[x].

For the proof of Theorem 6.12 see Murray Marshall’s book [40, §2.3].

Proof of Theorem 6.10. Let y be a new variable. Consider the polyno-
mial g = f(x)y2+1 in R[x, y]. Since f is nonnegative, the real variety VR(g)
is empty in Rn+1. By Theorem 6.12, there exists a polynomial identity

(6.3) 1 + p1(x, y)
2 + p2(x, y)

2 + · · ·+ pr(x, y)
2 + h(x, y)g(x, y) = 0.
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94 6. Nullstellensätze

We substitute y = ± 1√
−f(x)

into (6.3). This makes the last term cancel

in both substitutions. Note that pi(x,
1√

−f(x)
) = ai(x) +

1√
−f(x)

bi(x) and

pi(x,− 1√
−f(x)

) = ai(x)− 1√
−f(x)

bi(x) where ai and bi are rational functions.

We see that the two substitutions in (6.3) lead to the identities

1 +
r∑

i=1

ai(x)
2 − 1

f(x)

r∑
i=1

bi(x)
2 ± 2√

−f(x)

r∑
i=1

ai(x)bi(x) = 0.

After adding these two expressions and dividing by 2, we obtain

1 +
r∑

i=1

ai(x)
2 − 1

f(x)

r∑
i=1

bi(x)
2 = 0.

Clearing the denominator, we obtain

f =

∑r
i=1 b

2
i

1 +
∑r

i=1 a
2
i

=
(
∑r

i=1 b
2
i )(1 +

∑r
i=1 a

2
i )

(1 +
∑r

i=1 a
2
i )

2
.

The right-hand side is a sum of squares of rational functions in n variables.
This establishes Artin’s Theorem 6.10. �

For systems consisting of both equations and inequalities, there is the
Positivstellensatz. To motivate this, we review the corresponding result for
linear polynomials, known as Farkas’ Lemma. It lies at the heart of linear
programming duality. Informally, Farkas’ Lemma states that a system of
linear equations and inequalities either has a solution in Rn or has a dual
solution which certifies that the original system has no solution. Farkas’
Lemma has many equivalent formulations. Here is one of them, selected to
make the extension to higher-degree polynomials transparent.

Let f1, . . . , fr, g1, . . . , gs be polynomials of degree 1 in R[x], and consider

(6.4) f1(u) = 0, . . . , fr(u) = 0, g1(u) ≥ 0, . . . , gs(u) ≥ 0.

In the dual problem, we seek numbers a1, . . . , ar, b1, . . . , bs ∈ R such that

(6.5) a1 · f1 + · · · + ar · fr + b21 · g1 + · · · + b2s · gs = −1 in R[x].

At most one of these two problems can have a solution. Indeed, since
b21, . . . , b

2
s ≥ 0, the left-hand side of (6.5) is nonnegative for every vector

u that solves (6.4).

Theorem 6.13 (Farkas’ Lemma). Given any linear polynomials f1, . . . , fr
and g1, . . . , gs in R[x], exactly one of the following two statements is true:

(P) There exists a point u ∈ Rn such that (6.4) holds.

(D) There exist real numbers a1, . . . , ar, b1, . . . , bs such that (6.5) holds.
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Consider the system (6.4) where the fi and gj are now arbitrary polyno-
mials. In the dual problem, we seek polynomials ai and bjν in R[x] such that

(6.6) a1 · f1 + · · · + ar · fr +
∑

ν∈{0,1}s

(∑
j

b2jν
)
· gν11 · · · gνss = −1.

In the double sum we see linear combinations of square-free monomials in
g1, . . . , gs whose coefficients are sums of squares. The set of polynomials that
admit such a representation is the quadratic module generated by g1, . . . , gs.
Note that we allow the case of s = 0. In this case the sum of the gi’s disap-
pears in (6.5), but the analogous sum in (6.6) is present. It represents the
smallest quadratic module, i.e. the set of all sums of squares of polynomials.
Quadratic modules associated with inequality constraints are fundamental
in the study of semialgebraic sets [40, §2.1].

Theorem 6.14 (Positivstellensatz). Given any polynomials f1, . . . , fr and
g1, . . . , gs in R[x], exactly one of the following two statements is true:

(P) There exists a point u ∈ Rn such that (6.4) holds.

(D) There exist polynomials ai and bjν in R[x] such that (6.6) holds.

Proof. See [40, §2.3]. �

The dual solution (D) in Theorem 6.14 is similar to the dual solution in
Farkas’ Lemma. One extra complication is that we now need products of
the gi. The result can be rephrased as follows: If a system of polynomial
equations and inequalities is infeasible, then −1 lies in the sum of the ideal of
equations and the quadratic module of inequalities. There is a more general
version of the Positivstellensatz which also incorporates strict inequalities
h1 > 0, . . . , ht > 0. This is stated in [53, Theorem 7.5], proved in [40, §2.3].

The radical
√
I of a polynomial ideal I was the main player in the strong

form of Hilbert’s Nullstellensatz (Theorem 6.5). It provides an algebraic
representation for polynomials that vanish on a given complex variety. We
now come to the analogous result for varieties over the real numbers.

Given an ideal I in R[x], we define its real radical R
√
I to be the set{

f ∈ R[x] : f2m+g21+· · ·+g2s ∈ I for some m ∈ N and g1, . . . , gs ∈ R[x]
}
.

One can check that R
√
I is an ideal in R[x]. Here is the analogue of Theo-

rem 6.5:

Theorem 6.15 (Real Nullstellensatz). For any ideal in R[x], we have

(6.7) I
(
VR(I)

)
=

R
√
I.
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Proof. The argument is similar to the proof of Theorem 6.5. Clearly, R
√
I

is contained in I
(
VR(I)

)
. We need to show the reverse inclusion. Suppose

that f vanishes on the real variety of I = 〈f1, . . . , fr〉 ⊂ R[x]. We introduce
a new variable y and consider the ideal J = 〈f1, . . . , fr, yf − 1〉 in R[x, y].
It satisfies VR(J) = ∅. By Theorem 6.12, there exists an identity of the form
(6.2) for the ideal J . Substituting y = 1/f(x) into that identity and clearing
denominators, we find that some even power of f plus a sum of squares lies
in I. This means that the polynomial f is in the real radical R

√
I. �

Example 6.16. Consider the ideal generated by the Motzkin polynomial:

I = 〈M(x, y) 〉 = 〈x4y2 + x2y4 + 1− 3x2y2 〉.
Building on Example 6.11, we wish to compute the real radical R

√
I. It must

contain the numerators of the four summands in the rational sum of squares
representation of M . This leads us to consider the ideal

J =
〈
M,xy(x2 + y2 − 2) , x2 − y2 〉.

We find that the radical of J is the Jacobian ideal of the Motzkin polynomial:
√
J =

〈
M,

∂M

∂x
,
∂M

∂y

〉
.

Furthermore, this radical ideal is precisely the real radical we are looking for:
R
√
I =

√
J = 〈x− 1, y− 1〉 ∩ 〈x− 1, y+1〉 ∩ 〈x+1, y− 1〉 ∩ 〈x+1, y+1〉.

The real variety VR(M) defined by the Motzkin polynomial consists of the
four points (1, 1), (1,−1), (−1, 1) and (−1,−1) in R2. Since M is non-
negative, these zeros are singular points of the complex curve V(M) ⊂ C2.

Exercises

(1) Show that the real radical of an ideal I in R[x] is a radical ideal and
that it contains the radical of I.

(2) Find univariate polynomials g1, g2, g3, g4 in Q[x] such that

g1(x− 2)(x− 3)(x− 4) + g2(x− 1)(x− 3)(x− 4)

+ g3(x− 1)(x− 2)(x− 4) + g4(x− 1)(x− 2)(x− 3) = 1.

(3) An ideal I in C[x] contains a monomial if and only if each point in
its variety V(I) has at least one zero coordinate. Prove this fact, and
describe an algorithm for testing whether an ideal contains a monomial.

(4) Let M be an ideal generated by monomials in K[x]. How can we com-

pute the radical
√
M? How can we compute the real radical R

√
M?

Hint: It could help to investigate the ideal in Example 3.24.
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(5) Let I be the ideal generated by the two cubics x21x2−x23x4 and x1x
2
2−x34.

Describe the projective variety V(I) in P3. Find the radical ideal
√
I.

How many minimal generators does
√
I have and what are their degrees?

(6) Let V ⊂ R7 be the variety of orthogonal Hankel matrices of format 4×4.
Describe the ideal I(V ). What are the irreducible components of V ?

(7) Let I be the ideal generated by the two quartics x41−x21x22 and x42−x43 in

R[x1, x2, x3]. Determine the radical
√
I and the real radical R

√
I. Write

each of these two radical ideals as an intersection of prime ideals.

(8) Let f1, . . . , fr and f be polynomials in Q[x]. Explain how Gröbner bases
can be used to test whether f lies in the radical of I = 〈f1, . . . , fr〉.

(9) Let f ∈ R[x] be a nonnegative polynomial. Show that the real radical
of the ideal generated by partial derivatives of f is contained in the real
radical of 〈f〉. Find an example where the containment is strict.

(10) The circle given by f = x2+y2−4 does not intersect the hyperbola given
by g = xy−10 in the plane R2. Find a real Nullstellensatz certificate for
this, i.e. write −1 as a sum of squares modulo the ideal 〈f, g〉 in R[x, y].

(11) For an arbitrary d ∈ N, exhibit an ideal I generated by quadratic poly-
nomials and an additional polynomial f such that fd �∈ I but fd+1 ∈ I.

(12) Let I be the ideal in R[x, y, z] generated by the Robinson polynomial

x6 + y6 + z6 + 3x2y2z2 − x4y2 − x4z2 − x2y4 − x2z4 − y4z2 − y2z4.

Determine the real radical R
√
I and the real variety VR(I) in P2

R.

(13) Show that Theorem 6.15 implies Theorem 6.10.

(14) What is the effective Nullstellensatz?

(15) Find the radical and real radical of the ideal I = 〈x7 − y7, x8 − z8〉 in
R[x, y, z]. Explain the difference between these two radical ideals.

(16) Prove Farkas’ Lemma (Theorem 6.13).

(17) Consider the unit circles centered at the points (0, 0), (1, 32) and (32 , 1)

in the plane R2. Do they intersect? Give a formulation like (6.4), and
prove that the answer is no by exhibiting a Positivstellensatz certificate
of the form (6.6).
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Chapter 7

Tropical Algebra

“It is a theorem from algebraic geometry that all log-log plots look like
straight lines”, Maciej Zworski

The operations of addition and multiplication are familiar from elemen-
tary school. We here introduce tropical arithmetic. The new operations
may at first seem unnatural to the reader, but we justify them with several
applications, e.g. in the design of dynamic programming algorithms. A big
part of our discussion centers on tropical linear algebra. The point is that
the piecewise-linear structures of tropical mathematics provide yet another
transition point between linear and nonlinear algebra. On the fully nonlin-
ear side lies tropical algebraic geometry. We briefly touch on this subject
with a discussion of tropical varieties and their geometric properties. This
chapter is meant as an invitation to explore the textbook [38], whose setup
we follow closely.

7.1. Arithmetic and Valuations

The tropical semiring (R,⊕,#) is the set R = R ∪ {∞}, consisting of the
set R of real numbers together with an extra element, ∞, that represents
plus-infinity. It comes with two arithmetic operations, denoted by ⊕ and #.

We define addition and multiplication in the tropical semiring as follows:

x ⊕ y := min(x, y) and x # y := x+ y.

The tropical sum of two real numbers is their minimum, and the tropical
product of two real numbers is their usual sum. It takes some practice to

99
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100 7. Tropical Algebra

carry out arithmetic in the tropical world. Here is an example with numbers:

4 ⊕ 5 = 4 and 4 # 5 = 9.

Tropical addition and tropical multiplication are both commutative and as-
sociative. The distributive law holds, and the times operator # takes prece-
dence when plus ⊕ and times # occur in the same expression. For example:

4 # (5 ⊕ 7) = 4# 5 = 9,

4 # 5 ⊕ 4 # 7 = 9 ⊕ 11 = 9.

Both arithmetic operations have an identity element. Infinity is the identity
element for addition, and zero is the identity element for multiplication:

x ⊕ ∞ = x and x # 0 = x.

We also note the following equations involving the two identity elements:

x # ∞ = ∞ and x ⊕ 0 =

{
0 if x ≥ 0,

x if x < 0.

There is no subtraction in tropical arithmetic. There is no real number x that
can be called “17 minus 8” because the equation 8⊕x = 17 has no solution
x. Tropical division is defined to be classical subtraction, so (R∪{∞},⊕,#)
satisfies all ring axioms except for the existence of an additive inverse.

Such algebraic structures without additive inverse are called semirings,
whence the name tropical semiring. It is essential to remember that “0” is
the multiplicative identity element. If we write a term without an explicit
coefficient, then that coefficient is zero. Thus, x⊕ y means 0# x ⊕ 0# y.

Example 7.1 (Binomial Theorem). We consider the third tropical power of
a tropical sum. The following identities hold for all real numbers x, y ∈ R:

(x⊕ y)
3 = (x⊕ y)# (x⊕ y)# (x⊕ y)

= 0# x
3 ⊕ 0# x
2 # y ⊕ 0# x# y
2 ⊕ 0# y
3.

Of course, the zero coefficients can be dropped here:

(x⊕ y)
3 = x
3 ⊕ x
2 # y ⊕ x# y
2 ⊕ y
3 = x
3 ⊕ y
3.

What is the relationship between classical arithmetic and tropical arith-
metic? An informal answer is that the latter is the image of the former
under taking logarithms. Indeed, if u and v are small positive real num-
bers, then log(u · v) equals log(u)# log(v), and log(u+ v) is approximately
the same as log(u) ⊕ log(v). Thus tropical geometry arises naturally when
one draws a log-log plot of figures in R2

>0. This was the point of the
quote at the beginning of this chapter. We refer to [38, Chapter 1] for
further motivations.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



7.1. Arithmetic and Valuations 101

The use of logarithms to simplify mathematical objects goes back to
the 17th century. The original idea was really to reduce multiplication to
addition. According to Laplace, the invention of logarithms “doubles the
life of the astronomer, and spares him the errors and disgust inseparable
from long calculations”. For several centuries, scientists and engineers used
a device called a slide rule to perform multiplications. These marvelous
objects embody the logarithm. They were used until the late 1970s, also
by school children, including the second author of this book. Eventually,
slide rules were replaced by calculators. However, the idea of addition as
a model for multiplication remains powerful, as it simplifies both algebra
and geometry.

A more formal way of understanding the relationship between classical
arithmetic and tropical arithmetic is to introduce fields with valuations.

Definition 7.2. A valuation on a field K is a function val : K → R ∪ {∞}
that satisfies the following three axioms for all a, b ∈ K:

(1) val(ab) = val(a) + val(b),

(2) val(a+ b) ≥ min{val(a), val(b)}, and
(3) val(a) =∞ if and only if a = 0.

We often identify a valuation with its restriction to K∗ = K\{0}. With this,
the image of val is an additive subgroup of R, known as the value group.

A fieldK with valuation is a metric space. Namely, the valuation induces
a norm | · | : K → R by setting |a| = exp(−val(a)) for a ∈ K∗ and |0| = 0.
The field K is a metric space with distance |a − b| between two elements
a, b ∈ K. In fact, this metric on K is an ultrametric, which means that

|a+ b| ≤ max(|a|, |b|) ≤ |a|+ |b|.

This allows the use of analytical and topological methods to study K.

An important example is the field of Puiseux series in a variable t with
complex coefficients. This field is denoted by K = C{{t}}. It contains the

field C(t) of rational functions and its algebraic closure C(t). Indeed, every

element in C(t) can be expanded into a Puiseux series. The exponents in a
Puiseux series are rational numbers that have a common denominator.

The valuation of a scalar c in K is the smallest exponent a of any term
cat

a with ca �= 0 that appears in the series expansion of c. We write a =
val(c). This is an element in the value group (Q,+) of K. Here are two
examples of scalars in the Puiseux series field K and their valuations:

c =
1

t2 + 2t3 + t5
= t−2−2t−1+4−9t+20t2−44t3+97t4−214t5+472t6−· · ·

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



102 7. Tropical Algebra

has val(c) = −2, while

c′ = t2/7
√

1− t2/3 = t2/7 − 1

2
t20/21 − 1

8
t34/21 − 1

16
t16/7 − 5

128
t62/21 − · · ·

has val(c′) = 2/7.

It is known that the field K is algebraically closed [38, Theorem 2.1.5].
So every polynomial of degree d in K[x] has d roots, counting multiplicities.

Example 7.3 (Puiseux series). Every cubic polynomial in K[x] has three
roots. For instance, the three roots of f(x) = tx3 − x2 + 3tx− 2t5 are

t−1 − 3t− 9t3 − 54t5 + 2t6 − 405t7 + 18t8 − 3402t9 + 180t10 − 30618t11 + · · · ,
3t+ 9t3 − 2

3 t
4 + 54t5 − 2t6 + 10931

27 t7 − 18t8 + 3402t9 − 43756
243 t10 + 30618t11 + · · · ,

2
3 t

4 + 4
27 t

7 + 16
243 t

10 − 8
81 t

12 + 80
2187 t

13 − 80
729 t

15 + 448
19683 t

16 − 224
2187 t

18 + · · · .

Such Puiseux series can be computed in a computer algebra system. The
valuations of the three roots are −1, 1 and 4. These characterize the as-
ymptotic behavior of the roots when t is a real number close to zero.

We now assume K is an algebraically closed field of characteristic zero
with a valuation K → R ∪ {∞}. Let f ∈ K[x] be a polynomial in n vari-
ables. We define its tropicalization, denoted by trop(f), to be the polynomial
over the tropical semiring obtained by replacing each coefficient in f by its
valuation. In what follows we restrict to n = 1, but later we also take n ≥ 2.

For instance, if f is the cubic in Example 7.3, then its tropicalization is

(7.1) trop(f) = 1# x
3 ⊕ 0# x
2 ⊕ 1# x ⊕ 5.

Definition 7.4. A tropical polynomial is a function that is the minimum of
finitely many affine-linear functions. A real number u is said to be a tropical
root of a given tropical polynomial if that minimum is attained at least twice
when the affine-linear functions are evaluated at the argument u.

Example 7.5. If we evaluate (7.1) at the argument u, we obtain

(7.2) trop(f)(u) = min
{
1 + 3u, 0 + 2u, 1 + u, 5

}
.

This is a tropical polynomial function. For instance, for the argument u = 4,
the minimum above is attained twice, by 1+u and by 5. This means that 4 is
a tropical root of trop(f). The other roots are u = 1 and u = −1. Note that
the three tropical roots −1, 1 and 4 of trop(f) are precisely the valuations
of the three classical roots of the cubic f in Example 7.3. In Theorem 7.7
below, we state the general result which explains this observation.

To evaluate a tropical polynomial, one takes the minimum of its tropical
monomials. Tropical monomials are affine-linear functions. If u = val(c) for
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7.1. Arithmetic and Valuations 103

some c ∈ K and u is not a tropical root of trop(f), then

(7.3) val(f(c)) = (trop(f))(u).

In the following lemma we are claiming that two R→ R functions agree.

Lemma 7.6. Multiplication of polynomials is compatible with tropicaliza-
tion. Namely, if f, g ∈ K[x] then trop(fg) = trop(f)# trop(g).

Proof. By [38, Lemma 2.1.12], we may assume that the value group of K
is dense in R. Consider a real number u ∈ R that is in the value group but
is not a tropical root of trop(f), trop(g) or trop(fg). There exists a scalar
c ∈ K with val(c) = u. A computation using (7.3) shows that

trop(fg)(u) = val((fg)(c)) = val(f(c))+val(g(c)) = trop(f)(u)#trop(g)(u).

Hence the two functions agree on a dense set of arguments u ∈ R. As the
functions are continuous, we conclude that they are equal. �

Lemma 7.6 holds also for polynomials in n variables, but in this section
we stay with n = 1. The following facts relate classical root finding and
tropical root finding. We continue to assume that K is algebraically closed.

Theorem 7.7. Fix a univariate polynomial f ∈ K[x] and let g = trop(f)
be its tropicalization. If c ∈ K \ {0} satisfies f(c) = 0, then u = val(c) is a
tropical root of g. Conversely, every tropical root u of g arises from a zero
c of f .

Proof. Let f(x) =
∑d

i=0 bix
i and suppose f(c) =

∑d
i=0 bic

i is zero. Then
∞ = val(f(c)) but val(bic

i) < ∞ for some i. Using [38, Lemma 2.1.1], this
implies val(bic

i) = val(bjc
j) ≤ val(bkc

k) for some i �= j and all k �= i, j. This
means that u = val(c) is a tropical root of g = trop(f).

Our proof of the second statement follows that of [38, Proposition 3.1.5].
We assume that u is a tropical root of g = trop(f). Since K is algebraically

closed, we can factor f(x) =
∏d

j=1(ajx − bj). By Lemma 7.6, the tropical-

ization g = trop(f) is the classical sum of the d simple tropical functions

trop(ajx− bj) = val(aj)# x ⊕ val(bj) = min
{
val(aj) + x, val(bj)

}
.

Each of these functions has precisely one tropical root, namely val(bj) −
val(aj), and each tropical root of their classical sum g must be one of these.

Let u be a tropical root of g. Then there is an index j such that u =
val(bj)−val(aj). If we set c = bj/aj in K, then f(c) = 0 and u = val(c). �

Fields with valuations provide a systematic way of speaking algebraically
about logarithms. This explains the connection between classical arithmetic
and tropical arithmetic. Here is a scenario that appears in number theory.
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104 7. Tropical Algebra

Example 7.8 (The p-adic valuation). For every prime number p, the field
K = Q of rational numbers has a valuation valp with value group Z. Indeed,
every rational number c can be written uniquely as c = pu · qr where u ∈ Z

while q and r are relatively prime integers not divisible by p. We have
valp(c) = u. The completion of Q with respect to the norm induced by valp
is the field of p-adic numbers. This field is important in number theory.

We shall return to fields and their valuations in our exploration of va-
rieties in Section 7.3. First, however, let us develop some purely tropical
machinery, in the more familiar setting of matrices and linear algebra.

7.2. Linear Algebra

Vectors and matrices make sense over the tropical semiring. For instance,
the tropical scalar product in R3 of a row vector and a column vector is

(u1, u2, u3)# (v1, v2, v3)
T = u1 # v1 ⊕ u2 # v2 ⊕ u3 # v3

= min
{
u1 + v1, u2 + v2, u3 + v3

}
.

Here is the product of a column vector and a row vector of length 3:

(7.4)

(u1, u2, u3)
T # (v1, v2, v3)

=

(
u1 # v1 u1 # v2 u1 # v3
u2 # v1 u2 # v2 u2 # v3
u3 # v1 u3 # v2 u3 # v3

)
=

(
u1 + v1 u1 + v2 u1 + v3
u2 + v1 u2 + v2 u2 + v3
u3 + v1 u3 + v2 u3 + v3

)
.

Any matrix which can be expressed as such a product has tropical rank 1.

Fix a d× n matrix A. We may wish to find its image {A# x : x ∈ Rn}
and solve linear systems A # x = b for various right-hand sides b. For an
introduction to tropical linear systems see the books Max-linear Systems by
Butkovič [7] and Essentials of Tropical Combinatorics by Joswig [27].

For a first application of tropical linear algebra, consider the problem of
finding a shortest path in a weighted directed graph G with n nodes. Every
directed edge (i, j) in G has an associated length dij which is a nonnegative
real number. If (i, j) is not an edge of G then we set dij = +∞. We
represent G by its n × n adjacency matrix DG =

(
dij
)
, with zeros on the

diagonal. The off-diagonal entries are the edge lengths dij . The matrix DG

need not be symmetric; we allow dij �= dji. If G is an undirected graph, then
we view G as a directed graph with two directed edges (i, j) and (j, i) for
each undirected edge {i, j}. In that case, DG is a symmetric matrix, where
dii = 0 and dij = dji is the distance between node i and node j.

Consider the n×n matrix with entries in R≥0 ∪ {∞} that results from
tropically multiplying the given adjacency matrix DG by itself n− 1 times:

(7.5) D

(n−1)
G = DG #DG # · · · #DG.
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7.2. Linear Algebra 105

Proposition 7.9. Let G be a weighted directed graph on n nodes with adja-

cency matrix DG. The entry of the matrix D

(n−1)
G in row i and column j

is the length of a shortest path from node i to node j in the graph G.

Proof. Let d
(r)
ij denote the minimum length of any path from node i to node

j using at most r edges in G. We have d
(1)
ij = dij for any two nodes i and j.

Since the edge weights dij are assumed to be nonnegative, for each two nodes
i and j, there exists a shortest path from i to j that visits each node of G

at most once. Hence the length of a shortest path from i to j equals d
(n−1)
ij .

For r ≥ 2 we have a recursive formula for the length of a shortest path:

(7.6) d
(r)
ij = min

{
d
(r−1)
ik + dkj : k = 1, 2, . . . , n

}
.

Using tropical arithmetic, this formula can be rewritten as

d
(r)
ij = d

(r−1)
i1 # d1j ⊕ d

(r−1)
i2 # d2j ⊕ · · · ⊕ d

(r−1)
in # dnj .

= (d
(r−1)
i1 , d

(r−1)
i2 , . . . , d

(r−1)
in )# (d1j, d2j, . . . , dnj)

T .

It follows by induction on r that d
(r)
ij equals the entry in row i and column j

of the n×n matrix D
r
G . Indeed, the right-hand side of the recursive formula

is the tropical product of row i inD

(r−1)
G and column j inDG. That product

is the (i, j) entry of D
r
G . Applying this to r = n− 1, we see that d

(n−1)
ij is

the entry in row i and column j of D

(n−1)
G . This proves the claim. �

The above algorithm belongs to the area known as dynamic programming
in computer science. For us, it means performing the matrix multiplication

D
r
G = D


(r−1)
G #DG for r = 2, . . . , n− 1.

We next consider the notion of the tropical determinant. This is the tropical-
ization of the classical determinant, here regarded as a polynomial of degree
n in n2 unknowns xij . Thus, we form the tropical sum over the tropical
diagonal products obtained by taking all n! permutations π of {1, 2, . . . , n}:

(7.7) tropdet(X) :=
⊕
π∈Sn

x1π(1) # x2π(2) # · · · # xnπ(n).

Here Sn is the symmetric group of permutations of {1, 2, . . . , n}. Evaluating
the tropical determinant means solving the classical assignment problem
from combinatorial optimization. Imagine a company that has n jobs and
n workers, and each job needs to be assigned to exactly one of the workers.
Let xij be the cost of assigning job i to worker j. The company wishes to
find the cheapest assignment π ∈ Sn. The optimal total cost equals

(7.8) min
{
x1π(1) + x2π(2) + · · ·+ xnπ(n) : π ∈ Sn

}
.
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106 7. Tropical Algebra

That minimum is the tropical determinant (7.7) of the matrix X = (xij):

Proposition 7.10. The tropical determinant solves the assignment problem.

In the assignment problem we seek the minimum over n! quantities.
This appears to require exponentially many operations. However, there is a
polynomial-time method for this task, namely the Hungarian algorithm.

The square matrix X is called tropically singular if the minimum in
(7.8) is attained at least twice. Following Definition 7.4, this is equivalent
to saying that X is a tropical root of the tropical determinant (7.7). If Y is
any rectangular matrix, we define the tropical rank of Y to be the size of the
largest square submatrix that is not tropically singular. For rank 1, this is
consistent with our earlier definition, given after (7.4). Namely, the matrix
Y has tropical rank 1 if and only if it is the tropical product of a column
vector and a row vector. For a detailed discussion of the tropical rank and
other related notions of matrix rank, we refer to [38, §5.3].

Eigenvectors and eigenvalues of square matrices are central to linear
algebra. The same is true in tropical linear algebra. We fix an n×n matrix
A = (aij) over R = R∪{∞}. An eigenvalue of A is a real number λ such that

(7.9) A# v = λ# v for some v ∈ Rn.

We say that v is an eigenvector of the matrix A. The arithmetic operations
in (7.9) are tropical. For instance, for n = 2, the left-hand side of (7.9) is(
a11 a12
a21 a22

)
#
(
v1
v2

)
=

(
a11 # v1 ⊕ a12 # v2
a21 # v1 ⊕ a22 # v2

)
=

(
min{a11 + v1, a12 + v2}
min{a21 + v1, a22 + v2}

)
.

The right-hand side of (7.9) equals

λ#
(
v1
v2

)
=

(
λ# v1
λ# v2

)
=

(
λ+ v1
λ+ v2

)
.

Let G(A) denote the directed graph with adjacency matrix A. Its nodes
are labeled by [n] = {1, 2, . . . , n}. There is an edge from node i to node j if
and only if aij <∞. The edge has length aij . In particular, aii �=∞ if and
only if there is a loop at vertex i. The normalized length of a directed path
i0, i1, . . . , ik in G(A) is (ai0i1 +ai1i2 + · · ·+aik−1ik)/k, computed in classical
arithmetic. If ik = i0 then the path is a directed cycle, and this quantity is
the normalized length of the cycle. Recall that a directed graph is strongly
connected if there is a directed path from any node to any other node.

Theorem 7.11. Let A be an n× n matrix with entries in R whose directed
graph G(A) is strongly connected. Then A has precisely one eigenvalue λ(A).
It equals the minimum normalized length of a directed cycle in G(A).
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Proof. Let λ = λ(A) be the minimum of the normalized lengths over all
directed cycles in G(A). We first prove that λ(A) is the only possibility for
an eigenvalue. Suppose that z ∈ Rn is any eigenvector of A, and let γ be the
corresponding eigenvalue. For any cycle (i1, i2, . . . , ik, i1) in G(A) we have

ai1i2 + zi2 ≥ γ + zi1 , ai2i3 + zi3 ≥ γ + zi2 ,

ai3i4 + zi4 ≥ γ + zi3 , . . . , aiki1 + zi1 ≥ γ + zik .

Adding the left-hand sides and the right-hand sides, we find that the normal-
ized length of the cycle is greater than or equal to γ. In particular, we have
λ(A) ≥ γ. For the reverse inequality, start with any index i1. Since z is an
eigenvector with eigenvalue γ, there exists i2 such that ai1i2 + zi2 = γ + zi1 .
Likewise, there exists i3 such that ai2i3 + zi3 = γ + zi2 . We continue in this
manner until we reach an index il which was already in the sequence, say
ik = il for k < l. By adding the equations along this cycle, we find that

(aikik+1
+ zik+1

) + (aik+1ik+2
+ zik+2

) + · · ·+ (ail−1il + zil)

= (γ + zik) + (γ + zik+1
) + · · · + (γ + zil−1

).

We conclude that the normalized length of the cycle (ik, ik+1, . . . , il = ik) in
G(A) is equal to γ. In particular, γ ≥ λ(A). This proves that γ = λ(A).

It remains to prove the existence of an eigenvector. Let B be the matrix
obtained from A by (classically) subtracting λ(A) from every entry in A. All
cycles in G(B) have nonnegative length, and there exists a cycle of length
zero. Using tropical matrix operations, we define

B+ = B ⊕B
2 ⊕B
3 ⊕ · · · ⊕B
n.

This matrix is known as the Kleene plus of the matrix B. The entry B+
ij

in row i and column j of B+ is the length of a shortest path from node i
to node j in the weighted directed graph G(B). Here, we assume that a
path contains some edges, so the shortest path from i to i may be strictly
positive. Since G(B) is strongly connected, we have B+

ij <∞ for all i and j.

Fix any node j that lies on a zero-length cycle of G(B). Let x = B+
·j

denote the jth column vector of the matrix B+. We have xj = B+
jj = 0,

as there is a path from j to itself of length zero and there are no negative-
weight cycles. This implies B+ # x ≤ B+

·j = x. Since lengths of shortest

paths obey the triangle inequality, we have (B # x)i = minl(Bil + xl) =
minl(Bil +B+

lj ) ≥ B+
ij = xi. In vector notation, we write this as B#x ≥ x.

Since tropical linear maps preserve coordinatewise inequalities between
vectors, we have B2#x ≥ B#x, B3#x ≥ B2#x, etc. Therefore, B+#x =
B#x⊕B2#x⊕· · ·⊕Bn#x = B#x. This yields x ≤ B#x = B+#x ≤ x.
Hence, B#x = x, so x is an eigenvector of B with eigenvalue 0. We conclude

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



108 7. Tropical Algebra

that x is an eigenvector with eigenvalue λ of our matrix A:

A# x = (λ#B)# x = λ# (B # x) = λ# x.

This completes the proof of Theorem 7.11. �

The eigenvalue of a tropical n×n matrix A = (aij) can be computed
efficiently, using a linear program with n+1 decision variables v1, . . . , vn, λ:

(7.10) Maximize λ subject to aij + vj ≥ λ+ vi for all 1 ≤ i, j ≤ n.

Proposition 7.12. The unique eigenvalue λ(A) of the given n × n matrix
A = (aij) coincides with the optimal value λ∗ of the linear program (7.10).

Proof. See [38, Proposition 5.1.2]. �

We next determine the eigenspace of the matrix A, which is the set

Eig(A) =
{
x ∈ Rn : A# x = λ(A)# x

}
.

The set Eig(A) is closed under tropical scalar multiplication: If x ∈ Eig(A)
and c ∈ R, then c # x is also in Eig(A). We can thus identify Eig(A)
with its image in the quotient space Rn/R1 � Rn−1. Here 1 = (1, 1, . . . , 1).
This space is called the tropical projective torus; cf. [27, §1.4]. We saw
that every eigenvector of the matrix A is also an eigenvector of the matrix
B = (−λ(A))#A and vice versa. Hence the eigenspace Eig(A) is equal to

Eig(B) =
{
x ∈ Rn : B # x = x

}
.

Theorem 7.13. Let B+
0 be the submatrix of the Kleene plus B+ given by

the columns whose diagonal entry B+
jj is zero. The image of this matrix, in

tropical arithmetic, equals the eigenspace: Eig(A) = Eig(B) = Image(B+
0 ).

Proof. See [38, Theorem 5.1.3]. �

Example 7.14. We demonstrate the computation of eigenvectors for n = 3.
In our first example, the minimal cycle lengths are attained by the loops:

A =

⎛⎝3 4 4
4 3 4
4 4 3

⎞⎠ ⇒ λ(A) = 3 ⇒ B = B+ = B+
0 =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ .

The eigenspace is the tropical image of B. This image in R3/R1 is the
hexagon with vertices (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0) and (0, 1, 0).
In our second example, the winner is the cycle 1→ 2→ 1:

A =

⎛⎝3 1 4
1 3 2
4 4 3

⎞⎠⇒ λ(A) = 1⇒ B =

⎛⎝2 0 3
0 2 1
3 3 2

⎞⎠⇒ B+ =

⎛⎝0 0 1
0 0 1
3 3 2

⎞⎠ .
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The eigenspace of A is the tropical linear span of the first column of B+:

Eig(A) = Eig(B) =
{
c# (0, 0, 3)T : c ∈ R

}
=
{
(c, c, c+ 3)T : c ∈ R

}
.

So here Eig(A) is just a single point in the tropical projective 2-torus R3/R1.

We computed the eigenspace of a square matrix as the image of another
matrix. This motivates the study of images of tropical linear maps Rm →
Rn. Such images are not tropical linear spaces. They are known as tropical
polytopes. Indeed, one defines tropical convexity in Rn/R1 by taking tropical
linear combinations. Tropical convexity is a rich and beautiful theory with
many applications. For introductions see [27, Chapter 5] and [38, §5.2].

We give a brief illustration for m = n = 3. The image of a 3× 3 matrix
A is the set of all tropical linear combinations of three vectors in R3. We
represent this set by its image in the plane R3/R1. That image is a tropical
triangle, because it is the tropical convex hull of three points in the plane.
This triangle is degenerate if the three points are tropically collinear in
R3/R1. This happens when the minimum in the tropical determinant (7.7)
is attained twice. In that case, the matrix A is called tropically singular.

Example 7.15. Consider the tropical triangle in R3/R1 given by the matrix

A =

⎛⎝ 0 0 2
0 3 1
1 0 0

⎞⎠ or A′ =

⎛⎝−1 0 2
−1 3 1
0 0 0

⎞⎠ .

Each point in R3/R1 is represented uniquely by a column vector (u, v, 0).
This tropical triangle consists of the segment between (−1,−1,0) and (0,0,0),
the segment between (0, 3, 0) and (0, 1, 0), the segment between (2, 1, 0) and
(1, 1, 0), and the classical triangle with vertices (0, 0, 0), (0, 1, 0) and (1, 1, 0).

There are five combinatorial types of tropical triangles. Similarly, there
are 35 types of tropical quadrilaterals. These are shown in [38, Figure 5.2.4].

7.3. Tropical Varieties

The previous section explored tropical counterparts of concepts from linear
algebra. In what follows we move on to nonlinear algebra. Our aim is
to introduce the tropical counterparts of algebraic varieties. Our point of
departure is the discussion of fields with valuation at the end of Section 7.1.

In what follows we assume that K is an algebraically closed field with
a valuation whose value group is Q. The Puiseux series field K = C{{t}} is
our primary example. Another field, derived from Example 7.8 and of great
interest in number theory, is the algebraic closure of the p-adic numbers.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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Consider any polynomial in n variables x = (x1, . . . , xn) over the fieldK:

(7.11) f = c1x
a1 + c2x

a2 + · · · + csx
as .

The tropicalization of f is the following expression in tropical arithmetic:

trop(f) = val(c1)# x
a1 ⊕ val(c2)# x
a2 ⊕ · · · ⊕ val(cs)# x
as .

To evaluate the tropical polynomial trop(f) at a point u = (u1, . . . , un), we
take the minimum of the s expressions in the tropical sum above:

val(ci)#u
ai = val(ci)#u
ai1
1 #· · ·#u
ain

n = val(ci)+ai1u1+ · · ·+ainun.

Here the index i runs over {1, . . . , s}. If this minimum is attained at least
twice, then u is a tropical zero of trop(f). The special case n = 1 appeared in
Definition 7.4. The following result generalizes the first part of Theorem 7.7.

Proposition 7.16. If z = (z1, . . . , zn) ∈ Kn is a zero of a polynomial f in
K[x], then its coordinatewise valuation val(z) =

(
val(z1), . . . , val(zn)

)
∈ Qn

is a tropical zero of the associated tropical polynomial trop(f).

Proof. Let ui = val(zi) and u = (u1, . . . , un). The valuation of the term
ciz

a
i in (7.11) equals val(ci) # u
ai . The sum of the s scalars ciz

a
i is zero

in K, so the summands of lowest valuation must have a cancellation. In
other words, the minimum valuation in the tropical sum is attained by two
or more of the expressions val(ci)#u
ai . By definition, this means that the
vector u ∈ Qn is a tropical zero of trop(f). �

A celebrated result due to Kapranov states that the converse holds too.
Namely, if f ∈ K[x] and u ∈ Qn is a tropical zero of trop(f), then there is a
point z ∈ Kn such that f(z) = 0 and val(z) = u. We refer to [38, Theorem
3.1.3] for the proof and further details. For the n = 1 case see Theorem 7.7.

The element ∞ in the tropical semiring arises naturally from the arith-
metic in the field K because val(0) = ∞. Sometimes it is preferable to
restrict tropical algebra to R, or to Q, thus excluding ∞. This is done by
disallowing zero coordinates among the solutions of a polynomial system.
For this, we set K∗ = K\{0} and introduce the algebraic torus (K∗)n. The
ring of polynomial functions on (K∗)n is the Laurent polynomial ring

K[x±] := K[x±1
1 , x±1

2 , . . . , x±1
n ].

The elements of K[x±] are polynomials as in (7.11), but we now allow neg-
ative integers among the coordinates of the exponent vectors ai.

In what follows we fix the field of Puiseux series K = C{{t}}. For the
extension to other fields see [38, §2.4]. Given any vector u ∈ Rn, the initial
form inu(f) is the subsum of terms cix

ai in (7.11) for which val(ci)# u
ai

is minimal. Here ci is the coefficient of the lowest-order term in the Puiseux
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7.3. Tropical Varieties 111

series ci. For instance, if c = 3t + 9t3 − 2
3t

4 + · · · ∈ K is the second
scalar displayed in Example 7.3, then c = 3. A monomial in the Laurent
polynomial ring is a scalar times a product of variables raised to integer
exponents.

Lemma 7.17. For any Laurent polynomial f ∈ K[x±] and any point u ∈
Rn, the following three conditions are equivalent:

• The initial form inu(f) is not a unit in K[x±].

• The initial form inu(f) is not a monomial.

• The point u is a tropical zero of trop(f).

Proof. Every monomial is invertible in the Laurent polynomial ring. To
show the converse, we fix a lexicographic order on monomials. If hg = 1 then
the product of the smallest monomials in the support of h and g must equal
the product of the two largest. In particular, the smallest and the largest
monomials appearing in h are the same, i.e. h is a monomial. We conclude
that the first two items in Lemma 7.17 are equivalent. The equivalence of
the last two items comes from the definition of tropical zeros. �

Fix any ideal I in K[x±] and let V(I) be its variety in the algebraic torus
(K∗)n. We define the tropical variety of I to be the following subset of Rn:

trop(V(I)) =
{
u ∈ Rn : u is a tropical zero of trop(f) for all f ∈ I

}
.

We also refer to this set as the tropicalization of the variety V(I).
The study of tropical varieties is the subject of tropical algebraic ge-

ometry. Two important results in this area are the Fundamental Theorem
[38, Theorem 3.2.3] and the Structure Theorem [38, Theorem 3.3.5]. The
former extends Kapranov’s Theorem. It states that the set of rational points
in trop(V(I)) is the image of the classical variety V(I) ⊂ (K∗)n under the
coordinatewise valuation map. The latter states that the tropical variety
trop(V(I)) is a balanced polyhedral complex. Furthermore, its dimension
agrees with the dimension of V(I). Numerous concrete examples of such
balanced polyhedral complexes are given in the textbooks [27] and [38].

Example 7.18. Fix n = 9 and let x = (xij) be a 3 × 3 matrix whose
entries are unknowns. Let I be the ideal in K[x±] that is generated by the
nine 2 × 2 minors of x. Then V(I) is the 5-dimensional variety of 3 × 3
matrices of rank 1 in (K∗)3×3. The tropical variety trop(V(I)) is the set
of 3 × 3 matrices in (7.4), that is, matrices u of tropical rank 1. This is
the linear subspace of dimension 5 in R3×3 defined by the tropical 2 × 2
determinants uij # ukl ⊕ uil # ukj . This minimum is attained twice if and
only if uij + ukl = uil + ukj . Every matrix u = (uij) that satisfies these
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112 7. Tropical Algebra

linear equations and has entries in Q arises as the valuation u = val(z) of a
rank-1 matrix z = (zij) with entries in K∗. For instance, z = (tuij).

Consider the assignment problem in Proposition 7.10. The tropical vari-
ety trop(V(I)) represents scenarios where all six assignments for n = 3 have
the same cost. The situation becomes more interesting when we pass from
rank 1 to rank 2. Now only the two best assignments have the same cost.

To model this, let J ⊂ K[x±] be the principal ideal generated by the
determinant of x. Then V(J) is a hypersurface of degree 3 in (K∗)3×3. The
tropical hypersurface trop(V(J)) is defined by the tropical determinant

tropdet(x) = x11 # x22 # x33 ⊕ x11 # x23 # x32 ⊕ x12 # x21 # x33

⊕ x12 # x23 # x31 ⊕ x13 # x21 # x32 ⊕ x13 # x22 # x31.

Thus trop(V(J)) is set of all 3×3 matrices u = (uij) such that the minimum
of the six terms is attained at least twice. For such a matrix, there is more
than one optimal assignment of the three workers to the three jobs.

The set trop(V(J)) is a polyhedral fan of dimension 8 in the 9-dimen-
sional ambient space R3×3. It is a cone with apex trop(V(I)) � R5 over a
2-dimensional polyhedral complex. That complex consists of nine squares
and six triangles, which are glued together as shown on the left in Figure 7.1.

Figure 7.1. The combinatorial structure of the tropical hypersurface
that is defined by the tropical 3× 3 determinant.

The six triangles represent matrices u such that the minimum of the
six terms in tropdet(u) is attained by two permutations in S3 with the
same sign. The nine squares on the right in Figure 7.1 are glued to form a
torus. These represent matrices u′ for which the minimum is attained by
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two permutations in S3 with opposite signs. Concrete examples for the two
cases are

u =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ and u′ =

⎛⎝0 0 1
0 0 1
1 1 0

⎞⎠ .

Here are rank-2 matrices over K that map to u and u′ under tropicalization:

z =

⎛⎝ t+ 1 t− 1 2t
t 1 t+ 1
1 t t+ 1

⎞⎠ and z′ =

⎛⎝ 1 2 t
2 4 5t
3t 6t 7

⎞⎠ .

The supports of the matrices u = trop(z) and u′ = trop(z′) match the
labels of the corresponding 2-cells in Figure 7.1. The matrix u has support
13, 21, 32, which labels the bottom triangle on the left. The matrix u′ has
support 13, 23, 31, 32, which labels the middle left square on the right.

We close with a remark on lifting Proposition 7.9 from tropical algebra
to algebra over the field K = C{{t}}. Given a directed graph G with rational
edge weights dij , we now define a new adjacency matrix AG. The entry of

AG in row i and column j equals tdij if (i, j) is an edge of G and equals 0
otherwise.

By construction, the valuation of the matrix AG is the adjacency matrix
DG seen earlier in Section 7.1. Moreover, the tropical matrix power in (7.5)
is the valuation of the corresponding power of the classical matrix AG:

(7.12) D

(n−1)
G = (val(AG))


(n−1) = val
(
An−1

G

)
.

Indeed, the (i, j) entry of An−1
G is the generating function for all paths. To

be precise, this entry is the Puiseux polynomial
∑


 c
t

, where c
 is the

number of paths from node i to node j in the graph G that have length �.

Exercises

(1) Let u, v and w be real numbers, and let x, y and z be variables. For
n ∈ N, what are the coefficients in the expansion of the expression

(u# x ⊕ v # y ⊕ w # z)
n

in tropical arithmetic?

(2) Prove that tropical matrix multiplication is an associative operation.
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114 7. Tropical Algebra

(3) Draw the graph of the following function:

R→ R, x �→ 1 ⊕ 2# x ⊕ 3# x
2 ⊕ 6# x
3 ⊕ 10# x
4.

What are the tropical zeros of this tropical polynomial?

(4) How would you define the tropical characteristic polynomial of a
square matrix? Compute your polynomial for the 3×3 matrices in
Example 7.14.

(5) Draw the graph of the R2 → R function given by

(x, y) �→ 1 ⊕ 2# x ⊕ 3# y ⊕ 6# x# y ⊕ 10# x# y
2.

What are the tropical zeros of this tropical polynomial?

(6) Let G be the directed graph on n nodes with edge weights dij = i · j
when i �= j and dii = 0, for i, j ∈ {1, . . . , n}. Compute the tropical
powers D
i

G of the matrix DG for i = 1, 2, . . . , n − 1. What are their
tropical ranks? Interpret the entries of these matrices in terms of paths.

(7) Take the graph G from above with n = 5, and fix the matrix AG = (tdij ).
Using classical arithmetic over the field K = Q(t), compute the powers
Ai

G of the matrix AG for i < n. What are the ranks of these matrices?
Interpret the entries in terms of paths. Verify equation (7.12).

(8) Take the graph G from above with n = 3. Find the eigenvalues and
eigenspaces of the classical matrix AG. Find the tropical eigenvalue and
tropical eigenspace of the matrix DG. Do you see a relationship?

(9) Take the graph G from above with n = 10. Compute the determinant
of AG and the tropical determinant of DG. Do you see a relationship?

(10) Take the graph G from above. The matrix DG defines a tropical linear
map from Rn to itself. Determine the image of this map for n = 2, 3, 4.
Draw pictures in Rn/R1 � Rn−1. These are tropical polytopes.

(11) Consider the quartic polynomial f(x) = t + t2x + t3x2 + t6x3 + t10x4

in K[x], where K = C{{t}}. Identify its four roots. Write the first 10
terms of these Puiseux series. What are their valuations?

(12) Let J be the ideal generated by the determinant of a symmetric 3 × 3
matrix. It lives in a Laurent polynomial ring with six variables. Deter-
mine the tropical hypersurface trop(V(J)). Write a discussion similar to
Example 7.18. Draw the analogue of Figure 7.1 for symmetric matrices.

(13) Analyze the complexity of the algorithm described in Proposition 7.9.

Can you improve the computation of D

(n−1)
G ? What happens if some

edge weights of G are negative? What happens if G contains cycles of
negative total weight? How can you detect if such a cycle exists?

(14) The Wikipedia page for Tropical geometry shows a tropical cubic curve.
Find a tropical polynomial in two unknowns that defines this curve.
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Chapter 8

Toric Varieties

“The art of doing mathematics consists in finding that special case which
contains all the germs of generality”, David Hilbert

Toric varieties are the simplest and most accessible varieties. They often
arise in applications, both within mathematics and across the sciences. A
toric variety is an irreducible variety that is parametrized by a vector of
monomials. The relations between these monomials are binomials, i.e. poly-
nomials with only two terms. Thus, an irreducible variety is toric if and
only if its prime ideal is generated by binomials. Monomials and binomials
correspond to points in an integer lattice, and we think of them as the lat-
tice points in a polytope. Toric varieties appear prominently in optimization
and statistics, thanks to the purely combinatorial description given above.
This description also makes toric varieties perfect “model organisms” for
algebraic geometers, who use toric varieties to test conjectures, teach geo-
metric concepts, and compute invariants. For instance, the dimension and
degree of a toric variety are the dimension and volume of the associated
lattice polytope. This result will appear at the very end of this book, in
Proposition 13.26.

8.1. The Affine Story

The adjective toric derives from the noun torus. We begin by introducing
tori from an algebraic perspective. We fix an algebraically closed fieldK and
the Laurent polynomial ring K[x±] = K[x±1

1 , . . . , x±1
n ]. The corresponding

variety (K∗)n, having the ring of functions K[x±], is the algebraic torus of
dimension n over K. Here, K∗ = K\{0} is the set of nonzero field elements.

115
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116 8. Toric Varieties

The algebraic torus (K∗)n is a group under coordinatewise multiplica-
tion. The name torus comes from the special case where n = 2 and K = C is
the field of complex numbers. Here, we have (C∗)2 � (R≥0×S1)2, where S1 is
the unit circle. Thus, the 2-dimensional algebraic torus (C∗)2 is the product
of the topological torus S1 × S1 and the contractible factor R≥0 × R≥0.

We recall from Section 7.3 that subvarieties of the algebraic torus (K∗)n

are the objects one starts from when developing tropical algebraic geometry.

Definition 8.1 (Character of a torus). A character of the algebraic torus
T = (K∗)n is a regular map χ : T → K∗ that is also a group morphism.

In Exercise 1 we shall see that characters are given by Laurent monomials

xb = xb11 xb22 · · ·xbnn where b ∈ Zn.

The characters of T are hence in bijection with Zn. Under this correspon-
dence, multiplication of characters becomes addition in the group (Zn,+):

χ1(x) · χ2(x) = (χ1 + χ2)(x).

A group isomorphic to Zk, for some k, is called a lattice. The lattice of
characters of T is denoted by MT or simply M . Since a subgroup of a free
abelian group is free, any set of characters generates a sublattice M̃ ⊂M .

Let a1, . . . , ap be characters in MT � Zn. We write A for the n × p

matrix whose columns are the vectors ai. The lattice M̃ generated by the
characters ai is the image of Zp under left multiplication by the matrix A.

Proposition 8.2. The image of T in (K∗)p under the map f : x → xA =

(xa1 , . . . ,xap) is also a torus T̃ . The character lattice of T̃ is equal to M̃ .

Proof. The monomial map f : T �→ (K∗)p induces the ring homomorphism

f∗ : K[y±1
1 , . . . , y±1

p ] → K[x±1
1 , . . . , x±1

n ] , yi �→ xai .

The image of f∗ is the ring of functions on T̃ := f(T ). This image is the

group algebraK[M̃ ]. By definition, this is the vector space overK with basis

given by elements of M̃ and multiplication induced from addition in MT .
The lattice M̃ is isomorphic to the group Zd for some integer d ≤ min(n, p).

Hence, the ring of functions on T̃ is isomorphic to K[Zd], i.e. the closed

image T̃ of the monomial map f is a torus with character lattice M̃ � Zd.

It remains to show that f(T ) = T̃ , i.e. the image is actually closed. For

this we pick a point p ∈ T̃ . It corresponds to a map of groups ep : M̃ → K∗

given by evaluating characters at p. To prove that p ∈ f(T ), we need
to extend this map to the whole lattice MT . This may be done itera-
tively as follows. Pick m ∈ MT \M̃ . If km �∈ M̃ for all positive inte-
gers k, then we simply define ep(m) = 1. Otherwise we pick the smallest
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8.1. The Affine Story 117

k such that km ∈ M̃ . We define ep(m) as any kth root of ep(km) and

extend M̃ by m. �

The d-dimensional torus T̃ lives in (K∗)p. We are interested in its Zariski
closure in the affine space Kp. Such an affine variety is a toric variety.

Definition 8.3. An affine toric variety is the closed image of a monomial
map (K∗)n → Kp, x �→

(
xa1 , . . . ,xap

)
, where ai ∈ Zn and K∗ = K\{0}.

We specify a toric variety by an integer matrix A ∈ Zn×p. The p columns
of A represent characters of the torus T = (K∗)n. Toric geometry relates
the combinatorics of these lattice points to the geometry of the toric variety.

Example 8.4.

(1) Any affine space is a toric variety. The corresponding matrix A is
the identity matrix.

(2) The cuspidal cubic curve x3 − y2 is a toric variety. It is the image
of the map z �→ (z2, z3) given by the matrix A =

(
2 3
)
.

Proposition 8.5. The dimension of the affine toric variety in Definition 8.3
is equal to the rank of the lattice M̃ that is spanned by a1, . . . , ap in Zn.

Proof. We saw in the proof of Proposition 8.2 that the torus T̃ has dimen-
sion d = rank(M̃). The toric variety is the Zariski closure of T̃ . It has
dimension d, since passing to the Zariski closure preserves dimension. �

We defined toric varieties as closures in Kp of subtori of the torus (K∗)p.
The coordinate ring of a toric variety is a monoid algebra K[S]. Here, S
denotes the monoid generated by the p distinguished characters in MT , in
the notation of Proposition 8.2. Thus, S is the smallest set containing 0 and
the chosen characters that is closed under addition in MT .

Example 8.6.

(1) The cuspidal curve defined by the equation x3 − y2 equals
SpecK[z2, z3]. The underlying monoid is S={0, 2, 3, 4, . . . }.

(2) The affine line is the closure of the image of the map

K∗ % x �→ x ∈ K.

Here the character lattice is M = Z, the distinguished character
corresponds to 1 ∈M , and the monoid is S = {0, 1, 2, 3, . . . }.

There is a fundamental difference between the cuspidal curve and the
affine line. The monoid for the cuspidal curve has a “hole”, namely the
character 1.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



118 8. Toric Varieties

Figure 8.1. The cuspidal cubic curve.

Definition 8.7. A submonoid S in a lattice M is called saturated if and
only if for any x ∈M and k ∈ Z+ the following implication holds:

kx ∈ S ⇒ x ∈ S.

An affine toric variety X = SpecK[S] for which S is saturated (in the

lattice M̃ it generates) is called normal. For the algebraic definition of nor-
mality see [3, Chapter 5], where normal rings are called integrally closed.
Nonnormal varieties are always singular. For curves, the two notions coin-
cide. Example 8.6 shows one normal (i.e. smooth) curve and one nonnormal
(i.e. singular) curve. The latter is seen in Figure 8.1.

We next discuss the prime ideal of the toric variety X. This is computed
from the characters that define X. In general, given a variety defined as the
Zariski closure of the image of a map, finding the defining equations is a hard
problem, known as implicitization. We discussed this in Chapter 4. The im-
plicitization problem greatly simplifies when the variety is toric. The prime
ideal IX of the toric variety X lives in the polynomial ring K[y1, . . . , yp].
This toric ideal is the kernel of the restriction of f∗ to this polynomial ring.

Lemma 8.8. Let X be the toric variety defined by A = (a1, . . . , ap). Then

(1) any relation
∑

i biai =
∑

j cjaj with nonnegative integer coefficients

bi, cj ∈ N provides a binomial
∏

ybii −
∏

y
cj
j in the toric ideal IX ;

(2) every binomial in the ideal IX is of the form described in (1);

(3) the toric ideal IX is generated by these binomials.

Recall that a binomial is a polynomial with only two terms. Statement
(2) is understood up to scaling—we can multiply the binomial by a constant.

Proof. Properties (1) and (2) follow from the fact that a polynomial in
y1, . . . , yp vanishes on the toric variety X if and only if we obtain zero after
substituting yi �→ xai for all i. However, such a substitution turns monomials
(in the variables yj) into monomials (in the variables xk). The fact that
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8.1. The Affine Story 119

the monomials in x cancel is precisely encoded by the integral relations
in (1). Property (3) follows similarly, by induction on number of terms of
a polynomial in the ideal of X. In Exercise 2 the reader is asked to give a
proof. For an argument using a monomial ordering see [52, Lemma 4.1]. �

Example 8.9. Fix n = 3 and p = 7. To specify a toric variety, we choose
characters a1, . . . , a7 ∈ Z3. Let us take the column vectors of the matrix

A =

⎛⎝2 2 1 0 0 1 1
1 0 0 1 2 2 1
0 1 2 2 1 0 1

⎞⎠ .

The associated toric varietyX is a threefold inK7. The toric ideal IX equals

(8.1)
〈 y1y3 − y2y7 , y1y4 − y27 , y1y5 − y6y7 , y2y4 − y3y7 , y2y5 − y27 ,

y2y6 − y1y7 , y3y5 − y4y7 , y3y6 − y27 , y4y6 − y5y7 〉.
Each of these nine binomials vanishes under the substitution yi �→ xai . Using
the methods in Section 4.2, we can check that IX is the desired prime ideal.
The toric variety X has dimension 3 and lives in the affine space K7.

The ideal IX is homogeneous. Each of the nine binomials in (8.1) is
homogeneous. This comes from the fact that the matrix A has column sums
(3, 3, 3, 3, 3, 3, 3). Geometrically speaking, the threefold X is a cone in K7.
We can therefore also regard X as a surface in the projective space P6. That
surface is nonsingular and it has degree 6. This passage from appropriate
matrices A to projective toric varieties will be our theme in Section 8.2.

Theorem 8.10. The toric ideals IX are precisely the prime ideals generated
by binomials yb − yc. Every such ideal defines a toric variety X as above.

Proof. Let I be a prime ideal generated by a set of binomials ybi − yci in
p variables y1, . . . , yp. By Hilbert’s Basis Theorem, there is a finite subset
of binomials that generates I. For each such generator, the nonnegative
integer vectors bi and ci have disjoint support, since I is prime. We write
the difference vectors bi − ci as the columns of a matrix B that has p rows.

Let A be any integer matrix of format n× p whose rows span the kernel
of B under left multiplication. Here, the kernel is understood as a Z-module
(a.k.a. an abelian group), so it can be computed using integer linear algebra
(e.g. the Hermite normal form algorithm). We claim that the columns of B
span the kernel A under right multiplication. This is clear over Q, but it
also holds over Z by our hypothesis that I is a prime ideal. Otherwise, there
would exist a vector b−c that is not in the column space of B but of which
some integer multiple kb− kc is in that column span. We pick the smallest
possible k. The following binomial is in the binomial prime ideal I:

ykb − ykc =
(
yb − yc

)(
y(k−1)b + y(k−2)byc + · · ·+ y(k−1)c

)
.
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However, neither of the two factors is in I. In characteristic zero this is
straightforward, as the second factor has coefficients not adding up to zero.
In general, one can observe that if the second factor is in I, then we must
have y(k−1)b − y(k−1−i)byic ∈ I for some positive i. This contradicts the
choice of k. We obtain a contradiction to the hypothesis that I is prime.

We now takeX to be the toric variety inKp that is defined by the matrix
A. The argument above shows that I = IX , which gives the assertion in the
theorem. For further details on this proof see [12, Proposition 1.1.11]. �

Definition 8.11. A convex polyhedral cone C in Rn is a subset of elements
of the form λ1v1+ · · ·+λkvk where v1, . . . ,vk ∈ Rn are fixed and λ1, . . . , λk

range over R≥0. We call C rational if the vectors vi can be chosen in Qn. In
what follows we refer to rational convex polyhedral cones simply as cones.

Definition 8.12. A face F of a cone C ⊂ Rn is a subset of the form

(8.2) F =
{
c ∈ C : �(c) = 0

}
,

where � is a linear form that is nonnegative on C, i.e. �(c) ≥ 0 for all c ∈ C.
The dimension of a face of a cone is the dimension of the smallest linear
space that contains it. If dimC = n = dimF + 1, then � is unique up to a
scalar. In this case, F is called a facet and the hyperplane it spans is the
supporting hyperplane of C. We note that � = 0 gives F = C. Furthermore,
any face of a cone is also a cone, and the relation “is a face of” is transitive.

Example 8.13. The orthant C = Rn
≥0 is a cone. It has 2n faces, ranging

from the apex {0} to the full cone C. There are
(
n
i

)
faces of dimension i.

Each of the n facets F arises by setting one coordinate to zero, so F � Rn−1
≥0 .

If C is a convex polyhedral cone in Rn, then its f-vector is the vector

(8.3) f(C) =
(
f1(C), f2(C), . . . , fn−1(C)

)
,

where fi(C) denotes the number of i-dimensional faces of C. For instance,
the orthant in R5 has f-vector (5, 10, 10, 5). The 3-dimensional cone spanned
by the columns of the matrix A in Example 8.9 has f-vector (6, 6).

By Proposition 8.2, the toric variety X is the closure in Kp of the torus
T̃ ⊂ (K∗)p. The group T̃ acts both on itself and on Kp, and hence it also
acts on its closure X. The torus orbits on X are the orbits of that action by
T̃ . We next provide a combinatorial and geometric description of the torus
orbits. We assume that X is defined by an integer n× p matrix A as above.
We write C ⊂ Rn for the cone that is generated by the p columns ai of A.

Theorem 8.14. The torus orbits in X are in bijection with the faces of the
cone C. The orbit corresponding to a face F is {y ∈ X : yi �= 0⇔ ai ∈ F}.
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The closure of this orbit is the toric variety SpecK[F∩A] whose parametriza-
tion is (xai : ai ∈ F ). The dimension of this orbit equals dim(F ). Moreover,
inclusion of orbit closures in X corresponds to inclusion of faces of C.

Sketch of proof. For normal toric varieties, a proof is given in [12, §3.2].
However, normality is not needed. From the definition of F being a face,
one can check directly that {y ∈ X : yi �= 0 ⇐⇒ ai ∈ F} is a torus orbit.
Indeed, using that K is algebraically closed, one constructs a point t in the
torus such that t · y = pF , where (pF )i = 1 if ai ∈ F and 0 otherwise. It
remains to be shown that each point of X must lie in one of these orbits.
This follows from the constraints on its support that are imposed by the
fact that the binomials in IX vanish at that point. �

Example 8.15. Let X be the toric threefold in K7 given in Example 8.9.
The cone C is spanned in R3 by the columns of the 3×7 matrix A. It is the
cone over a hexagon, so it has 14 = 1+6+6+1 faces. The variety X is the
disjoint union of 14 torus orbits, as follows. The face F = {0} corresponds
to the origin in K7. The 1-dimensional face F = R≥0{a1} corresponds to
the curve {(t, 0, 0, 0, 0, 0, 0) ∈ X : t ∈ K∗}. The 2-dimensional face F =
R≥0{a1, a2} corresponds to the surface {(t, u, 0, 0, 0, 0, 0) ∈ X : t, u ∈ K∗}.
Finally, F = C corresponds to the 3-dimensional torus T̃ = X ∩ (K∗)7.

In conclusion, the geometry of X is read off from the cone C representing it.

8.2. Varieties from Polytopes

Projective toric varieties are obtained from affine toric varieties that are
cones. They can be defined as follows. Let A = (a1, a2, . . . , ap) be an in-
teger n × p matrix of rank n that has the vector (1, 1, . . . , 1) in its row
span. Let IA ⊂ K[y1, y2, . . . , yp] be the prime ideal of polynomial relations
between the Laurent monomials xa1 ,xa2 , . . . ,xap . This is a toric ideal. Ac-
cording to Lemma 8.8, the ideal IA is generated by the binomials yb − yc,
where b− c is in the kernel of A. Such binomials are homogeneous because
(1, 1, . . . , 1) is in the row span of A. Hence, IA defines a projective variety,
denoted by XA.

Definition 8.16. A projective toric variety is any projective variety in Pp−1

of the form XA = V(IA) where IA is a homogeneous toric ideal as above.

Definition 8.17. A polytope in Rn is the convex hull of a finite set of points.
A polytope is a lattice polytope if it is the convex hull of points in Zn. Faces
and facets of polytopes are defined as in (8.2), but now � is affine-linear.

We write P = conv(A) for the convex hull of the column vectors ai in
Rn. By construction, P is a polytope of dimension n− 1 with ≤ p vertices.
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For instance, in Example 8.9, the polytope P is a regular hexagon. Algebraic
geometers know the surface XA as the blow-up of P2 at three points.

Given a projective toric variety XA, we associate to it the polytope
P = conv(A). Conversely, any lattice polytope can be coordinatized so that
it spans the affine hyperplane {y1+y2+· · ·+yn = k} for some k, n ∈ Z+. We
then take A = P ∩ Zn and associate the projective toric variety XP := XA

with the polytope P . This variety lives in Pp−1 where p = |A|.
The class of varieties XA is strictly larger than the class of varieties

XP . The reason is that A can be a proper subset of conv(A) ∩ Zn. How-
ever, the projective toric varieties of most interest to us are the XP for
some polytope P .

Example 8.18. The Veronese variety and the Segre variety from classical
algebraic geometry are two prominent examples of projective toric varieties.

We write Δn−1 for the standard (n− 1)-simplex, whose vertices are the
unit vectors e1, . . . , en. Fix k ∈ Z>0 and P = kΔn−1. Then A = P ∩ Zn

consists of the nonnegative integer vectors with coordinate sum k. Hence
p = |A| =

(
n+k−1

k

)
. The toric variety XP is the kth Veronese embedding of

Pn−1. It has dimension n − 1 and degree kn−1 in Pp−1. Its toric ideal IA
consists of the polynomial relations between all monomials of degree k in n
variables. For instance, if n = k = 3 then there are 10 such monomials:

A =

⎛⎝3 2 2 1 1 1 0 0 0 0
0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3

⎞⎠ .

The ideal defining this Veronese surface in P9 is generated by 27 quadrics:

IA = 〈y1y4−y22 , y1y5−y2y3, y1y6−y23 , y1y7−y2y4, . . . , y7y10−y8y9, y8y10−y29〉.

The binomials encode convexity relations between the points in A.

Next, fix n1, n2 ∈ Z>0 and set n = n1 + n2 and p = n1n2. Let P =
Δn1−1 × Δn2−1 and write ei and e′j for the unit vectors in Rn1 and Rn2

respectively. Then A = P ∩ Zn =
{
ei + e′j : 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2

}
.

We here deviate from our hypothesis, as the rank of A is n−1, not n. The
variety XP is the Segre embedding of the product Pn1−1×Pn2−1 into Pp−1.
The points on XP are n1 × n2 matrices of rank 1, up to scaling. The toric
ideal IA is generated by the 2× 2 minors of an n1×n2 matrix of unknowns.
Each 2 × 2 minor corresponds to the square formed by four of the lattice
points in P . Can you see this for n1 = n2 = 3, the case in Example 7.18?

In the algebraic geometry literature, it is often assumed that toric vari-
eties are normal. This is motivated by the fact that normal toric varieties
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admit a nice intrinsic characterization, in terms of fans. In our setting, this
hypothesis is generally not needed. Still, we present the relevant definition.

Definition 8.19. A lattice polytope P in Rn is normal if for any k ∈ Z and

any u ∈ kP ∩ Zn, there exist u1, . . . ,uk ∈ P ∩ Zn such that u =
∑k

i=1 ui.
In this case, XP is projectively normal in Pp−1, i.e. its affine cone is normal.

Remark 8.20. In the current literature, the property in Definition 8.19 is
called the integer decomposition property (IDP). It is invariant under lattice
translation of P . If 0 ∈ P and P ∩ Zn generates Zn, then all reasonable
definitions of normality and IDP coincide. One of these equivalent definitions
says that the semigroup generated by {1} × (P ∩ Zn) ⊂ Zn+1 is saturated.

To appreciate the subtleties we are alluding to, consider the tetrahedron

P = conv {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
Then (1, 1, 1) ∈ 2P , but it is not a lattice sum of two points in P . However,
note that the lattice points of P do not generate Z3, only the sublattice
consisting of points with an even sum of coordinates. Inside that sublattice,
P is just the standard simplex and satisfies the condition in Definition 8.19.

The simplices and products of simplices in Example 8.18 are normal.
Hence the Veronese variety and the Segre variety are projectively normal.
Exercise 6 gives an example of a 3-dimensional lattice polytope that is not
normal. All lattice polytopes of dimensions 1 and 2 are normal. If P is
normal, then the polyhedral fan that characterizes its toric variety XP in-
trinsically is the normal fan of P . We refer to [12, §3.1] for the basic theory.

We now return to the setting where IA is any homogeneous toric ideal,
XA ⊂ Pp−1 is its toric variety, and P = conv(A) is not necessarily nor-
mal. Let T denote the subset of XA consisting of all points with nonzero
coordinates. This is a torus of dimension n − 1. The torus acts on XA

with finitely many orbits. Theorem 8.14 extends essentially verbatim to the
projective case.

Corollary 8.21. The torus orbits in XA are in bijection with the faces
of the polytope P . The orbit corresponding to a face F is {y ∈ XA : yi �=
0 ⇐⇒ ai ∈ F}. The closure of this orbit is the projective toric variety with
parametrization (xai : ai ∈ F ). The dimension of this orbit equals dim(F ).
Inclusion of orbit closures in XA corresponds to inclusion of faces of P .

Proof. We apply Theorem 8.14 to the affine toric variety defined by IA
in Kp. This is the affine cone over XA ⊂ Pp−1. Its orbits correspond to
the faces of the cone C over the polytope P . Note that dim(C) = n =
dim(P ) + 1. Each i-dimensional face F of P corresponds to an (i + 1)-
dimensional face of C, namely the cone over F . Likewise, each i-dimensional
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orbit inXA corresponds to an (i+1)-dimensional orbit of the affine cone over
XA. These bijections, for i = 0, 1, . . . , n − 1, establish the desired bijection
for P and XA. The only face of C that is missing in P is the origin {0}.
Likewise, the cone point of the affine cone over XA disappears in XA. �

Example 8.22. Consider the Segre threefold XA = P1×P2 in P5, given by
n1 = 2 and n2 = 3 in Example 8.18. The toric ideal IA is generated by the
2×2 minors of a 2×3 matrix of unknowns, and the polytope P = Δ1×Δ2 is
a triangular prism. This 3-dimensional polytope has 21 = 6+9+5+1 faces,
one for each of the torus orbits on XA. For instance, the five 2-dimensional
orbits are given by setting one row or column of the 2 × 3 matrix to zero,
and the 0-dimensional orbits in XA are the matrices with one nonzero entry.

Corollary 8.21 establishes a combinatorial link between projective toric
varieties and their lattice polytopes. In what follows we tighten this link
to a geometric one. We now fix K = C, the complex numbers. We argue
that the geometry of the polytope coincides with the geometry of the toric
variety. The key to this identification is the moment map from XA onto P .

We work in the complex projective space P
p−1
C with its homogeneous

coordinates y = (y1 : y2 : · · · : yp). The following map onto P = conv(A) is
defined via the usual Euclidean norm | · | on the complex plane C � R2:

(8.4) P
p−1
C → Rn , y �→ 1∑p

i=1 |yi|

p∑
i=1

|yi| · ai.

This map is well-defined because the image is invariant under scaling of the
vector y, and

∑p
i=1 |yi| is always positive. Its image lies in the polytope P ,

since we are taking convex combinations of the points ai in Rn.

Definition 8.23. The algebraic moment map μA : XA → Rn is defined
as the restriction of (8.4) from the ambient space P

p−1
C to the toric vari-

ety XA. Let XA,R be the subset of real points in XA. Its subset of non-
negative (resp. positive) points is denoted by XA,≥0 (resp. XA,>0). These

are semialgebraic sets in the real projective space P
p−1
R . To be precise, the

positive toric variety XA,>0 consists of all positive solutions, up to scal-
ing, of the binomial equations in IA, and similarly for the nonnegative toric
variety XA,≥0.

The complex projective toric variety XA maps naturally onto its non-
negative part XA,≥0 under the coordinatewise absolute value map

(8.5) (y1 : y2 : · · · : yp) �→ (|y1| : |y2| : · · · : |yp|).

The fibers of this map are real tori. The fiber over each point in XA,>0 is
homeomorphic to the topological torus (S1)n−1. This torus is a subgroup of
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the complex torus T � (C∗)n−1. We may think of (8.5) as the quotient map

XA −→ XA/(S
1)n−1 � XA,≥0.

See [12, Proposition 12.2.3] for a formal statement for normal toric varieties.
The algebraic moment map μA factors through the quotient map (8.5).

Theorem 8.24. The restriction of the algebraic moment map μA to the
nonnegative toric variety XA,≥0 is a homeomorphism onto the polytope P .

Proof. This can be found in many sources. A good place to start is Sottile’s
article [50, Theorem 8.4] on toric methods in geometric modeling. �

Corollary 8.25. If the linear system of equations Ay = b has a nonneg-
ative solution y ∈ R

p
≥0, then it has a unique such solution ŷ in the toric

variety XA.

Proof. We identify XA with the affine cone over the projective toric variety
defined by the n×p matrix A. The algebraic moment map μA lifts uniquely,
by scaling, to a map from this affine cone to the cone C over the polytope
P . The linear system Ay = b has a nonnegative solution if and only if b
lies in C. Theorem 8.24 implies that the point b has a unique preimage ŷ =
μ−1
A (b) ∈ XA,≥0 under the moment map, which is the desired solution. �

Example 8.26. Let A be the (n1+n2) × (n1n2) matrix for the polytope
P = Δn1−1×Δn2−1 as in Examples 8.18 and 8.22. This matrix A represents
the linear map that takes an n1 × n2 matrix y to the vector b of its row
and column sums. The polytopes

{
y ∈ Rn1×n2

≥0 : Ay = b
}

are known as
transportation polytopes. The points in the Segre variety XA are the n1×n2

matrices y of rank 1. In this case, Corollary 8.25 has the following interpre-
tation: Every transportation polytope contains a unique rank-1 matrix ŷ.

Example 8.26 has important consequences in statistics. We saw this
already for n1 = n2 = m in Example 2.5. Suppose the nonnegative matrix
y has entries that sum to 1. Then y is a joint distribution of two random
variables that have n1 and n2 states. The nonnegative variety XA,≥0 is the
independence model for these two random variables. The map A computes
the sufficient statistics b = Ay, i.e. the column vector of row sums and
the row vector of column sums. The product of these vectors is the rank-
1 matrix ŷ = μ−1

A (b). This is the maximum likelihood estimate for the
empirical distribution y with respect to the independence model.

Example 8.27 (n1 = n2 = 2). The independence model for two binary
random variables is a quadratic surface in P3

≥0 = Δ3. This is the non-

negative part XA,≥0 of the Segre quadric XA = P1 × P1 ⊂ P3. That surface
meets the boundary of the tetrahedron Δ3 in four edges that form a 4-cycle.
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The moment map μA projects the tetrahedron onto a square. The 4-cycle
is mapped onto the boundary of the square. The surface XA,>0 is mapped
bijectively onto the interior of the square. Figure 8.2 illustrates this scenario.

Figure 8.2. Nonnegative part of the Segre quadric from different
points of view. The red line represents the direction of the projection
given by the moment map that identifies the quadric with a square.

Example 8.27 is an instance of a general construction in algebraic statis-
tics. Projective toric varieties XA correspond to a class of statistical models,
referred to as toric models in [43] and as log-linear models in [57]. The in-
verse moment map μ−1

A is the maximum likelihood estimator for the model
XA,≥0. Given a point b in the model polytope P = conv(A), the estimate

μ−1
A (b) is the Birch point in XA,≥0. This distribution best explains the data

with sufficient statistic b. See [43, Proposition 1.9] and [57, Corollary 7.3.9].

Toric varieties are ubiquitous in applications. One explanation for this is
the following observation, which connects this chapter to the previous one.

Proposition 8.28. Let X be an irreducible variety over a field K as in
Section 7.3. If X is toric then its tropicalization Trop(X) is a linear space.

Proof. If X = V(IA) then every point in X has the form (xa1 , . . . ,xap).
The images of these points under coordinatewise valuation are uA where
u = val(x) runs over Qn. This implies that Trop(X) is the row space
of A. �

In fact, the converse to this proposition also holds, with a slightly more
inclusive definition of toric variety. Informally speaking, toric varieties are
precisely those varieties that become linear spaces under taking logarithms.

8.3. The World Is Toric

The occurrence of toric structures in an application can be either obvious
or hidden. A typical example of the former is log-linear models in statistics.
These are obviously toric, as seen around Example 8.27. In this section
we discuss some scenarios where the toric structure is hidden and needs
to be unearthed, often by a nontrivial choice of coordinates. Our style
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8.3. The World Is Toric 127

in this section is extremely informal. We briefly visit four areas in which
toric varieties arise. Under each header we focus on one concrete instance
of a toric variety XA ⊂ Pp−1. The broader context is discussed alongside
that example.

Chemical Reactions. Three chemical species σ1, σ2, σ3 can form four
chemical complexes 3σ1, 3σ2, 3σ3, σ1+σ2+σ3. Each complex can react so
as to transform into any other complex. We introduce unknowns c1, c2, c3
for the species concentrations and K1,K2,K3,K4 to encode rate constants.

This chemical reaction system is modeled by the toric balancing ideal

IA =

(〈
2× 2 minors of

(
K1 K2 K3 K4

c31 c32 c33 c1c2c3

)〉
: (c1c2c3)

∞
)
.

This toric ideal has 10 minimal generators, six from the 2× 2 minors, plus

c21K2K3 − c2c3K
2
4 , c22K1K3 − c1c3K

2
4 , c23K1K2 − c1c2K

2
4 , K1K2K3 −K3

4 .

The variety XA = V(IA) is a threefold of degree 13 in P6. The underlying
4× 7 matrix A is found with the integer linear algebra method in the proof
of Theorem 8.10. The polytope P = conv(A) is a triangular prism. One
triangular face is Δ2 with vertices labeled by c1, c2, c3. The other triangular
face is 3Δ2 with vertices K1,K2,K3 and centroid K4. The underlined cubic
generates the moduli ideal, which identifies the toric dynamical systems.

The mathematical theory of chemical reaction network systems with
mass action kinetics is an important domain of application of nonlinear
algebra. For an introduction we refer to the textbook by Dickenstein and
Feliu [17]. The term “toric dynamical systems” was coined in the article
[13]. In the chemical literature, these are known as complex balancing mass
action systems. The toric ideals above were introduced in [13, §2].

Gaussian Maximum Likelihood Estimation. Let n = 5 and p = 10,
and consider the integer matrix

(8.6) A =

⎛⎜⎜⎜⎝
1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎞⎟⎟⎟⎠ .

The columns of A are labeled y01, y02, . . . , y34. These are our coordinates for
P9. The polytope P = conv(A) is the second hypersimplex of dimension 4.
It has f-vector (10, 30, 30, 10) but is not self-dual. Its toric ideal IA has 10
quadratic generators yijykl− yikyjl, and XA is a fourfold of degree 11 in P9.
The f-vector of a polytope records the number of its faces, as in (8.3).

This toric variety of the second hypersimplex of dimensionm arises when
studying Gaussian distributions on Rm with structured covariance matrix Σ.
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Consider the model given by prescribing all off-diagonal entries to be equal.
Thus, for m = 4, we are interested in the linear space of symmetric matrices

(8.7) Σ =

⎡⎢⎣σ1 σ0 σ0 σ0

σ0 σ2 σ0 σ0

σ0 σ0 σ3 σ0

σ0 σ0 σ0 σ4

⎤⎥⎦ .
Given a sample covariance matrix S, one seeks to maximize the log-likelihood

�(Σ) = −log det(Σ)− trace(SΣ−1) = log det(K)− trace(SK).

This function is convex in the concentration matrix K = Σ−1. For that rea-
son, we study the set of matrices K whose inverses have the structure (8.7).

This is a nonlinear projective variety of dimensionm in P(
m
2 ). Defining poly-

nomials are obtained by equating off-diagonal entries in the adjoint of K.
These are complicated expressions with many terms of degree m− 1.

We find that this is a toric variety, after the linear change of coordinates

K =

⎡⎢⎣y01+y12+y13+y14 −y12 −y13 −y14
−y12 y02+y12+y23+y24 −y23 −y24
−y13 −y23 y03+y13+y23+y34 −y34
−y14 −y24 −y34 y04+y14+y24+y34

⎤⎥⎦.
For any m, this is the reduced Laplacian matrix of the complete graph on
m+1 nodes. It follows from [56, Theorem 1.2] that the variety of matricesK
whose inverses are constant away from the diagonal equals the toric variety
of the second hypersimplex. Using the coordinates yij , the inverse of the
matrix Σ in (8.7) satisfies the 10 quadratic binomials in IA. The article [56]
establishes this toric structure for a larger class of Gaussian models, one for
each rooted tree, thus contributing to likelihood inference for such models.

Phylogenetics. Group-based models in phylogenetics are varieties that be-
come toric after a linear change of coordinates. The nonlinear algebra of
this transformation was pioneered in [54]. For the relevant background
from molecular biology we refer to [43, Chapter 4]. The following case
study is taken from [54, Example 3]. The Cavender-Farris-Neyman model,
also known as the binary Jukes-Cantor model, for the claw tree K1,3 is a
group-based model for three binary random variables. Its eight joint prob-
abilities are

p000 = π0α0β0γ0 + π1α1β1γ1, p001 = π0α0β0γ1 + π1α1β1γ0 ,
p010 = π0α0β1γ0 + π1α1β0γ1, p011 = π0α0β1γ1 + π1α1β0γ0 ,
p100 = π0α1β0γ0 + π1α0β1γ1, p101 = π0α1β0γ1 + π1α0β1γ0 ,
p110 = π0α1β1γ0 + π1α0β0γ1, p111 = π0α1β1γ1 + π1α0β0γ0.

Here π0 and π1 = 1−π0 give the root distribution. The other model param-
eters α0 = 1−α1, β0 = 1−β1 and γ0 = 1−γ1 are the transition probabilities
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from the root to the three leaves. When all parameters are nonnegative, the
model is a 4-dimensional semialgebraic subset of the probability simplex Δ7.
The Fourier transform gives a change of coordinates in the parameter space:

π0 =
1
2(r0 + r1), π1 =

1
2(r0 − r1), α0 =

1
2(a0 + a1), α1 =

1
2(a0 − a1),

β0 =
1
2(b0 + b1), β1 =

1
2(b0 − b1), γ0 =

1
2(c0 + c1), γ1 =

1
2(c0 − c1).

It also gives a linear change of coordinates in the probability space:

pijk =
1

8

1∑
r=0

1∑
s=0

1∑
t=0

(−1)ir+js+kt · yrst.

After these coordinate changes, the parametrization is now toric:

y000 = r0a0b0c0, y001 = r1a0b0c1, y010 = r1a0b1c0, y011 = r0a0b1c1,
y100 = r1a1b0c0, y101 = r0a1b0c1, y110 = r0a1b1c0, y111 = r1a1b1c1.

This corresponds to a matrix A ∈ {0, 1}8×8 of rank 5. The toric ideal equals

IA = 〈y001y110 − y000y111, y010y101 − y000y111, y100y011 − y000y111〉.

Hence XA is a complete intersection of codimension 3 and degree 8 in P7.
The study of such phylogenetic models is an active area of research.

Paths and Signatures. Let n = 6 and p = 19, and consider the mono-
mial map

yijk = aiajak for 1 ≤ i ≤ j ≤ k ≤ 3,

zk;ij = akbij for k = 1, 2, 3 and 1 ≤ i < j ≤ 3.

This defines a toric variety XA of dimension 5 and degree 24 in P18. The
matrix A ∈ {0, 1}6×19 has rows indexed by a1, a2, a3, b12, b13, b23 and 19 =
10 + 9 columns indexed by y111, y112, . . . , y333 and z1;12, z1;13, . . . , z3;23. The
toric ideal IA is generated by 81 binomial quadrics, namely the 2×2 minors of

(8.8)

⎛⎝ y111 y112 y113 y122 y123 y133 z1;12 z1;13 z1;23
y112 y122 y123 y222 y223 y233 z2;12 z2;13 z2;23
y113 y123 y133 y223 y233 y333 z3;12 z3;13 z3;23

⎞⎠ .

Let X̃A be the join of XA with P7. This is a 13-dimensional toric variety
of degree 24 in P26. It is defined by the same ideal IA but now in 27 variables.
We replace these by the entries of a 3× 3× 3 tensor σ = (σijk) as follows:

(8.9)
yijk = σkij + σikj + σijk + σkji + σjki + σjik,
zk;ij = 1

2(σkij + σikj + σijk) − 1
2(σkji + σjki + σjik).

The resulting variety U3,3 is the universal variety of third-order signature
tensors of arbitrary paths in R3. Such tensors play an important role in
stochastic analysis, especially in the Hairer-Lyons theory of rough paths.
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A natural generalization of the universal variety is the rough Veronese
variety, which was shown to be toric by Colmenarejo et al. in [9]. This
variety is a variant of the classical Veronese variety, but adapted to the
study of rough paths. For an introduction to this theory see [9, §1] and
the references therein. Returning to the example above, in the notation of
[9, §2], we have U3,3 = R3,3,3 = X̃A ⊂ P26 and R3,3,2 = XA ⊂ P18. The
equations defining these varieties are obtained by substituting (8.9) into
(8.8). This 3× 10 matrix has rank ≤ 1 for the signatures of all paths in R3.

Exercises

(1) Prove that every character χ of the torus T = (K∗)n is given by a

Laurent monomial xb = xb11 xb22 · · ·xbnn for some integer vector b in Zn.

(2) Show that every polynomial in the ideal IA of an affine toric variety
is a K-linear combination of binomials. This gives statement (3) in
Lemma 8.8.

(3) Describe the ideal of the Segre variety Pa1−1×· · ·×Pas−1 inside Pa1···as−1.
What is the degree of this toric variety? Describe its lattice polytope P .

(4) There is a natural bijection between (convex, rational, polyhedral) cones
in Rd and finitely generated saturated monoids in Zd. Prove this fact.

(5) Determine the toric ideal IA and the toric variety XA for the matrix

A =

⎛⎜⎝0 0 1 1 1
0 1 0 1 1
0 0 0 2 3
1 1 1 1 1

⎞⎟⎠ .

(6) Let A be as in Exercise 5. Show that the 3-dimensional lattice polytope
P = conv(A) is not normal. Draw this polytope and find its f-vector.

(7) Prove that every 2-dimensional lattice polytope is normal.

(8) Prove the following result: For any k-dimensional lattice polytope P , the
scaled polytope (k−1)P is normal. Hint: For k = 2, this is the previous
exercise. Start with the case k = 3. Consult [12, §2.2] if needed.

(9) Determine the number of lattice points in kP where P is the polytope
in Exercises 5 and 6. Show that this number is a cubic polynomial in k.
This is known as the Ehrhart polynomial of the polytope P .

(10) Prove the following theorem due to Mumford in the case of toric vari-
eties. Let X be a projective toric variety. For r large enough, the rth
Veronese reembedding vr(X) of X is defined by quadratic equations.
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(11) Compute an explicit Gröbner basis for the toric ideal IA, where A is the
matrix in Example 8.9. Is your initial monomial ideal in(IA) radical?

(12) Compute the inverse of the matrix Σ in (8.7), and verify that its entries
satisfy the 10 quadratic binomials given by the second hypersimplex.

(13) Let A be the 3× 7 matrix in Example 8.9. Can you give a formula for
the inverse moment map μ−1

A ? Is there an expression in radicals?

(14) (a) Compute the number of points of a projective toric variety XP over
a finite field in terms of the f-vector of the associated polytope P .

(b) Assuming that XP is smooth and K = C, use the Weil conjectures
(which are theorems, thanks to Grothendieck and Deligne) to give
a formula for Betti numbers of XP , again in terms of the f-vector.

(15) Give an example of a toric threefold XA in P6 that has degree 11. Draw
the polytope P = conv(A). Can you arrange for XA to be smooth?

(16) Verify Theorem 8.24 for the case where P is the triangular prism. This
corresponds to the Segre variety with n1 = 2 and n2 = 3 in Exam-
ple 8.18.

(17) Section 8.3 discusses four toric varieties that arise in applications. Pick
two of them and study the corresponding polytopes. Find their f-vectors.
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Chapter 9

Tensors

“The name TensorFlow derives from the operations that neural networks
perform on multidimensional data arrays, which are referred to as tensors”,

Wikipedia

Tensors are ubiquitous in many branches of modern mathematics. They
are higher-dimensional analogues of matrices. Just as matrices are basic
objects in linear algebra, tensors are fundamental to nonlinear algebra. One
reason why they appear so late in this book is that we already saw them in
disguise: Homogeneous polynomials are symmetric tensors. In this chapter
we show that basic attributes of matrices, such as eigenvectors and rank, can
also be defined for tensors. However, their behavior is far more interesting
in the tensor context. We also discuss applications of tensors, focusing on
a central open algorithmic problem: How fast can one multiply two matri-
ces? As always, linear algebra is our door to nonlinear algebra. Further,
the new nonlinear tools will be applied to revisit fundamental questions in
linear algebra.

9.1. Eigenvectors

In this section we extend the familiar concepts of eigenvectors, rank and sin-
gular values from matrices to the setting of tensors. We start by reviewing
some basics of linear algebra, beginning with the study of symmetric matri-
ces. Recall that symmetric matrices uniquely represent quadratic forms.

For instance, consider the following quadratic form in three variables:

(9.1) Q = 2x2 + 7y2 + 23z2 + 6xy + 10xz + 22yz.

133
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134 9. Tensors

This quadratic form is represented by a symmetric 3× 3 matrix as follows:

(9.2) Q =
(
x y z

)⎛⎝2 3 5
3 7 11
5 11 23

⎞⎠⎛⎝x
y
z

⎞⎠ .

The gradient of the quadratic form Q is the vector of its partial derivatives.
Thus, the gradient is a vector of linear forms. It defines a linear map from
K3 to itself. Up to multiplication by 2, this is the linear map one usually
associates with a square matrix. For the quadratic form in (9.1) we have

∇Q =

⎛⎝∂Q/∂x
∂Q/∂y
∂Q/∂z

⎞⎠ = 2 ·

⎛⎝2 3 5
3 7 11
5 11 23

⎞⎠⎛⎝x
y
z

⎞⎠ .

In this section, the field K is usually R or C. We call v ∈ Kn\{0} an
eigenvector of Q if v is mapped to a scalar multiple of v by the gradient map:

(∇Q)(v) = λ · v for some λ ∈ K.

Just like in the earlier chapters, it is convenient to replace the n-dimensional
affine space Kn with the (n− 1)-dimensional projective space Pn−1. Thus,
two nonzero vectors are identified if they are parallel. From a nonzero qua-
dratic form Q we obtain a rational self-map of the projective space:

(9.3) ∇Q : Pn−1 ��� Pn−1.

The dashed arrow means that this map may not be defined everywhere.
Algebraic geometers call this a rational map. If Q is rank-deficient then the
linear map has a kernel. It consists of all points at which the gradient ∇Q
vanishes. These are the base points of the map (9.3). If Q has full rank,
then ∇Q is a regular map Pn−1 → Pn−1, i.e. it is defined on all of Pn−1. We
conclude our discussion with the following remark on the gradient map:

Remark 9.1. The eigenvectors of Q are the fixed points (λ �= 0) and base
points (λ = 0) of the gradient map ∇Q in (9.3). These points v live in Pn−1.

Symmetric n × n matrices often appear in statistics. Consider n real-
valued random variables X1, . . . , Xn. Their covariance matrix is the matrix
Σ whose (i, j) entry is cov[Xi, Xj] = E[(Xi−E[Xi])(Xj −E[Xj ])]. We note
that Σ is positive semidefinite, i.e. all its eigenvalues are nonnegative.

An n × n matrix usually has n linearly independent eigenvectors, pro-
vided the underlying field K is algebraically closed. If the matrix is real and
symmetric, then its eigenvectors have real coordinates and are orthogonal.
For a rectangular matrix, one considers pairs of singular vectors, defined
below, one on the left and one on the right. The number of these singular
vector pairs is equal to the smaller of the two matrix dimensions.
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9.1. Eigenvectors 135

Eigenvectors and singular vectors are familiar from linear algebra, where
they are introduced in concert with eigenvalues and singular values. Nu-
merical linear algebra is the foundation of applied mathematics and sci-
entific computing. Specifically, the concept of eigenvectors, and numeri-
cal algorithms for computing them, became a key technology during the
20th century.

Singular vectors are defined for rectangular matrices. We review their
definition through the lens of Remark 9.1. We begin with the observation
that each rectangular matrix uniquely represents a bilinear form, e.g.

(9.4) B = 2ux+3uy+5uz+3vx+7vy+11vz =
(
u v

)(2 3 5
3 7 11

)⎛⎝x
y
z

⎞⎠.

The gradient of the bilinear form defines an endomorphism on the direct
sum of an m-dimensional space and an n-dimensional space. This fuses
left multiplication and right multiplication by our matrix into a single linear
map. For the bilinear form in (9.4), the gradient is the vector of linear forms

(9.5) ∇B =

((∂B
∂x

,
∂B

∂y
,
∂B

∂z

)
,
(∂B
∂u

,
∂B

∂v

))
.

The associated endomorphism has the form ∇B : K3 ⊕ K2 → K3 ⊕ K2.
This gradient map takes the pair

(
(x, y, z), (u, v)

)
to the pair in (9.5), i.e. to

( (2u+ 3v, 3u+ 7v, 5u+ 11v) , (2x+ 3y + 5z, 3x+ 7y + 11z) ) .

More generally, let B be an m× n matrix over K. Consider the equations

(9.6) Bx = λy and BTy = λx,

where λ is a scalar, x is a nonzero vector in Kn, and y is a nonzero vector
in Km. These are our unknowns. Given a solution to (9.6), we see that x
is an eigenvector of BTB, y is an eigenvector of BBT , and λ2 is a common
eigenvalue of these two symmetric matrices. Assuming K = R, this eigen-
value’s nonnegative square root λ ≥ 0 is a singular value of B. Associated
to λ are the right singular vector x and the left singular vector yT . In anal-
ogy to Remark 9.1, the process of solving (9.6) has the following dynamical
interpretation.

Remark 9.2. Each singular vector pair (x,y) of a rectangular matrix B
is mapped to a scalar multiple (λx, λy) under the gradient map ∇B of the
associated bilinear form. Here λ is the singular value, which can be zero. Up
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136 9. Tensors

to scaling, the gradient map is a self-map on a product of projective spaces:

∇B : Pn−1 × Pm−1 ��� Pn−1 × Pm−1,(
x,y

)
�→
(( ∂B

∂x1
, . . . ,

∂B

∂xn

)
,
( ∂B
∂y1

, . . . ,
∂B

∂ym

))
.

To be precise, each pair (x,y) of singular vectors gives rise to either a
base point or a fixed point of the rational map ∇B between the product
of projective spaces. Conversely, suppose that (x,y) ∈ Pn−1 × Pm−1 is a
fixed point or a base point. In order to lift (x,y) to a pair of singular
vectors, some compatibility is required. For fixed points, we can take an
arbitrary vector representative of x and the corresponding representative of
y. But for a base point (x,y), this lifting is possible if and only if the vector
is actually in the kernel of the linear map Km+n → Km+n defined by ∇B.

Working over R, we have the following orthogonal decompositions:

Q = O · diag ·OT and B = O1 · diag ·O2.

Here diag represents diagonal matrices, the latter one being rectangular.
The matrices O, O1 and O2 are orthogonal, i.e. OOT = Id, O1O

T
1 = Id and

O2O
T
2 = Id. The entries of diag are respectively the eigenvalues of Q and

the singular values of B. The columns of O are the eigenvectors of Q. The
columns of O1 and the rows of O2 give all pairs of singular vectors of B. Note
that O1 and O2 are both square matrices, but of different sizes. The possibly
unmatched rows of O2 are in the kernel of B. The formulas above are known
as the spectral decomposition and the singular value decomposition.

For K = C there is a version of the spectral decomposition for Hermitian
matrices Q. A Hermitian matrix Q is equal to its conjugate transpose:
Qij = Qji. The matrix O is now unitary, i.e. its inverse is equal to its
conjugate transpose. The eigenvalues of Q remain real. Analogously, for the
singular value decomposition one needs to replace the orthogonal matrices
by unitary matrices. The singular values are nonnegative also in this case.

We summarize our brief review of linear algebra in the following points:

• Symmetric matrices Q represent quadratic forms.

• Rectangular matrices B represent bilinear forms.

• Their gradients ∇Q and ∇B specify the linear maps one usually
identifies with the matrices Q and B ⊕BT .

• The eigenvectors and singular vectors are fixed points of these maps.

• These fixed points are computed via spectral and singular value
decompositions:

Q = O · diag ·OT and B = O1 · diag ·O2.
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9.1. Eigenvectors 137

In the age of big data, the role of matrices is increasingly played by
tensors, that is, multidimensional arrays of numbers. Principal component
analysis tells us that the eigenvectors of a covariance matrix Q = BBT give
directions in which the data B is most spread. One hopes to identify similar
features for tensor data. This has encouraged engineers and scientists to
spice up their linear algebra tool box with a pinch of algebraic geometry.

The spectral theory of tensors is the theme of the following discussion.
This theory was pioneered around 2005 by Lek-Heng Lim and Liqun Qi. We
refer to the textbook [44] for background and context. Our aim is to gener-
alize familiar notions, such as rank, eigenvectors and singular vectors, from
matrices to tensors. Specifically, we address the following two questions.
The answers to these two questions are provided in Examples 9.7 and 9.13.

Question 9.3. How many eigenvectors does a 3× 3× 3 tensor have?

Question 9.4. How many singular vector triples does a 3×3×3 tensor have?

A tensor is a d-dimensional array T = (ti1i2···id). Here the entries
ti1i2···id are elements in the ground field K. The set of all tensors of for-
mat n1×n2× · · ·×nd forms a vector space of dimension n1n2 · · ·nd over K.
For d = 1, 2 we get vectors and matrices. A tensor has rank 1 if it is the
outer product of d vectors, written T = u⊗ v ⊗ · · · ⊗w or, in coordinates,

ti1i2···id = ui1vi2 · · ·wid .

The problem of tensor decomposition is the following. We wish to express
a given tensor T as a sum of rank-1 tensors, using as few summands as
possible. The minimal number of rank-1 summands needed to represent T
is the rank of T . We note that the rank of any tensor is always finite. We
will discuss this topic in detail in the next section.

An n×n× · · ·×n tensor T = (ti1i2···id) is called symmetric if it is un-
changed upon permuting the indices. The space Symd(R

n) of such sym-

metric tensors has dimension
(n+d−1

d

)
. It is identified with the space of

homogeneous polynomials of degree d in n variables, written as

(9.7) T =
n∑

i1,...,id=1

ti1i2···id · xi1xi2 · · ·xid .

Example 9.5. A tensor T of format 3×3×3 has 27 entries. If T is a symmet-
ric tensor, then it has at most 10 distinct entries, one for each coefficient of
the associated cubic polynomial in three variables. This polynomial defines
a cubic curve in the projective plane P2, as indicated in Figure 9.1.
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138 9. Tensors

Figure 9.1. A symmetric 3×3×3 tensor represents a cubic curve in P2.

Symmetric tensor decomposition writes T as a sum of powers of lin-
ear forms:

(9.8) T =
r∑

j=1

λjv
⊗d
j =

r∑
j=1

λj(v1jx1 + v2jx2 + · · ·+ vnjxn)
d,

where vj = (v1j , . . . , vnj) and the λj are scalars. As before, the gradient of
T defines a map ∇T : Kn → Kn, but this map is now nonlinear. A vector
v ∈ Kn is called an eigenvector of T if (∇T )(v) = λ · v for some λ ∈ K.

Eigenvectors of tensors arise naturally in optimization. Consider the
problem of maximizing a real homogeneous polynomial T over the unit
sphere in Rn. If λ denotes a Lagrange multiplier, one sees that the eigen-
vectors of T are the critical points of this optimization problem. One can
check the values of T at these points to find global maxima and minima.

We find it convenient to replace Kn by the projective space Pn−1. The
gradient map is then a rational map from this projective space to itself:

∇T : Pn−1 ��� Pn−1.

The eigenvectors of T are fixed points (λ �= 0) and base points (λ = 0) of
∇T . Thus the spectral theory of tensors is closely related to the study of
dynamical systems on Pn−1. The matrix case (d = 2) appeared in (9.3). By
the Spectral Theorem of linear algebra, a real quadratic form T has a real
decomposition (9.8) with d = 2. Here r is the rank, the λj are the eigenvalues
of T , and the eigenvectors vj = (v1j, v2j , . . . , vnj) are orthonormal. We
can compute the eigenvectors numerically by power iteration, namely by
applying ∇T until an approximate fixed point is reached. This will be
a dominant eigenvector, and the other eigenvectors are then found by an
appropriate inductive scheme.

For d ≥ 3, one can still use power iteration to compute eigenvectors of
T . However, the eigenvectors are usually not the vectors vi in the low-rank
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9.1. Eigenvectors 139

decomposition (9.8). One exception arises when the symmetric tensor is
odeco, or orthogonally decomposable. This means that T has the form (9.8),
where r = n and {v1,v2, . . . ,vr} is an orthogonal basis of Rn. These basis
vectors are the attractors of the dynamical system ∇T , provided λj > 0.

The following gives a count of the eigenvectors of a symmetric tensor.

Theorem 9.6 (Cartwright-Sturmfels [8]). If K is algebraically closed, then
the number of eigenvectors of a general tensor T ∈ Symd(K

n) equals

(d− 1)n − 1

d− 2
=

n−1∑
i=0

(d− 1)i.

Example 9.7 (n = d = 3). The Fermat cubic T = x3 + y3 + z3 is an odeco
tensor. Its gradient map is the regular map that squares each coordinate:
∇T : P2 → P2, (x : y : z) �→ (x2 : y2 : z2). This dynamical system has
7 = 1 + 2 + 22 fixed points, of which only the first three are attractors:

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1), (1 : 1 : 1).

We conclude that T has seven eigenvectors, as predicted by Theorem 9.6.

It is known that all eigenvectors can be real for suitable tensors. This was
proved by Khozhasov [29] using the theory of harmonic polynomials. For
n = 3, we can construct tensors with all eigenvectors real by the following
geometric method. Let T be a product of d linear forms in x, y, z, defining
d lines in P2

R. The
(
d
2

)
vertices of the line arrangement are base points of

∇T . One can show that each of the
(
d
2

)
+1 regions contains one fixed point.

This accounts for all 1 + (d−1)+ (d−1)2 eigenvectors, which are hence real.

Example 9.8. Let d = 4 and fix the quartic T = xyz(x+ y+ z), which is a
symmetric 3×3×3×3 tensor. Its curve in P2 is an arrangement of four lines.
All 13 = 6+ 7 eigenvectors of T are real. The 6 vertices of the arrangement
are the base points of ∇T . Each of the 7 regions contains one fixed point.

For special tensors T , two of the eigenvectors in Theorem 9.6 may co-
incide. This corresponds to vanishing of the eigendiscriminant, a big poly-
nomial in the ti1i2···id . In the matrix case (d = 2), this is the discriminant
of the characteristic polynomial of an n×n matrix [53, §7.5]. For 3×3×3
tensors, the eigendiscriminant is a polynomial of degree 24 in 27 unknowns.

Theorem 9.9 (Abo-Seigal-Sturmfels [1]). The eigendiscriminant is an irre-
ducible homogeneous polynomial of degree n(n−1)(d−1)n−1 in the ti1i2···id.

Example 9.10 (n = 2). The eigendiscriminant of a binary form T (x, y) of
degree d is the discriminant of x∂T

∂y − y ∂T
∂x , so it has degree 2d− 2 in T .
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140 9. Tensors

Singular value decomposition is a central notion in linear algebra and its
applications. Remark 9.2 casts the singular vector pairs of a matrix as fixed
points of a self-map of a product of two projective spaces. Consider now a
d-dimensional tensor T in Kn1×···×nd . It corresponds to a multilinear form.
The singular vector tuples of T are the fixed points of the gradient map

∇T : Pn1−1× · · · × Pnd−1 ��� Pn1−1× · · · × Pnd−1.

Example 9.11. The trilinear form T = x1y1z1 + x2y2z2 is interpreted as a
2×2×2 tensor. The gradient ∇T of this trilinear form is the rational map

P1 × P1 × P1 ��� P1 × P1 × P1,(
(x1 : x2), (y1 : y2), (z1 : z2)

)
�→

(
(y1z1 : y2z2), (x1z1 : x2z2), (x1y1 : x2y2)

)
.

This map has six fixed points, namely
(
(1:0), (1:0), (1:0)

)
,
(
(0:1), (0:1), (0:1)

)
,(

(1:1), (1:1), (1:1)
)
,
(
(1:1), (1:−1), (1:−1)

)
,
(
(1:−1), (1:1), (1:−1)

)
, and(

(1:−1), (1:−1), (1:1)
)
. These are the singular vector triples of the tensor T .

Here is a formula for the expected number of singular vector tuples.

Theorem 9.12 (Friedland and Ottaviani [20]). For a general n1× · · · ×nd

tensor T over an algebraically closed field K, the number of singular vector
tuples is the coefficient of the monomial zn1−1

1 · · · znd−1
d in the polynomial

d∏
i=1

(ẑi)
ni − zni

i

ẑi − zi
where ẑi = z1 + · · ·+ zi−1 + zi+1 + · · ·+ zd.

We end our study of the spectral theory of tensors by answering Ques-
tion 9.4.

Example 9.13. Let d = n1 = n2 = n3 = 3. The polynomial in Theo-
rem 9.12 is

(ẑ1
2+ẑ1z1+z21)(ẑ2

2+ẑ2z2+z22)(ẑ3
2+ẑ3z3+z23) = · · · + 37z21z

2
2z

2
3 + · · · .

Therefore, a general 3×3×3 tensor has exactly 37 triples of singular vectors.
Likewise, a general 3×3×3×3 tensor has 997 quadruples of singular vectors.

9.2. Tensor Rank

There are many ways to define the rank of an a×b matrix M over a field K:

(1) the smallest integer r such that all (r+1)× (r+1) minors vanish;

(2) the dimension of the image of the induced linear map Ka → Kb;

(3) the dimension of the image of the induced linear map Kb → Ka;

(4) the smallest r such that M = UW for U ∈ Ka×r and W ∈ Kr×b.
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9.2. Tensor Rank 141

The first point implies that matrices of rank at most r form a variety. The
last point implies that a matrix of rank r is a sum of r matrices of rank 1.
This is also true for symmetric matrices: A symmetric matrix of rank r is a
sum of r symmetric rank-1 matrices. Another fact is that a real matrix of
rank r also has rank r when viewed over C. This seems obvious, but a priori
it is not clear why there is no shorter decomposition into rank-1 matrices
with entries in C. Our aim is to study these issues for arbitrary tensors.

In this section we work in a tensor product V1 ⊗ V2 ⊗ · · · ⊗ Vd of finite-
dimensional vector spaces Vi over a field K. This is the space of all tensors of
format (dimV1)×· · ·×(dimVd). By fixing a basis, we may identify Vi � Kni

and thus V1⊗V2⊗· · ·⊗Vd � Kn1×n2×···×nd . A nonzero tensor T in this space
has rank 1 if it is the outer product of d vectors, i.e. T = u⊗ v ⊗ · · · ⊗w.
In coordinates, this means that the entries of T factor as

ti1i2···id = ui1vi2 · · ·wid .

Tensors of rank at most 1 form an affine variety. It is the affine cone over
the Segre variety Pn1−1× · · · × Pnd−1 in Pn1···nd−1. In fact, from Chapters 2
and 8 we know the equations of this variety. They are binomial quadrics,
namely the 2 × 2 minors of all flattenings of T . By flattenings we mean
representations of the tensor T as a matrix. We shall now explain this.

To begin with, the flattenings of the tensor T have the following invariant
description. Let I be any nonempty, proper subset of [d] = {1, 2, . . . , d}. The
corresponding flattening is the linear map defined by T as follows:

K
∏

i∈I ni =
⊗
i∈I

V ∗
i −→

⊗
j∈[d]\I

Vj = K
∏

j∈[d]\I nj ,(9.9)

e∗i �→
∑
j

tijej.

Here e∗i is a fixed basis vector of K
∏

i∈I ni =
⊗

i∈I V
∗
i , ej is any basis vector

of
⊗

j∈[d]\I Vj = K
∏

j∈[d]\I nj , and tij is the entry of T corresponding to

given i and j. Thus a tensor T has rank 1 if and only if all 2d− 2 flattenings
of T are matrices of rank 1. In fact, it is enough to check d flattenings
corresponding to |I| = 1. There is a similar result for tensors of rank 2, due
to Landsberg, Manivel and Raicu, but for all higher ranks only one direction
is true: The rank of T is bounded below by that of any flattening.

Example 9.14. A tensor T = (tijk) ∈ V1 ⊗ V2 ⊗ V3 induces the linear map

(9.10) V ∗
1 → V2 ⊗ V3 , e∗i �→ (tijk)j,k =

∑
j,k

tijk · fj ⊗ gk,

where (ei), (fj) and (gk) are respectively bases of V1, V2 and V3. This is the
case where I = {1} in (9.9). We think of (9.10) as an n1 × n2n3 matrix.
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142 9. Tensors

The transpose of this matrix is the n2n3 × n1 matrix that corresponds to
I = {2, 3} in (9.9). Thus, a three-way tensor has three distinct flattenings,
up to transposition.

We conclude that rank-1 tensors behave in a very nice way. However,
arbitrary tensors exhibit rather strange properties. Recall that the rank of
a tensor T is the minimal r such that T is the sum of r rank-1 tensors. For
instance, the three-way tensors of rank ≤ 2 are the tensors of the form

(9.11) T = a⊗ b⊗ c + d⊗ e⊗ f .

We shall see that the set of these tensors is not Zariski closed in Kn1×n2×n3 .

Example 9.15. Let d = 3 and V1 = V2 = V3 = C2 with basis {e0, e1}. The
following 2× 2× 2 tensor is known in quantum physics as the W -state:

(9.12) W = e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0.

This representation shows that W has rank at most 3. In fact, rkW = 3,
as the reader is asked to prove in Exercise 9. To do so, equate W with T in
(9.11). This gives an inconsistent system of eight cubic equations in the 12
unknown coordinates a0, a1, b0, . . . , f1 of the vectors a,b, . . . , f in (9.11).

However, there exist rank-2 tensors arbitrarily close to W . We have

1

ε
((e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0)

= W + ε(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ε2e1 ⊗ e1 ⊗ e1.

This is an identity for all ε �= 0. In particular, we have

lim
ε→0

1

ε

(
(e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0

)
= W.

We conclude that the W -state is a tensor of rank 3, but it can be approxi-
mated with arbitrary precision by a sequence of tensors of rank 2.

Definition 9.16. The border rank brk(T ) of a complex tensor T is the
smallest r such that T lies in the closure of the set of tensors of rank r.

The notion of border rank requires a topology on the space of tensors.
The geometric locus of tensors of border rank ≤ r is the closure of the
locus of tensors of rank ≤ r. Note that we may realize tensors of rank
≤ r as the image of a polynomial map. Hence, over the complex numbers,
by Corollary 4.20 of Chevalley’s Theorem, it does not matter whether we
take the Euclidean topology or the Zariski topology—the closures coincide.
However, the situation is different over the real numbers. To prove this, we
shall use the hyperdeterminant, denoted by Det, from Example 4.10.

Lemma 9.17. The hyperdeterminant of the rank-2 tensor in (9.11) is

(9.13) Det(T ) = (a0d1 − a1d0)
2(b0e1 − b1e0)

2(c0f1 − c1f0)
2.
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9.2. Tensor Rank 143

Proof. We have an explicit formula for Det(T ) as a homogeneous poly-
nomial of degree 4 in the eight tensor entries tijk. If we substitute tijk =
aibjck+diejfk and factor, then we obtain the above product of degree 12. �

Corollary 9.18. Let T ∈ R2×2×2. If T has real rank ≤ 2, then Det(T ) ≥ 0.

Proof. Our hypothesis says that T has a representation (9.11) over R. The
expression (9.13) for Det(T ) is a square in R. It is hence nonnegative. �

Example 9.19. Let i =
√
−1. The following tensor has rank 2 in C2×2×2:

T =
1

2

(
(e1 + ie0)

⊗3 + (e1 − ie0)
⊗3
)
= e1 ⊗ e1 ⊗ e1 − W.

Note that this tensor is real. By substituting its coefficients into the formula
for the hyperdeterminant in Example 4.10, we find that Det(T ) = −4 < 0.
Corollary 9.18 implies that the real rank of T is ≥ 3. Thus the tensor T has
the property that its complex rank is strictly smaller than its real rank.

Exercise 10 states that the set of rank-2 tensors is Zariski dense in the
space of 2 × 2 × 2 tensors. This holds for any infinite field K. If K = C

then they are also dense in the Euclidean topology. In fact, a tensor T
has complex rank ≤ 2 if Det(T ) �= 0. This property is specific to tensors of
format 2×2×2. For larger formats, the situation is much more complicated.

Note that the W -state has rank 3 and satisfies Det(W ) = 0. If T is a
2× 2× 2 tensor that satisfies Det(T ) = 0 and all three flattenings of T have
rank 2, then T always has complex rank 3. If exactly one flattening has rank
1, then T has complex rank 2. If two flattenings have rank 1, then all three
have rank 1 and T has complex rank 1. If K = R then we must distinguish
the two cases Det(T ) > 0 and Det(T ) < 0. In the former case, T has real
rank 2. In the latter case, T has real rank 3.

Our discussion has the following interpretation in projective geometry.
Tensors of rank 1 form the Segre threefold X = P1 × P1 × P1 in P7. By
Exercise 10, the secant variety of X, described in Definition 9.20 below,
fills P7. However, the tangential variety of X, which is the union of all
tangent spaces to X, has dimension 6. It is the hypersurface {Det(T ) = 0}
in P7. The W -state is a point on this hyperdeterminant hypersurface. The
line {λe0 ⊗ e0 ⊗ e0 +W : λ ∈ K} crosses that hypersurface transversally.
If K = R then the real rank on that line depends only on the sign of λ.

To conclude, unlike in the case of matrices or rank-1 tensors:

• Tensors of rank at most r may form a nonclosed set.

• A real tensor can have smaller rank when viewed as a complex
tensor.

• Real tensors of bounded real border rank form semialgebraic sets.
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144 9. Tensors

We have described rank-1 tensors as the Segre product of projective spaces.
It is natural to ask for a geometric description of tensors of rank at most r.

Definition 9.20 (Secant variety). Let X be any projective variety in Pn.
The kth secant variety of X is the closure of the set of k-secant planes to X:

(9.14) σk(X) :=
⋃

p1,...,pk∈X
〈p1, . . . , pk〉.

Note that X = σ1(X) ⊂ σ2(X) ⊂ · · · ⊂ σdim〈X〉(X) = 〈X〉. These contain-
ments are strict until σr(X) equals the linear span 〈X〉 of the variety X.

If X is the Segre variety, then the union in (9.14) is the set of tensors of
rank ≤ r. Its closure σr(X) is the set of tensors of border rank ≤ r. It is
a major open problem to determine the prime ideal of σr(X). This would
provide a test for a tensor to have border rank r. The simplest equations for
σr(X) are the (r+1)× (r+1) minors of the various flattenings, as in (9.9).
These have degree r + 1. No polynomials of degree ≤ r vanish on σr(X).

IfX is the Veronese variety, then we obtain the notion of symmetric rank.
A symmetric tensor T is in X if the following equivalent conditions hold:

(1) The rank of T as a tensor is 1.

(2) T = λv ⊗ v ⊗ · · · ⊗ v for some vector v and scalar λ.

(3) T , as a polynomial, is a power of a linear form times a constant.

Given a symmetric tensor T , the symmetric border rank of T is the smallest
positive integer r such that T ∈ σr(X). The rank of T is a lower bound for
the symmetric rank of T , and ditto for the border rank.

It was a longstanding question, known as Comon’s conjecture, whether
the rank of a symmetric tensor is always equal to its symmetric rank. It turns
out that the answer is no. A counterexample was constructed by Shitov in
[48]. The border rank analogue of Comon’s conjecture remains open.

It is easy to prove that general tensors have high rank and high border
rank, but it is extremely hard to find explicit examples. In particular, it is
not known how to provide examples of complex n×n×n tensors T of rank
greater than 3n. Explicit constructions of tensors of rank close to 3n can be
found in [2] and of border rank above 2n in [33]. By Exercise 12, a general
tensor in Kn×n×n has border rank quadratic in n.

We next offer a case study on tensor ranks for the case in Figure 9.1.

Example 9.21 (3 × 3 × 3 tensors). Fix an algebraically closed field K.
Tensors of format 3 × 3 × 3 are points in the projective space P26. The
6-dimensional Segre variety X = P2 × P2 × P2 consists of all tensors of
rank 1. Tensors of border rank at most 2 form the secant variety σ2(X),
which has dimension 13. Its ideal is generated by the 3 × 3 minors of the
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9.2. Tensor Rank 145

three flattenings. These flattenings are 3×9 matrices, like
[
A |B |C

]
where

A = (tij1), B = (tij2) and C = (tij3) are matrices obtained as the slices in
our tensor. These 3 × 3 minors span a space of cubics that has dimension
222. With another computation one also verifies that σ2(X) has degree 783.

The variety σ3(X) of tensors of border rank at most 3 has dimension
20. Its ideal is generated by a collection of quartic polynomials, namely the
entries of the 3× 3 matrices A · adj(B) · C − C · adj(B) ·A, where we allow
all possible ways of slicing the tensor. What is the degree of this variety?

Finally, there is the variety σ4(X) of 3×3×3 tensors of border rank ≤ 4.
This is a hypersurface of degree 9 in P26. Its defining polynomial is known
as the Strassen invariant. The Strassen invariant can be computed as

det(B)2 · det
(
A ·B−1C − C ·B−1A

)
.

The expression has 9216 terms and is independent of the choice of slicing.
The fifth secant variety σ5(X) is equal to P26. In other words, the set of
tensors of rank ≤ 5 is dense in the space of all 3× 3× 3 tensors.

We refer to the book by Landsberg [32] for further details and much more
information on ideals defining the varieties of tensors of bounded rank.

We now restrict the rank stratification to the space of symmetric tensors.

Example 9.22 (Ternary cubics). Symmetric 3×3×3 tensors T are ternary
cubics, that is, homogeneous polynomials of degree 3 in three variables. We
regard them as points in P9 = P(Sym3(K

3)). Their ranks coincide with
their symmetric ranks, i.e. Comon’s conjecture is true in this tiny case [45].

The three flattenings
[
A |B |C

]
in Example 9.21 are now all equal. Af-

ter removing redundant columns, this becomes a 3×6 matrix, known as the
Hankel matrix or catalecticant. The ideal of 2×2 minors of the Hankel matrix
is generated by the 27 binomial quadrics seen for A = 3Δ2 in Example 8.18.
Its variety is the Veronese surface X � P2 whose points in P9 are the cubics
of rank 1. The secant variety σ2(X) has dimension 5, its points are cubics
of border rank ≤ 2, and it is defined by the 3×3 minors of the Hankel matrix.

Finally, the variety σ3(X) of cubics of border rank ≤ 3 is a quartic hy-
persurface in P9. Its defining polynomial is the classical Aronhold invariant.
This has 25 terms and can be obtained by specializing any of the entries of

(9.15) A · adj(B) · C − C · adj(B) ·A.

We have already discussed the distinction between complex rank and
real rank. A further refinement of the latter is the notion of nonnegative
rank. It is very important in applications, e.g. in statistics, where one deals
with probabilities. A tensor T = (ti1i2···id) is called nonnegative if its entries
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146 9. Tensors

ti1i2···id are all nonnegative. The nonnegative rank of a nonnegative tensor
T is the minimal number r of nonnegative rank-1 tensors that sum to T . In
general, the nonnegative rank is larger than the real rank, even for matrices.

9.3. Matrix Multiplication

The multiplication of two matrices is a bilinear operation. In this section we
identify this operation with a very special tensor. We will use this connection
to explain how tensors may be regarded as computational problems, tensor
decompositions as algorithms, and tensor rank as a complexity measure.

Determining the rank of a tensor is an important computational problem
in nonlinear algebra. In general one cannot hope for an efficient solution,
as the problem is NP-hard [26]. However, special cases are of particular
interest. The most well-known and important instance is the matrix multi-
plication tensor.

Let Mata,b � Ka×b be the space of a × b matrices over a field K. The
operation of matrix multiplication is a bilinear map Mata,b × Matb,c →
Mata,c. Bilinear maps from a Cartesian product of vector spaces are in
bijection with linear maps from the tensor product of those spaces; see
Exercise 14. Hence, matrix multiplication is an element of the vector space

Hom
(
Mata,b ⊗Matb,c , Mata,c

)
� Mat∗a,b ⊗Mat∗b,c ⊗Mata,c.

This is a canonical isomorphism. We write Ma,b,c for the matrix multiplica-
tion tensor. This third-order tensor is a special element of the tensor space
on the right-hand side. To simplify notation we write Mn := Mn,n,n for the
tensor that represents the multiplication of two square matrices.

Let {eij}, {fjk} and {gik} be the standard bases of the spaces Mat∗a,b,
Mat∗b,c and Mata,c. Thus gik is the a×c matrix whose entries are zero except
for a 1 in row i and column k. The other two bases are dual to such matrix
units. The matrix multiplication tensor has the following representation:

(9.16) Ma,b,c =
a∑

i=1

b∑
j=1

c∑
k=1

eij ⊗ fjk ⊗ gik.

Another representation is suggested in Exercise 13.

Example 9.23. Consider the tensor M2 that represents multiplication of
2× 2 matrices. Fixing the ordered basis (e00, e01, e10, e11) for Mat2,2 � K4,
we can write M2 explicitly as a 4×4×4 tensor with entries in {0, 1}. Among
the 64 entries in this tensor, there are precisely 8 ones and 56 zeros.
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9.3. Matrix Multiplication 147

The rank-1 decomposition of the tensor Ma,b,c given in (9.16) can be
interpreted as an algorithm for computing the product of the two matrices:

• To carry out matrix multiplication, one needs to add abc partial
results labelled by (i, j, k) in {1, . . . , a} × {1, . . . , b} × {1, . . . , c}.

• In step (i, j, k) one multiplication is performed. Namely, one mul-
tiplies the (i, j) entry of the first matrix by the (j, k) entry of the
second matrix. The product is added to the (i, k) entry of the
output matrix.

This is the familiar classical algorithm for multiplying two matrices. It
performs abc − 1 additions and abc multiplications. For a = b = c = n, its
running time is O(n3). We note that the number of multiplications is exactly
equal to the number of rank-1 tensors appearing in the decomposition.

What if we represent Ma,b,c in a different way? Could it be that the
number of multiplications we need is smaller than abc? Equivalently, is the
rank of Ma,b,c smaller than abc? Half a century ago, Volker Strassen set
out on a quest to prove that this is not possible. He quickly realized that
the case of arbitrary a, b and c is extremely hard and focused on the first
nontrivial case of a = b = c = 2. For that tensor, he discovered a most
surprising formula:

(9.17)

M2 = (e11 + e22)⊗ (f11 + f22)⊗ (g11 + g22)

+ (e21 + e22)⊗ f11 ⊗ (g21 − g22)

+ e11 ⊗ (f12 − f22)⊗ (g12 + g22)

+ e22 ⊗ (f21 − f11)⊗ (g11 + g21)

+ (e11 + e12)⊗ f22 ⊗ (g12 − g11)

+ (e21 − e11)⊗ (f11 + f12)⊗ g22

+ (e12 − e22)⊗ (f21 + f22)⊗ g11.

Thus the rank of the matrix multiplication tensor M2 is strictly less than
23 = 8. In fact, the rank and border rank of M2 are both exactly 7. The
latter is a highly nontrivial statement. We are not aware of any easy proof.
Even showing that the rank of M2 is not equal to 6 is a challenging exercise.

Why would such a decomposition be interesting? It furnishes an algo-
rithm for multiplying 2 × 2 matrices that adds seven partial results. We
describe only the first two, as the reader can reconstruct the other five:

(1) Add the (1, 1) entry to the (2, 2) entry of the first matrix and mul-
tiply by the sum of the (1, 1) and (2, 2) entries of the second ma-
trix. Retain this result in the (1, 1) and (2, 2) entries of the first
partial result.
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148 9. Tensors

(2) Add the (2, 1) entry of the first matrix to the (2, 2) entry and mul-
tiply by the (1, 1) entry of the second matrix. Put the result in the
(2, 1) entry and negated (2, 2) entry of the second partial result.

Computing each partial result requires only one multiplication. Although
we have decreased the number of multiplications, we increased the number
of additions (and subtractions) to 21. Why should this be exciting? The
reason is that multiplication of 2× 2 matrices is not our final aim.

We would like to multiply very large matrices. Consider two 512× 512
matrices. How do we multiply them? We may regard our matrices as 2 ×
2 matrices with entries that are 256 × 256 matrices and apply Strassen’s
algorithm! We would have to add a lot of 256 × 256 matrices, but we
only need to perform seven multiplications of such matrices. Further, these
multiplications may be done recursively by applying the same algorithm,
reducing to multiplication of 128× 128 matrices, etc. Anyone who has tried
multiplying or adding very large matrices knows that it is beneficial to trade
multiplication even for many additions. This is in fact a theorem: The
complexity of the (optimal) algorithm for multiplying matrices is governed
by the rank of Mn.

The asymptotics of these quantities is measured by the constant

ω = inf {τ : the complexity of multiplying two n× n matrices is O(nτ )}
= inf {τ : rank of Mn = O(nτ )}.

This quantity is known as the exponent of matrix multiplication. The naive
algorithm shows that ω ≤ 3. However Strassen’s algorithm, as described
above, gives ω ≤ log2 7. As matrices are of size n2, we also know that ω ≥ 2.

The central conjecture in this field says that the lower bound is attained:

Conjecture 9.24. The constant ω is equal to 2.

The conjecture would imply that it is not much harder to multiply very
large matrices than to add them (or even output the result)! At this point
we note that our story is really relevant to scientific computing. Strassen’s
algorithm is implemented and used in practice to multiply large matrices.

A careful reader might now have an idea of how to proceed with a proof
of Conjecture 9.24. As Strassen looked at 2 × 2 matrices, we should focus
on larger matrices, say 3 × 3. The disappointing fact is that despite many
attempts, no one knows either the rank or the border rank of the 9× 9× 9
tensor M3. For the current best estimates we refer to [34,35,49].

For each fixed n, deciding whether the rank (resp. border rank) of Mn is
≤ r means deciding whether Mn belongs to the image (resp. closed image)
of a particular polynomial map. Thus, the methods of Chapter 4 apply.
However, as tensor spaces are high-dimensional, this process is impossible
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to carry out on a computer, even for n = 3. What one can use instead is
representation theory, as described in Chapter 10. The optimal estimates for
ω are beyond the scope of this book. Currently we know that 2 ≤ ω < 2.38.
It is fascinating that the upper bounds are based on the border rank and
nonconstructive methods—one proves the existence of an algorithm without
explicitly providing it.

In general, we lack methods to show that a tensor has high rank or
high border rank. To prove that ω > 2 we would need to show that the

rank of the tensor Mn ∈ Cn2 ⊗ Cn2 ⊗ Cn2
grows superlinearly with the

dimension n2 of the space of matrices. However, we currently cannot even
prove that any (explicit) given tensor has rank greater than 3n2. Some
methods of obtaining bounds for the rank of the tensor will be discussed
in Section 10.3.

Exercises

(1) Fix the quadratic form Q in (9.1). Compute all the maxima and minima
of Q on the unit 2-sphere. Find all fixed points of the gradient map
∇Q : P2 → P2. How are these two questions related?

(2) Compute all fixed points of the map ∇B : P2 × P1 → P2 × P1 given by
the bilinear form B in (9.4). What are the singular vectors?

(3) Consider the 2× 2× 2× 2 tensor defined by the multilinear form T =
x1y1z1w1+x2y2z2w2. Determine all quadruples of singular vectors of T .

(4) For n = 2, 3, 4, pick random symmetric tensors of formats n×n×n and
n×n×n×n with entries in R. Compute all eigenvectors of your tensors.

(5) Prove Theorem 9.6.

(6) Find an explicit real 3×3×3×3 tensor with precisely 13 real eigenvectors.

(7) Find the number of singular vector tuples for your tensors in Exercise 4.

(8) Compute the eigendiscriminants for symmetric tensors of formats 2× 2,
2 × 2 × 2 and 2 × 2 × 2 × 2. Write them explicitly as homogeneous
polynomials in the entries of an unknown tensor of each format.

(9) Prove that the rank of the W -state equals 3. Hint: Show that the
polynomial system W = T described in Example 9.15 has no solution.

(10) Show that the Zariski closure of the set of tensors of rank 2 in R2⊗R2⊗R2

is the whole space. Hint: Use the Jacobian of the parametrization.

(11) Find the equations of the tangential variety to P1 × P1 × P2 in P11.
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150 9. Tensors

(12) Prove that in Cn ⊗ Cn ⊗ Cn:
(a) there exists a tensor of border rank at least 1

3n
2;

(b) every tensor has rank at most n2.

(13) Linear maps from V1 to V2 are identified with tensors in V ∗
1 ⊗ V2. The

composition of linear maps in V1 → V2 → V3 may be regarded as a map

(V ∗
1 ⊗ V2)× (V ∗

2 ⊗ V3)→ (V ∗
1 ⊗ V3).

Hence, the matrix multiplication tensor MdimV1,dimV2,dimV3 belongs to

(V ∗
1 ⊗ V2)

∗ ⊗ (V ∗
2 ⊗ V3)

∗ ⊗ (V ∗
1 ⊗ V3) = (V1 ⊗ V ∗

1 )⊗ (V2 ⊗ V ∗
2 )⊗ (V3 ⊗ V ∗

3 ).

(a) Explain why MdimV1,dimV2,dimV3 is an element of the space on the
right. Do not refer to the basis, only to the linear maps Vi → Vi.
Hint: The identity map is a distinguished element in V ∗

i ⊗ Vi.
(b) Provide a natural isomorphism Mat∗a,b � Matb,a.

(c) The tensor Ma,b,c can also be identified with a trilinear map

Mata,b ×Matb,c ×Matc,a → K.

Describe this trilinear map without referring to coordinates.

(14) Show that the following four vector spaces are naturally isomorphic:
• V1 ⊗ · · · ⊗ Vk;
• k-linear maps V ∗

1 × · · · × V ∗
k → C;

• (k − 1)-linear maps V ∗
1 × · · · × V ∗

k−1 → Vk;
• linear maps V ∗

1 ⊗ · · · ⊗ V ∗
k−1 → Vk.

(15) The matrix multiplication tensor M2,2,3 has format 4×6×6. Write this
tensor explicitly in coordinates. What do you know about its rank?

(16) Expand the Aronhold invariant and the Strassen invariant in monomials.

(17) Compute the ideal of the secant variety σ2(X) where X = P1×P2×P2 is
the Segre variety in P17. Can you answer the same question for σ3(X)?

(18) How can you test whether a complex 4× 4× 4 tensor has rank ≤ 4?

(19) How many singular vector triples does a general 3× 4× 5 tensor have?
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Chapter 10

Representation Theory

“Reality favors symmetry”, Jorge Luis Borges

Symmetry is the key to many applications and computations. While this
is true across the mathematical sciences, it is especially pertinent in nonlin-
ear algebra. In its most basic form, symmetry is expressed via the action of
a group acting linearly on a vector space. The study of such actions is the
subject of representation theory. For instance, the symmetric group on three
letters acts on the plane by the rotations and reflections that fix a regular
triangle with centroid at the origin. The map that takes each group ele-
ment to its associated matrix is the representation of the group. The matrix
representations of the groups we study here can be simultaneously block-
diagonalized. The blocks are irreducible representations. Identifying these
blocks is tantamount to exploiting symmetry in explicit computations. Our
objective in this chapter is to offer a first glimpse of representation theory.

10.1. Groups, Representations and Characters

The most important groups we study in this chapter are the following:

• GL(V ) = GL(dimV ), the group of linear automorphisms of a finite-
dimensional vector space V . This group has the structure of an
algebraic variety, given by Exercise 8 in Chapter 2.

• SL(V ) = SL(dimV ), the group of linear automorphisms of V that
preserve volume and orientation. This is the algebraic variety de-
fined by the polynomial equation detA = 1.

151

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



152 10. Representation Theory

• Sn, the group of permutations of a set with n elements. This is an
algebraic variety consisting of n! distinct points in GL(n), namely
the n× n permutation matrices.

The groups that we consider have two structures: of an abstract group and
of an algebraic variety. We note that basic group operations, such as taking
the inverse or acting by group elements, are in fact morphisms of algebraic
varieties. We call such groups algebraic. Thus, we restrict our attention
to algebraic groups and morphisms between them. These are maps that
are both group morphisms and morphisms of algebraic varieties. In what
follows, we work over an algebraically closed field K of characteristic zero.

In general, the following strategy for studying a mathematical object
can be very powerful. We examine all maps from (resp. to) this object to
(resp. from) another basic object that we know well. This general approach
can be seen as the motivation for studying homotopy, homology or the theory
of embeddings. For groups, we obtain the following central definition.

Definition 10.1. A representation of a group G is a morphismG→ GL(V ).
We will always assume that V is finite-dimensional.

Given a representation ρ : G → GL(V ), every group element g ∈ G
induces a linear map ρ(g) : V → V . It is useful to think of a representation
as a map G× V → V with the notation

gv := ρ(g)(v) ∈ V.

The following compatibilities hold for all λ∈K, v, v1, v2∈V and g, g1, g2∈G:

(10.1) (g1g2)v = g1(g2v) and g(λv1 + v2) = λgv1 + gv2.

If these hold, then we say that the groupG acts on the vector space V . Often,
the action is clear from the context, and we just call V a representation of G.

Example 10.2. Consider the regular triangle in R2 with vertices (0, 1),

(
√
3
2 ,−1

2) and (−
√
3
2 ,−1

2). The group S3 permutes the vertices of this trian-
gle. This induces a representation S3 → GL(2). Explicitly, we have

(12) �→
(

1
2

√
3
2√

3
2 −1

2

)
, (23) �→

(
−1 0
0 1

)
.

These two transpositions generate S3. This example generalizes to higher
dimensions by the action of Sn on a regular (n− 1)-dimensional simplex.

Example 10.3. The groups GL(n) and SL(n) act (by linear changes of

coordinates) on the space V = K[x1, . . . , xn]k � K(n+k−1
k ) of homogeneous

polynomials of degree k in n variables. Using the monomial basis on V ,
the representation ρ maps a small matrix of size n × n to a large matrix
with rows and columns indexed by monomials of degree k. The entries of
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10.1. Groups, Representations and Characters 153

the large matrix are homogeneous polynomials of degree k in the entries of
the small matrix. We recommend working this out for n = k = 2. This
representation ρ of GL(n) plays an important role in invariant theory, the
topic of Chapter 11.

The polynomial representations in Example 10.3 can be restricted to any
subgroup G of GL(n), and this will turn V into a representation of G.

Example 10.4. Let n = 2 and k = 3, and consider the group of rota-
tion matrices

G =

{(
sin(θ) cos(θ)
−cos(θ) sin(θ)

)
: θ ∈ R

}
.

This is an algebraic group, isomorphic to the circle {s2+ c2 = 1} in R2. For
some computations, it is advantageous to use the rational parametrization

s = sin(θ) =
1− t2

1 + t2
, c = cos(θ) =

2t

1 + t2
.

The representation of G on the space of binary cubics V = R[x1, x2]3 is

(10.2) G → GL(V ) ,

(
s c
−c s

)
�→

⎛⎜⎜⎝
s3 −cs2 c2s −c3
3cs2 s3−2c2s c3−2cs2 3c2s
3c2s 2cs2−c3 s3−2c2s −3cs2
c3 c2s cs2 s3

⎞⎟⎟⎠.

This is the formula for the usual monomial basis of V . Note that the deter-
minant of the 4× 4 matrix on the right is equal to (s2 + c2)6 = 1. Since we
want our field K to be algebraically closed, from now on we replace R by C.

A morphism f between representations ρ1 : G→ GL(V1) and ρ2 : G→
GL(V2) is a linear map f : V1 → V2 that is compatible with the group action:

f(ρ1(g)(v)) = ρ2(g)(f(v)) for all g ∈ G and v ∈ V1.

This can also be written as f(gv) = gf(v). The kernel and cokernel of f
are also representations of G. This is the topic of Exercise 3.

Our first aim is to describe the basic building blocks of representations.
A subrepresentation of a representation V of a group G is a linear subspace
W ⊂ V such that the action of G restricts to W , i.e.

gw ∈W for all w ∈W and g ∈ G.

For any representation V , the subspaces {0} and V are subrepresentations.

Definition 10.5. A representation V is called irreducible if and only if 0
and V are its only subrepresentations.
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154 10. Representation Theory

We next show that the only morphism between two nonisomorphic irre-
ducible representations is trivial.

Lemma 10.6 (Schur’s Lemma). Let V1 and V2 be irreducible representations
of a group G. If f : V1 → V2 is a morphism of representations, then either f
is an isomorphism or f = 0. Further, any two such isomorphisms between
V1 and V2 differ by a scalar multiple.

Proof. Both ker f and im f are representations. As V1 is irreducible, either
ker f = V1 or f is injective. In the latter case, im f � V1 is a subrepresenta-
tion of V2, and hence f is also surjective, i.e. it is an isomorphism. For the
last part, consider two isomorphisms f1 and f2. We may assume that f1 is
the identity on V1. If v is the eigenvector of f2 with eigenvalue λ ∈ K, then

f2(v) = λv = λf1(v).

Consider the morphism of representations f := f2 − λf1. Clearly, v ∈ ker f .
Hence, by the first part, f2 − λf1 is the zero map, and so f2 = λf1. �

In the following theorem we assume that the group G is finite.

Theorem 10.7 (Maschke’s Theorem). Let V be a representation of a finite
group G. There exists a direct sum decomposition

V =
⊕

Vi

where each Vi is an irreducible representation of G.

Remark 10.8. We recall our assumption that the field has characteristic
zero and is algebraically closed. This makes representation theory well be-
haved. If the characteristic is finite, the situation is much more complicated.

Proof of Theorem 10.7. By induction on the dimension, it is enough to
prove the following statement: If W is a subrepresentation of V , then there
exists a subrepresentation W ′ such that V = W ⊕W ′.

We fix a representation ρ : G→ GL(V ) whereG is finite. Let π : V →W
be any linear (surjective) projection. We define a linear map π̃ : V →W by

π̃ =
1

|G|
∑
g∈G

ρ(g)|W ◦ π ◦ ρ(g)−1.

We note that π̃ is a morphism of representations, and it is also a surjective
projection from V to W . Hence, V = W ⊕ ker π̃. �
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Remark 10.9. The existence of a decomposition into irreducible compo-
nents holds not only for finite groups. It also holds for GL(n), SL(n) and
SO(n). A proof similar to the one above is known as the unitarian trick. It
was introduced by Hurwitz and generalized by Weyl.

A representation of an arbitrary group that allows such a decomposition
is called semi-simple or completely reducible. If all representations of G are
completely reducible, then the groupG is called reductive. This property will
be essential in our discussion of invariant theory in Chapter 11. The group
G being reductive is equivalent to the existence of a Reynolds operator as in
Lemma 11.3. Remark 10.9 says that GL(n), SL(n) and SO(n) are reductive.

Example 10.10. Let K = C and consider the representation V = C4 of the
circle group G = SO(2) in Example 10.4. The 4× 4 matrix in (10.2) equals

M ·D(θ) ·M−1,

where M is the matrix whose columns are the eigenvectors, namely

M =

⎛⎜⎜⎝
1 1 1 1
3i −3i −i i
3 −3 1 1
−i i −i i

⎞⎟⎟⎠ with i =
√
−1,

and D(θ) is the diagonal matrix whose entries are the eigenvalues. We have

D(θ) = diag
(
i · exp(3iθ), (−i) · exp(−3iθ), i · exp(−iθ), (−i) · exp(iθ)

)
.

This shows that V equals C1 ⊕ C1 ⊕ C1 ⊕ C1 as a representation of G.

Example 10.11. The additive group G = (K,+) is not reductive. Indeed,
let us consider the following representation:

G % a �→
(
1 a
0 1

)
∈ GL(2).

The subspace of K2 spanned by the first basis vector is invariant under
the action. However, it does not allow an invariant complement (see Exer-
cise 13).

The decomposition into irreducible representations in Maschke’s Theo-
rem is not unique. The following example makes this clear.

Example 10.12. Any group G acts on any vector space V trivially by
gv = v. Every subspace of V is a subrepresentation. The irreducible sub-
representations are the 1-dimensional subspaces of V . Hence, any decompo-
sition into 1-dimensional subspaces V = K1 ⊕K1 ⊕ · · · ⊕K1 is a decom-
position into irreducible representations. There is no distinguished one.
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As we will see, the reason for nonuniqueness is the fact that distinct Vi’s
appearing in the decomposition may be isomorphic. Let us therefore group
the isomorphic Vi’s together. Then we obtain the direct sum

(10.3) V =
⊕
j

V
⊕aj
j ,

where Vj0 � Vj1 if and only if j0 = j1. The subrepresentations V
⊕aj
j are

called the isotypic components of V . The number aj is the multiplicity of
the irreducible representation Vj in V .

Corollary 10.13 (of Schur’s Lemma). The isotypic components and multi-
plicities of a semi-simple representation V are well-defined, i.e. they do not
depend on the choice of the decomposition into irreducible representations.

Proof. Consider two decompositions of a semi-simple representation:

V =
⊕
j

V
⊕aj
j =

⊕
k

V ⊕bk
k .

Allowing aj and bk to be equal to zero, we may assume that all irreducible
representations occur and that the indexing in both sums

⊕
is the same.

First we prove that for a given irreducible representation Vi we have
ai = bi. The restriction of the identity gives us an injective map

m : V ⊕ai
i →

⊕
k

V ⊕bk
k .

We claim that the composition of m with the projection

πs :
⊕
k

V ⊕bk
k → V ⊕bs

s

equals zero, unless s = i. Indeed, if the map V ⊕ai
i → V ⊕bs

s is nonzero, it
induces a nonzero map between some Vi and Vs. By Schur’s Lemma such
a map may exist only if i = s. Hence, im(m) ⊂ V ⊕bi

i . In particular, by
a dimension count, ai ≤ bi. Analogously, bi ≤ ai, i.e. the multiplicities do
not depend on the decomposition. Further, the composition πs ◦m is the
identity if s = i and is zero if s �= i. It follows that im(m) = V ⊕bi

i . Thus, the
isotypic components are mapped to (the same) isotypic components. �

Our next aim is to understand the irreducible representations of a given
group G. The following definition provides us with the most important tool.

Definition 10.14 (Character). Let ρ : G → GL(V ) be a representation.
The character χρ = χV of ρ is the function G→ K that is obtained by com-
posing the representation ρ with the trace function Tr on square matrices:

χρ(g) = Tr(ρ(g)).
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Recall that the trace of a matrix is the sum of its diagonal elements, or the
sum of its eigenvalues. The character χρ is an invariant of a representation ρ.

See Remark 10.16 for the relationship to the characters in Chapter 8.
Properties of the trace function imply the following facts about characters:

• If V =
⊕

Vi then χV =
∑

χVi .

• If g1, g2 ∈ G are conjugate, then χ(g1) = χ(g2) for any character χ.

• If V1 and V2 are representations with characters χ1 and χ2, then
their tensor product V1⊗V2 is a representation with character χ1χ2.

• We have χV (e) = dimV , where e ∈ G is the identity element.

We now set K = C. For a finite group G, we define the following scalar
product on the finite-dimensional vector space CG of functions from G to C:

(10.4) 〈χ1, χ2〉 :=
1

|G|
∑
g∈G

χ1(g)χ2(g).

We learn from Serre’s book [46, Chapter 2] that the characters of all ir-
reducible representations of G are orthonormal with respect to this scalar
product. In particular, the characters of irreducible representations are lin-
early independent elements in CG. Hence, we can find the multiplicities aj
in the isotypic decomposition V =

⊕
j V

aj
j by decomposing the character:

χV =
∑

j ajχj.

For any finite groupG there are finitely many irreducible representations.
The sum of the squares of their dimensions equals the order of the group
[46, §2.5, Corollary 2]. A class function is a function G→ C that is constant
on conjugacy classes. The characters of the irreducible representations form
a basis for the space of class functions on G. One represents these characters
in a table, called the character table. This makes the decomposition of an
arbitrary representation easy, if we know its character. The character table
is a square matrix, since the number of conjugacy classes (row labels) equals
the number of irreducible representations (column labels).

Example 10.15. Consider the group S3 of permutations of three elements.
There are three conjugacy classes: the class of the identity (with one el-
ement), the class of a 3-cycle (with two elements), and the class of any
transposition (with three elements). Hence, there are three irreducible rep-
resentations. The first is the trivial representation gv = v, the second is the
sign representation gv = (sgn g)v, and the third is the 2-dimensional rep-
resentation, given by the symmetries of a regular triangle. Each column in
the table below represents a function S3 → C that is constant on conjugacy
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158 10. Representation Theory

classes. We present the character table for the symmetric group S3:

Trivial representation Sign repr. 2-dimensional repr.
Identity 1 1 2

Cycles (ijk) 1 1 −1
Transpositions (ij) 1 −1 0

The reader should check that these functions are orthonormal with respect
to the inner product (10.4). In fact, one builds the character table of a finite
group by exploiting the orthonormality of the columns. In this manner, one
obtains the 5× 5 character table for S4 and the 7× 7 character table for S5.

10.2. Invertible Matrices and Permutations

In this section we study the representations of the groups GL(n) and SL(n).
We cannot represent their characters by tables as there are infinitely many
conjugacy classes. However, we can represent each character χ by its values
on the Zariski dense subset of diagonalizable matrices. Hence, we fix the al-
gebraic torus T = (K∗)n ⊂ GL(n) of diagonal matrices, and we restrict the
character χ to T . As χ is constant on any conjugacy class and any diagonal-
izable matrix is conjugate to an element of T , the function χ|T characterizes
χ. Therefore, given any representation W of GL(n), we restrict the group
and regard W as a representation of T . By Exercise 1 and Corollary 10.13
we know that, as a representation of T , the space W decomposes into ir-
reducible 1-dimensional representations with multiplicities. By Exercise 1
from Chapter 8, the character of each such 1-dimensional representation is
a morphism t �→ tb from T to K∗. Hence, it may be identified with b ∈ Zn.

In conclusion, we obtain the decomposition into 1-dimensional spaces

(10.5) W =
⊕
b∈Zn

W ab
b ,

where Wb is the span of a nonzero vector w ∈W that is mapped to tbw by
the torus element t = (t1, . . . , tn). Thus w is a common eigenvector of all
matrices in the representation of T . The isotypic component W ab

b for the
T -action is the span of all such vectors w for fixed b. These W ab

b are called
weight spaces . The characters b of T for which ab �= 0 are called weights .

Remark 10.16. Let T be the torus of diagonal matrices t = diag(t1, . . . , tn)
in GL(n). If χ is a character of GL(n), then its restriction to T is the function
χ|T : T → K, t �→ Tr(ρ(t)). Here Tr denotes the trace of a (large) square
matrix. The restricted character χ|T equals

χ|T (t) =
∑
b∈Zn

abt
b.
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This Laurent polynomial in t1, . . . , tn is invariant under permutation of its
n unknowns. This means that it is a symmetric function.

Example 10.17. Following Example 10.3, we consider the action of GL(n)
on the space of homogeneous polynomials in n variables of degree k. Let χ
be its character. Then χ|T is the complete symmetric polynomial of degree
k, i.e. χ|T (t) is the sum of all monomials ta where a ∈ Nn and |a| = k.

Example 10.18. The group GL(n) acts naturally on the kth exterior power

V =
∧k Kn. Write ρ for this representation and χ for its character. We fix

the standard basis for V given by
{
ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n

}
.

The image ρ(g) of an n×n matrix g = (gij) is the kth compound matrix, or
kth exterior power, whose entries are the k × k minors of g. We note that

the determinant of ρ(g) equals det(g)(
n−1
k−1). The restricted character χ|T (t)

is the kth elementary symmetric polynomial in t1, . . . , tn.

For a concrete example, let k = 2. Then ρ(g) is an
(n
2

)
×
(n
2

)
matrix.

Its rows and columns are labeled by ordered pairs from {1, 2, . . . , n}. The
entry in row (i < j) and column (k < l) equals gikgjl − gilgjk. We have
det(ρ(g)) = det(g)n−1 and χ|T (t) =

∑
i<j titj . For k = 1 we have ρ(g) =

g, so χ|T (t) = t1 + t2 + · · · + tn. For k = n, we get the 1-dimensional
representation where ρ(g) is the 1× 1 matrix with entry det(g), so we have
χ|T (t) = t1t2 · · · tn. This representation is trivial when restricted to SL(n).

Let ρ be any representation of GL(n). We fix the lexicographic order
on the set of weights b that occur in ρ. Of particular importance is the
highest weight . The corresponding eigenvectors w ∈Wb in (10.5) are called
highest weight vectors. They span the highest weight space. In Example
10.17, the highest weight is (k, 0, . . . , 0) ∈ Zn, and a highest weight vector is
the monomial xk1. In Example 10.18, the highest weight is (1, . . . , 1, 0, . . . , 0),
and a highest weight vector is e1∧· · ·∧ek. In both cases, the highest weight
space is 1-dimensional. We note that the highest weight vector does not
depend on n, provided it exists (e.g. n ≥ k in the exterior power case).

Example 10.19 (Adjoint representation). The space of n× n matrices M
is a representation of GL(n) under the action by conjugation: ρ(g)(M) :=
gMg−1. This is called the adjoint representation of GL(n). For SL(n)
one considers the same action but on the space of traceless matrices. This
is the adjoint representation of SL(n). Intersecting the torus of diagonal
matrices in GL(n) with SL(n), we obtain an (n − 1)-dimensional torus,
with t1 · · · tn = 1. We use the convention tn = t−1

1 · · · t−1
n−1. The weights

of the adjoint representation are ti/tj . These are known as roots. The
highest weight t1/tn is represented by (2, 1, . . . , 1) ∈ Zn−1. For i �= j the
weight space corresponding to ti/tj is 1-dimensional and spanned by a matrix
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160 10. Representation Theory

with one nonzero (i, j) entry. In particular, the highest weight space is 1-
dimensional. Further, all diagonal matrices are invariant with respect to the
torus action contributing to an n-dimensional space of weight 0 ∈ Zn−1.

Theorem 10.20. Every irreducible representation of SL(V ) is determined
(up to isomorphism) by its highest weight, and the highest weight space is 1-
dimensional. A weight (a1, . . . , an−1) ∈ Zn−1 is the highest weight for some
irreducible representation if and only if a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 0.

Proof. For the proof we refer to [21, Chapter 15]. �

Here is a tool for building irreducible representations from highest
weights:

Definition 10.21. A Young diagram with k rows is a nonincreasing se-
quence of k positive integers. This is also known as a partition, and it is
usually presented in the following graphical form, e.g. for a sequence (2, 1, 1):

This Young diagram encodes the weight (2, 1, 1). For SL(4) it represents the
adjoint representation. For SL(5), this Young diagram does not represent
the adjoint representation, but the highest weight in both cases is the same.

Theorem 10.20 says that the irreducible representations of SL(n) are in
bijection with Young diagrams having at most n− 1 rows. Representations
of GL(n) are similar; first, every irreducible representation V of GL(n) is
also an irreducible representation of SL(n), so it has a Young diagram λ.

However, different representations of GL(n) give the same representation
of SL(n) if they differ by a power of the determinant. Precisely, consider a
representation ρ : SL(n)→ GL(V ) with associated Young diagram λ. Then
we have the following representations of GL(n) for any a ∈ Z:

ρa(g) := (det g)a · ( n
√
det g)|λ| · ρ

( 1
n
√
det g

· g
)
.

Here, the argument of ρ is in SL(n) and |λ| is the number of boxes in λ. The
irreducible representations of GL(n) are in bijection with pairs of a Young
diagram with at most n− 1 rows and an integer a ∈ Z. The 1-dimensional
representation g �→ det(g) of GL(n) corresponds to a = 1 and the empty
Young diagram. Equivalently, it may be represented by a Young diagram
with one column and n rows. Thus, for a ≥ 0, the representation ρa is often
associated to a Young diagram λ′ obtained by extending λ with a columns of
height n. For a vector space U , the representation of GL(U) corresponding
to a Young diagram λ with at most n rows is denoted by Sλ(U).
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Given a Young diagram λ, we write χλ for the character of the irreducible
representation Sλ(U). This is a symmetric polynomial in t = (t1, . . . , tn),
known as the Schur polynomial of λ. Schur polynomials include the complete
symmetric polynomials in Example 10.17, for λ = (n), and the elementary
symmetric polynomials in Example 10.18, for λ = (1, 1, . . . , 1).

The next result gives an explicit formula for the Schur polynomials.

Proposition 10.22. The Schur polynomial for λ is the following ratio of
n× n determinants. If λ has less than n rows, then we extend it by zeros:

χλ(t) =
det
(
t
λj+n−j
i

)
1≤i,j≤n

det
(
tn−j
i

)
1≤i,j≤n

.

We can find the decomposition (10.3) of a representation V into irre-
ducibles by writing the character χV as a linear combination of Schur poly-
nomials χλ with nonnegative integer coefficients aj . These coefficients are
the multiplicities. This expression is unique because the Schur polynomials
form a Z-linear basis for the ring of symmetric polynomials in n variables.

Example 10.23. Let n = 3. The Schur polynomial for λ = (λ1, λ2, λ3) is

χλ(t) =
1

(t1 − t2)(t1 − t3)(t2 − t3)
· det

⎛⎝ tλ1+2
1 tλ2+1

1 tλ3
1

tλ1+2
2 tλ2+1

2 tλ3
2

tλ1+2
3 tλ2+1

3 tλ3
3

⎞⎠ .

From this, we compute the three Schur polynomials of degree |λ| = 3:

χ(3,0,0) = t31 + t21t2 + t1t
2
2 + t32 + t21t3 + t1t2t3 + t22t3 + t1t

2
3 + t2t

2
3 + t33,

χ(2,1,0) = (t1 + t2)(t1 + t3)(t2 + t3),

χ(1,1,1) = t1t2t3.

The action of GL(3) on U = K3 induces an action on the space U⊗3 � K27

of 3× 3× 3 tensors. As characters are multiplicative under tensor product,

(10.6) χU⊗3 = (t1 + t2 + t3)
3 = χ(3,0,0) + 2 · χ(2,1,0) + χ(1,1,1).

From this decomposition into Schur polynomials, we obtain the following
decomposition of the triple tensor product into irreducible representations:

(10.7) U⊗3 = S(3)(U) ⊕
(
S(2,1)(U) ⊕ S(2,1)(U)

)
⊕ S(1,1,1)(U).

The first summand is the space of symmetric tensors, the last summand is
the space of antisymmetric tensors, and the middle summand consists of
two copies of the adjoint representation of SL(U), seen in Example 10.19.
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The irreducible representations Sλ(U) of SL(U) give rise to nice projec-
tive varieties. The group SL(U) acts also on the projective space P(Sλ(U)).
The latter action has a unique closed orbit, namely the orbit of the highest
weight vector. Here are two examples of such highest weight orbits:

(1) Consider the highest weight vector xk1 = [e1 · · · e1] in Sk(U). Its
orbit in P(Sk(U)) is the kth Veronese embedding of P(U).

(2) The orbit of [e1∧· · ·∧ek] ∈ P(
∧k(U)) is the Grassmannian G(k, U)

in its Plücker embedding. Here λ = (1, . . . , 1) as in Example 10.18.

The study of highest weight orbits provides us with a unified approach
to homogeneous varieties. It can also be used to build nice representations.

Example 10.24. Fix a Young diagram λ and let kλ be obtained by scaling
each row by k. Given a homogeneous variety X in P(Sλ(U)), we can take
the kth Veronese map vk of this projective space. The linear span of vk(X)
is Skλ(U). A special case of this construction is point (1) where X = P(U).

Next, we present a beautiful connection between the finite groups Sn

and the Lie groups SL(n) or GL(n). This is the Schur-Weyl duality. Our
description follows [21, Chapter 4]. Let us begin by going back to irreducible
representations of Sn. Their characters form a basis of class functions. Hence
the number of irreducible representations equals the number of conjugacy
classes. Each conjugacy class can be encoded by the lengths of cycles in
a decomposition of a permutation into cycles. These cycle lengths can be
further represented by a Young diagram with n boxes, where the first row
represents the length of the longest cycle and the last row the length of the
shortest cycle. Thus, the number of irreducible representations of Sn equals
the number of Young diagrams with n boxes.

Example 10.25. The symmetric group S3 has three conjugacy classes:

• the identity (1)(2)(3) with the Young diagram ;

• transpositions, e.g. (12)(3), with the Young diagram ;

• 3-cycles, e.g. (123), with the Young diagram .

We shall exhibit a natural bijection between Young diagrams λ with n
boxes and irreducible representations Sλ of Sn. Fix a vector space U and
consider the n-fold tensor power U⊗n. There are two groups acting on it:
GL(U), on each factor; and Sn, by permuting factors. Schur-Weyl duality
provides a simultaneous decomposition of U⊗n with respect to both groups.
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Theorem 10.26 (Schur-Weyl duality). Suppose dim(U) ≥ n. Then

(10.8) U⊗n =
⊕
|λ|=n

Sλ ⊗ Sλ(U),

where the sum is over all Young diagrams λ with precisely n boxes and the
Sλ are irreducible representations of the permutation group Sn.

When n = 2 and dimU ≥ 2, we obtain U⊗2 = S2(U)⊕
∧2 U , as there are

only two irreducible representations of S2, both 1-dimensional. This recovers
the fact that every square matrix is uniquely the sum of a symmetric ma-
trix and a skew-symmetric matrix. The S2 action on the matrix space U⊗2

is transposition, which acts trivially on S2(U) and changes the sign on
∧2 U .

The n = 3 case is the first interesting one. The three irreducible rep-
resentations Sλ of S3 in Example 10.15 correspond to the three outer sum-
mands in (10.7). Note that dim(Sλ) = 2 for λ = (2, 1). The middle sum-

mand in (10.7) is the 16-dimensional space S(2,1) ⊗ S(2,1)(U).

One can use (10.8) to define and construct all irreducible representa-
tions Sλ of the symmetric group Sn. These are known as Specht modules.
By Schur-Weyl duality, the dimension of the Specht module Sλ equals the
multiplicity aλ of Sλ(U) in U⊗n. This is seen from the decomposition of
U⊗n as a GL(U)-representation into isotypic components:

U⊗n =
⊕
λ

(Sλ(U))aλ .

The multiplicities aλ can be found using Schur polynomials as in (10.6).
For each isotypic component (Sλ(U))aλ consider the highest weight space.
This is the space of eigenvectors of the torus action with weight λ. The
permutation group Sn acts on the highest weight space. This representation
of Sn is irreducible. The Specht module Sλ is what we need for (10.8).

Let us return to the familiar n = 2 example of decomposing matrices
into symmetric and skew-symmetric ones. The highest weight vector e1e1 =
e1 ⊗ e1 of S2(U) is invariant with respect to transposition, i.e. it provides
the trivial representation of the two-element group S2. The highest weight
vector e1∧e2 = 1

2(e1⊗e2−e2⊗e1) of
∧2(U) changes sign when transposed,

i.e. it provides the sign representation of the two-element group S2.

Example 10.27 (n = 3). We consider λ = (2, 1) for U⊗3. The isotypic

component (S(2,1)(U))2 in the middle of (10.7) has a 2-dimensional subspace
Sλ of highest weight vectors. One possible basis of this space consists of the
tensors e112+ e211− 2e121 and e121+ e211− 2e112, where eijk := ei⊗ ej ⊗ ek.
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10.3. Exploiting Symmetry

Representation theory is useful for many questions concerning tensors. Prop-
erties and varieties that occur naturally tend to be invariant under group
actions on tensors, and this can be exploited for algorithms and applications.

We begin by showing how to obtain lower bounds for the border rank
of a tensor. This has many applications, notably in complexity theory. One
well-known instance is the matrix multiplication tensor Mn, which we saw
in Section 9.3. Bounds on the rank and border rank of Mn translate into
complexity bounds for optimal algorithms for multiplying two n×nmatrices.

Let A, B and C be three vector spaces and let T ∈ A ⊗ B ⊗ C be a
tensor. As described in Section 9.2, we flatten T to obtain the linear map

(10.9) T̂ : A∗ → B ⊗ C.

Given bases, we can think of T̂ as a matrix. If the tensor T has rank 1,
i.e. T = a⊗ b⊗ c, then the matrix T̂ has rank 1. If T is a sum of r tensors of
rank 1, then T̂ is a sum of r matrices of rank 1. Thus, the rank and border
rank of the tensor T are bounded below by the rank of the matrix T̂ .

The best possible lower bound one can possibly obtain by flattening
is the maximum of dim(A), dim(B) and dim(C). Our aim is to give larger
lower bounds on the border rank of some tensors T . This requires new ideas.
One of the tools—Strassen’s invariant—was presented in Section 9.2. We
now show how representation theory can lead us to a more general result.

The groups GL(A), GL(B) and GL(C) act on our tensors, and this action
preserves the rank. In what follows, all spaces are viewed as representations
of these groups, and linear maps are morphisms of representations. We first

tensor the map (10.9) with the identity on
∧k C. This gives the linear map

T̂ ⊗ Id∧k C : A∗ ⊗
∧k C → B ⊗ C ⊗

∧k C ,

f ⊗ (c1 ∧ · · · ∧ ck) �→ T̂ (f) ⊗ (c1 ∧ · · · ∧ ck).

We have brkT ≥ rk(T̂ ) = rk(T̂ ⊗ Id∧k C)/(dim
∧k C). The tensor product

C ⊗
∧k C is a reducible representation of GL(C). For instance, the map

C ⊗
k∧
C →

k+1∧
C , c0 ⊗ (c1 ∧ · · · ∧ ck) �→ c0 ∧ c1 ∧ · · · ∧ ck

has nonzero kernel. By tensoring this map with IdB we obtain a linear map

B ⊗ C ⊗
k∧
C −→ B ⊗

k+1∧
C.
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10.3. Exploiting Symmetry 165

We now compose the last map with T̂ ⊗ Id∧k C to obtain our final map

Tk,C : A∗ ⊗
k∧
C −→ B ⊗

k+1∧
C.

It is instructive to fix bases for A, B and C and explicitly write the
matrix that represents the linear map Tk,C . Each entry in that matrix
either is zero or equals an entry of the given tensor T = (tijk), up to sign.

Example 10.28. Suppose that A = K2, B = K3, C = K4 and k = 2.
Then T = (tijk) is a 2 × 3 × 4 tensor. The domain and range of our linear
map T2,C are the 12-dimensional vector spaces K2⊗∧2K4 and K3⊗∧3K4.
With respect to their standard bases, T2,C is given by the 12× 12 matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1|12 1|13 1|14 1|23 1|24 1|34 2|12 2|13 2|14 2|23 2|24 2|34
1|123 t113 −t112 0 t111 0 0 t213 −t212 0 t211 0 0
1|124 t114 0 −t112 0 t111 0 t214 0 −t212 0 t211 0
1|134 0 t114 −t113 0 0 t111 0 t214 −t213 0 0 t211
1|234 0 0 0 t114 −t113 t112 0 0 0 t214 −t213 t212
2|123 t123 −t122 0 t121 0 0 t223 −t222 0 t221 0 0
2|124 t124 0 −t122 0 t121 0 t224 0 −t222 0 t221 0
2|134 0 t124 −t123 0 0 t121 0 t224 −t223 0 0 t221
2|234 0 0 0 t124 −t123 t122 0 0 0 t224 −t223 t222
3|123 t133 −t132 0 t131 0 0 t233 −t232 0 t231 0 0
3|124 t134 0 −t132 0 t131 0 t234 0 −t232 0 t231 0
3|134 0 t134 −t133 0 0 t131 0 t234 −t233 0 0 t231
3|234 0 0 0 t134 −t133 t132 0 0 0 t234 −t233 t232

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the tensor T has rank 1, so that its entries factor as tijk = xiyjzk, then
the matrix T2,C has rank 3. Hence, if T has rank 2 then T2,C has rank
≤ 6, if T has rank 3 then T2,C has rank ≤ 9, and if T is general then T2,C

is invertible.

Returning to the general case, suppose that T = a ⊗ b ⊗ c is a rank-1
tensor in A⊗B⊗C. The image of the linear map Tk,C equals the subspace

Kb ⊗
(
Kc ∧

k∧
(C/Kc)

)
� K1 ⊗

k∧
Kdim(C)−1.

In particular, the rank of Tk,C is at most
(
dimC−1

k

)
when T has rank 1.

Further, all our constructions are linear in the entries tijk of the tensor T ,
i.e. (T1 + · · ·+ Tr)k,C = (T1)k,C + · · ·+ (Tr)k,C . Thus, if T has border rank

at most r, then the rank of the matrix Tk,C is at most r ·
(
dimC−1

k

)
. This

reasoning implies the following lower bound on the border rank of a tensor.

Proposition 10.29. The border rank of any tensor T is bounded below by

brk(T ) ≥ rk(Tk,C)/
(
dimC−1

k

)
.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



166 10. Representation Theory

This result implies that the s×s minors of the matrix Tk,C vanish on all

tensors whose border rank is less than s/
(
dimC−1

k

)
. This gives a method for

identifying explicit polynomials that vanish on tensors of border rank up to

(10.10) min
(
(dimB)

(dimC
k+1

)
, (dimA)

(dimC
k

) )
/
(dimC−1

k

)
.

These explicit polynomials are the appropriate minors of the matrix Tk,C .

Proposition 10.29 can now be used to derive lower bounds on the border
rank of a specific tensor T we are interested in. This is done by showing
that the matrix Tk,C has high rank for some k. Here is a concrete numerical
example. Fix an even integer m > 0, set k = m/2, and assume dim(A) =
dim(B) = dim(C) = m. Thus we consider m×m×m tensors. The matrix
Tk,C has format m

(
m
k

)
× m

(
m
k+1

)
. Therefore, its rank can be as large as

m ·
( m
k+1

)
. If this happens then we get the following lower bound:

brk(T ) ≥ m ·
(

m
k+1

)
/
(
m−1
k

)
= m2

k+1 .

This should be compared with what one can hope to get from the usual
flattening of T . The m × m2 matrix T̂ can at best give the lower bound
brk(T ) ≥ rk(T̂ ) = m. Thus the bound from Proposition 10.29 is almost
twice as good. This technique can be generalized by replacing the exte-
rior powers in our construction by other irreducible representations Sλ(C).
The resulting generalizations of our matrices Tk,C are known as the Young
flattenings of the tensor T ; see [35, §8.2].

Young flattenings have been a key tool recently for proving lower bounds
on the complexity of matrix multiplication. This is done by finding a lower
bound on the border rank of the matrix multiplication tensor T = Mn,
which has format m × m × m for m = n2. To estimate the rank of the
matrices Tk,C , one also uses representation theory. This is beyond the scope
of the book. Just as an example, we state an inequality due to Landsberg
and Ottaviani [36]. They proved that the border rank of the tensor Mn

satisfies

brk(Mn) ≥ n2
(
2n−1
n−1

)
/
(
2n−2
n−1

)
= 2n2 − n.

Further improvements on the lower bounds can be found in [34].

Representation theory can be exploited to reduce the complexity of high-
dimensional objects with symmetry. For instance, it is very useful for de-
scribing the ideals of varieties with a group action. Suppose that a group G
acts on a projective space Pn and X ⊂ Pn is a variety which is mapped to
itself by G. We will illustrate our approach with two particular examples:

(1) X = G(2, 5) ⊂ P(
∧2C5) is the Grassmannian and G = GL(5);

(2) X = σ4(P
3×P3×P3) ⊂ P(C4⊗C4⊗C4) is the secant variety of all

tensors of border rank at most 4 and G = GL(4)×GL(4)×GL(4).
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10.3. Exploiting Symmetry 167

AsG acts on Pn, it also acts on the polynomial ringK[x] = K[x0, . . . , xn],
and this restricts to an action on the radical ideal I(X). The vector space
I(X)k of polynomials of degree k in this ideal is a representation of the
group G. This has several advantages. Given just one polynomial f ∈ I(X),
we immediately obtain many, as 〈Gf〉 ⊆ I(X). Further, we can decompose
I(X)k into irreducibles. Given just one polynomial from each irreducible
piece, usually the highest weight vector, we can reconstruct the whole I(X)k.
This approach is extremely useful when combined with numerical methods.
Indeed, I(X)k is often of huge dimension and it would be impossible to write
down a basis. Yet it could happen that I(X)k has just a few irreducible rep-
resentations and we just need to remember G and a few polynomials.

To make this explicit, we first note that there are no linear functions
vanishing on either the Grassmannian or the secant variety σ4(P

3×P3×P3).
In both cases I1 = 0. The space of linear functions on the ambient space
of G(2, 5) equals

∧2((C5)∗). This is the irreducible representation of GL(5)

given by the Young diagram , with highest weight vector e∗1 ∧ e∗2.

The irreducible representations for a product of groups are the tensor
products of irreducible representations of each factor. Hence, irreducible
representations of GL(4) ×GL(4) ×GL(4) will be represented by triples of
Young diagrams, each with at most four rows. The highest weight vector is
just the tensor product of the individual highest weight vectors.

The linear functions on the ambient space of σ4(P
3× P3 × P3) are given

by ⊗ ⊗ . We see that a coordinate in the ambient space is a
product of three coordinates, one for each P3. The space of quadrics is more
complicated, but the ideal is still trivial. Indeed, for X = σ4(P

3 × P3 × P3)
we have I(X)2 = I(X)3 = I(X)4 = 0. This is either a challenging exercise
or a (less challenging) literature check [32]. Hence, the first interesting case
is I(X)5. This is a subspace of the space of degree-5 polynomials in 64
variables. The dimension of this subspace equals 1728. This sounds scary,
but everything becomes manageable when we apply representation theory.

Let us begin by describing the quadrics in the ideal of G(2, 5). The space

of all quadrics equals S2(
∧2(C5)∗), so its dimension is

((52)+1
2

)
= 55. The

composition of symmetric and wedge products is an example of plethysm.
No general formulas are known for plethysm of irreducible representations.
However, each special case can be dealt with. The above representation is

a sum of two irreducibles, namely and , of dimensions 50 and 5.

From Example 10.24, we know that the second Veronese embedding

of G(2, 5) spans the representation . As the linear functions on the
Veronese embedding are the quadratic functions before the embedding, we
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deduce that

C[x]2/I(G(2, 5))2 � and hence I(G(2, 5))2 � .

Writing pij for e∗i ∧ e∗j , the highest weight vector of the 5-dimensional space

I(G(2, 5))2 is the Plücker quadric p23p14 − p13p24 + p12p34. This is familiar
from (5.3). Indeed, it has the correct weight and belongs to the ideal.

We now pass to the secant variety X = σ4(P
3 × P3 × P3). We seek

quintics that vanish on 4× 4× 4 tensors of border rank 4. For this we apply
the method described at the beginning of this section. We first focus on
tensors T ∈ C4 ⊗C4 ⊗C3. Such a tensor may be represented as three 4× 4
matrices A, B and C. The map T1,C3 for ei ∈ C3 and f ∈ C4 is defined by

T1,C3(f ⊗ ei) = (Af)⊗ e1 ∧ ei + (Bf)⊗ e2 ∧ ei + (Cf)⊗ e3 ∧ ei.

Note that one of the three terms on the right is zero. In matrix form,

T1,C3 =

(
0 −C B
−C 0 A
−B A 0

)
.

If the matrices A, B and C are symmetric, then negating the second col-
umn block gives a skew-symmetric matrix. The principal minors of a skew-
symmetric matrix with unknown entries are squares of polynomials known
as Pfaffians. The vanishing of Pfaffians of size 2s, hence of degree s, en-
sures that a skew-symmetric matrix is of rank at most 2s− 2. In our case,
by Proposition 10.29, the 10 × 10 Pfaffians are the degree-5 polynomials
vanishing on X, as they provide the correct rank condition for T1,C3 .

For the general case, let us first assume that B is invertible. Using row
and column operations, we can transform the above matrix to the form(

0 0 B
0 AB−1C − CB−1A A
−B A 0

)
.

The rank of this matrix equals 8 plus the rank of AB−1C − CB−1A. In
particular, the rank is 8 if and only if AB−1C − CB−1A = 0. This is not a
polynomial equation, but we can transform it by multiplying by det(B):

(10.11) A · adj(B) · C − C · adj(B) ·A = 0.

Here adj(B) is the adjugate matrix, whose entries are the signed 3×3 minors
of B. Hence the entries of (10.11) have degree 5 = 1 + 3 + 1 in the entries
of A, B and C. They are known as Strassen equations. We note that they
are related to the Aronhold invariant in (9.15). The latter is obtained by
replacing the 4 × 4 matrices A, B and C in (10.11) with symmetric 3 × 3
matrices.
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The upper left entry of (10.11) is a quintic with 180 terms. We re-
gard it as a polynomial on the space C4 ⊗ C4 ⊗ C4, by restricting the last
C4 to C3. In fact, this polynomial uses only 30 of the 64 variables. It
vanishes on tensors of border rank 4. It is the highest weight vector of a
576-dimensional irreducible representation of GL(4)×GL(4)×GL(4), given
combinatorially by

By permuting the three factors, we get two further irreducibles that vanish
on the secant variety X. Together they span I(X)5, which has dimension
1728 = 3 ·576. We construct all of these quintics by applying the symmetric
group S3 and GL(4)×GL(4)×GL(4) to one small quintic with 180 terms.

There is one big difference between our Grassmannian and our secant
variety. A theorem of Kostant states that the ideal of a homogeneous variety,
such as a Grassmannian, is generated by quadrics. By contrast, ideals of
higher secant varieties are known in only very few cases. The above ideal
I(X) is not generated in degree 5. Describing the generators of I(X) is
known as the Salmon problem. Salmon is not a mathematician, but a fish.
The problem was posed by Elizabeth Allman, to highlight the importance
of the secant variety X for phylogenetics. It represents the general Markov
model for a tree with three leaves attached to the root, each with four states.

We stress that there are many practical applications of representation
theory. For instance, the book of Serre [46], to which we referred several
times, grew out of lectures for quantum chemists and physicists. The book
by Diaconis [16] highlights applications in probability and statistics.

Exercises

(1) (a) Prove that over an algebraically closed field, every irreducible rep-
resentation of an abelian group is 1-dimensional.

(b) Explain the correspondence between characters of a torus T =
(C∗)n, as defined in Chapter 8, and irreducible representations of T .

(2) Derive the character table of the symmetric group S4. Hint:

12 + 12 + 22 + 32 + 32 = 24.

What is the geometric meaning of the 3-dimensional representations?
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170 10. Representation Theory

(3) Let f : V1 → V2 be a morphism between representations of a group G.
Show that the kernel, image and cokernel of f are also representations
of G. Prove also that morphisms between two representations are closed
under taking scalar multiples and sums, i.e. they form a vector space.

(4) Derive the character table of the symmetric group S5. Hint:

12 + 12 + 42 + 42 + 52 + 52+62 = 120.

Write matrices ρ(g) for the 6-dimensional irreducible representation.

(5) Let V1 and V2 be two representations of a group G.
(a) Prove that Hom(V1, V2) is also a representation of G. How can you

characterize morphisms of representations inside Hom(V1, V2)?
(b) In terms of multiplicities of isotypic components, what is the di-

mension of the space of morphisms of representations V1 → V2?
(c) Conclude that the multiplicity of an irreducible representationW in

V1 equals the dimension of morphisms of representations W → V1.

(6) Let V be a representation of GL(n). Its character χV is a Laurent poly-

nomial in t1, . . . , tn. Show that S2(V ) and
∧2 V are also representations

of GL(V ), and compute the characters χS2(V ) and χ∧2 V in terms of χV .

(7) Describe the 2-dimensional irreducible representation from Example
10.15 explicitly. Map each of the six permutations of {1, 2, 3} to a 2× 2
matrix.

(8) Let ρ be the action of GL(6) on
∧3 K6. What is the highest weight?

What is the Young diagram? Find the entries of the 20×20 matrix ρ(g).

(9) Is every 2×2×2 tensor a symmetric tensor plus a skew-symmetric tensor?

(10) If U = Kn, what is the dimension of S (U)? Give a polynomial in n.

(11) What is the dimension of the vector space S3(S3(K3))? Find a weight
basis. Write down the character of this representation of GL(3). Can
you decompose it into Schur polynomials? What does plethysm mean?

(12) What are the orbits of points in the adjoint representation? Are they
closed? What is the dimension of a general orbit? What is the vanishing
ideal of such an orbit, e.g. for n = 3?

(13) Show that the representation K2 of the additive group (K,+) in Exam-
ple 10.11 is not a (nontrivial) sum of irreducible representations.

(14) What is the determinant of the “large matrix” from Example 10.3?

(15) What is the determinant of the 12× 12 matrix T2,C in Example 10.28?

(16) Let A = K3, B = C = K4 and k = 2. What ranks are possible for the
matrix T2,C? Give an explicit tensor T such that T2,C has maximal rank.

(17) Write the space I(G(3, 6)2) in Example 5.9 as a representation of GL(6).
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Chapter 11

Invariant Theory

“Like the Arabian phoenix rising out of its ashes, the theory of
invariants ... is once again at the forefront of mathematics”,

Gian-Carlo Rota

What is geometry? An answer to this question was proposed by Felix
Klein’s Erlanger Programm. According to Klein, a quantity is geometric if
it is invariant under the action of an underlying group of transformations.
Thus, in short, geometry is invariant theory. For example, Euclidean geome-
try is the study of quantities, expressed in terms of the coordinates of points,
that are invariant under the Euclidean group. From the modern point of
view, invariant theory can be seen as a branch of representation theory.
However, that view does not do justice to the tremendous utility of invari-
ant theory for dealing with geometric objects. In particular, in algebraic
geometry, invariants are used to construct quotients of algebraic varieties
modulo groups that act on them. This results in a concise description of
orbit spaces. The study of such spaces is geometric invariant theory. Our
aim in this chapter is to give a first introduction to this theory, starting with
actions by finite groups.

11.1. Finite Groups

We fix the polynomial ring K[x] = K[x1, . . . , xn] over a field K of charac-
teristic zero. The group GL(n,K) of invertible n× n matrices acts on Kn.
This induces an action on the ring of polynomial functions on Kn. Namely,
if σ = (σij) is a matrix in GL(n,K) and f is a polynomial in K[x], then σf
is the polynomial that is obtained from f by replacing the variable xi with

171
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172 11. Invariant Theory

the linear form
∑n

j=1 σjixj for i = 1, . . . , n. Thus the variable xi is mapped
to the linear form whose coefficients appear in the ith column of σ. This
convention ensures compatibility with (10.1). In this book, all matrices in a
representation of a group G act by left multiplication on column vectors.

Let G be a subgroup of GL(n,K). A polynomial f ∈ K[x] is an invariant
of the group G if σf = f for all σ ∈ G. We write K[x]G for the set of all such
invariants. This set is a subring of the polynomial ring K[x] because the
sum of two invariants is again an invariant, and the same for the product.

In this chapter we discuss two scenarios. In this section we consider
finite groups G, and in Section 11.2 we consider representations of nice
(i.e. reductive) infinite groups such as SL(d,K) and SO(d,K). A celebrated
theorem of Hilbert shows that the invariant ring is finitely generated in this
case. After two initial examples, we prove this result for finite groups G.

Example 11.1. Let G be the group of n × n permutation matrices. The
invariant ring K[x]G consists of all polynomials f that are invariant under
permutation of the coordinates. This means that f satisfies

f(xπ1 , xπ2 , . . . , xπn) = f(x1, x2, . . . , xn)
for all permutations π of {1, 2, . . . , n}.

Such polynomials are called symmetric. The invariant ring K[x]G is gener-
ated by the n elementary symmetric polynomials E1, . . . , En defined below.
See [51, Theorem 1.1.1] for a proof. The elementary symmetric polynomials
Ei are the coefficients of the following auxiliary polynomial in one variable z:

(11.1) (z + x1)(z + x2) · · · (z + xn) = zn +

n∑
i=1

Ei(x)z
n−i.

We also set E0 = 1. Alternatively, since char(K) = 0, the invariant ring
K[x]G can also be generated by the power sums

Pj(x) = xj1 + xj2 + · · ·+ xjn for j = 1, 2, . . . , n.

The formulas that express the elementary symmetric polynomials Ei in
terms of the power sums Pj , and vice versa, are known as Newton’s identities:

(11.2)
kEk =

∑k
i=1(−1)i−1Ek−iPi and

Pk = (−1)k−1kEk +
∑k−1

i=1 (−1)k−1−iEk−iPi for 1 ≤ k ≤ n.

Next, we provide geometric motivation for studying the ring of invari-
ants. Suppose a group G acts on an n-dimensional vector space Kn. Our
aim is to describe the space of orbits Q, i.e. a geometric object whose points
correspond to orbits. We are not claiming that such a space always has the
structure of a variety, but let us assume this for the moment. Following
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11.1. Finite Groups 173

the approach presented in Chapters 1 and 2, we try to describe Q through
polynomial functions on it. By mapping each point to the orbit it belongs
to, we expect to get a quotient map Kn → Q. This map of varieties is dual
to a ring map, namely the inclusion from the ring of polynomial functions on
Q into K[x], the coordinate ring of Kn. Under this inclusion, a polynomial
function on Q gives rise to a polynomial that is constant on the orbits of G.

As invariants are exactly the polynomial functions that are constant
along G-orbits, we see that K[Q] maps to K[x]G. Thus invariants offer an
algebraic view on the space of orbits. The quotient space Q = Kn//G is
the spectrum of K[x]G. Its (closed) points correspond to the orbits. This
interpretation is only informal, as the details are subtle. In particular, we
have not proved that there is indeed a bijection between (closed) points of
Q and orbits. This is the case when G is finite, for example, but not in
general. Making it all precise is the aim of geometric invariant theory.

Example 11.2. For n = 2, consider the following representation of the
cyclic group of order 4. This gives the rotational symmetries of the square:

(11.3) G =

{(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1

−1 0

)
,

(
0 −1
1 0

)}
.

As we will prove in Example 11.7, its invariant ring is generated by

I1 = x21 + x22 , I2 = x21x
2
2 , I3 = x31x2 − x1x

3
2.

These three invariants are algebraically dependent. Using implicitization,
we compute the cubic relation they satisfy. With this, we can write

(11.4) K[x1, x2]
G = K[I1, I2, I3] � K[y1, y2, y3]/

〈
y21y2 − 4y22 − y23

〉
.

The spectrum of the ring (11.4) corresponds to the cubic surface in K3

defined by the equation y21y2 = 4y22 + y23. The points on this surface are in
one-to-one correspondence with the G-orbits on K2. This bijection is given
by the map K2 → K3, (x1, x2) �→ (I1, I2, I3), which is constant on orbits.

In what follows, let G be a finite subgroup of GL(n,K). One can create
invariants by averaging polynomials. The Reynolds operator, denoted by a
star, is the following map from arbitrary polynomials to invariants:

(11.5) ∗ : K[x] → K[x]G , f �→ f∗ :=
1

|G|
∑
σ∈G

σf.
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174 11. Invariant Theory

Each of the following properties of the Reynolds operator is easily verified:

Lemma 11.3. The Reynolds operator ∗ has the following three properties:

(a) The map ∗ is K-linear, i.e. (λf + νg)∗ = λf∗ + νg∗ for all f, g ∈
K[x] and λ, ν ∈ K.

(b) The map ∗ restricts to the identity on K[x]G, i.e. I∗ = I for all
invariant polynomials I.

(c) The map ∗ is a K[x]G-module homomorphism, i.e. (fI)∗ = f∗I for
all f ∈ K[x] and I ∈ K[x]G.

The next result marks the beginning of commutative algebra in 1890.

Theorem 11.4 (Hilbert’s Finiteness Theorem). The invariant ring K[x]G

of any finite matrix group G ⊂ GL(n,K) is finitely generated as a K-algebra.

We present the proof under our standing assumption that K has char-
acteristic zero. However, the result holds for every field K. For a proof in
characteristic p see [15]. That setting is known as modular invariant theory.

Proof. Let IG = 〈K[x]G+ 〉 be the ideal in K[x] that is generated by all
homogeneous invariants of positive degree. By Lemma 11.3(a), every invari-
ant is a K-linear combination of the special invariants (xa)∗. These special
invariants are homogeneous polynomials, obtained by averaging the images
of the monomial functions xa over the group G. Thus the ideal IG is gener-
ated by the infinite set { (xa)∗ : a ∈ Nn\{0}}. By Hilbert’s Basis Theorem
(Corollary 1.14), the ideal IG is finitely generated, so that a finite subset
of integer vectors a in Nn suffices for generation. In conclusion, there exist
homogeneous invariants I1, I2, . . . , Im such that IG = 〈I1, I2, . . . , Im〉.

We claim that these m invariants generate the invariant ring K[x]G as
a K-algebra. Suppose the contrary, and let I be a homogeneous element
of minimal degree in the difference K[x]G\K[I1, I2, . . . , Im]. Since I ∈ IG,
we have I =

∑m
j=1 fjIj for some polynomials fj ∈ K[x]. As the invariants

Ij are homogeneous, so are the polynomials fj . The degree of each fj is
strictly less than the degree of the invariant I that is not in the subring.

We now apply the Reynolds operator to both sides of the equation I =∑m
j=1 fjIj . This yields

I = I∗ =
( m∑
j=1

fjIj
)∗

=
m∑
j=1

f∗
j Ij .

Here we are using the properties (b) and (c) in Lemma 11.3. The new coef-
ficients f∗

j are homogeneous invariants whose degrees are less than deg(I).

From the minimality assumption on the degree of I, we get f∗
j ∈K[I1, . . . , Im]
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11.1. Finite Groups 175

for j = 1, . . . ,m. This implies I ∈ K[I1, . . . , Im], which is a contradiction to
our assumption. This completes the proof of Theorem 11.4. �

Theorem 11.5 (Noether’s degree bound). If G is finite and char(K) = 0,
then the invariant ring K[x]G is generated by homogeneous invariants whose
degree is at most the group order |G|.

Proof. Let u = (u1, . . . , un) be new variables. We extend the action of G
to K[u,x] by gui = ui for all i. For any d ∈ N, we consider the expression

Sd(u,x) =
[
(u1x1 + · · ·+ unxn)

d
]∗

=
1

|G|
∑
σ∈G

[
u1(σx1) + · · ·+ un(σxn)

]d
.

This is a polynomial in u whose coefficients are polynomials in x. Up to
a multiplicative constant, these coefficients are the invariants (xa)∗ where
|a| = d. By definition, all polynomials in u are fixed under the action of ∗.

Consider the |G| expressions u1(σx1) + · · · + un(σxn) , one for each el-
ement σ of the group G. The polynomial Sd(u,x) is the dth power sum of
these |G| expressions, up to a multiplicative constant. It follows from New-
ton’s identities (11.2) that this dth power sum for d > |G| is a polynomial
with rational coefficients in the kth power sums for k ≤ |G|. Hence Sd(u,x)
is a polynomial with rational coefficients in Sk(u,x) for k ≤ |G|. All of these
are polynomials in u whose coefficients are polynomials in x. It follows that
these coefficients for d > |G| are polynomials in the coefficients for k ≤ |G|.
Therefore, all invariants (xa)∗ with |a| > |G| are polynomial functions (over
Q ⊆ K) in the invariants (xb)∗ with |b| ≤ |G|. This proves the claim. �

We note that Example 11.2 attains Noether’s degree bound. Here, the
group has order 4, and the invariant ring requires a generator of degree 4.

Our next theorem is a useful tool for constructing the invariant ring.
It says that we can count invariants by averaging the reciprocals of the
characteristic polynomials of all matrices in the group.

Theorem 11.6 (Molien). Let G be a finite group of n × n matrices. The
Hilbert series of the invariant ring K[x]G is the rational generating function

(11.6)
∞∑
d=0

dimK

(
K[x]Gd

)
zd =

1

|G|
∑
σ∈G

1

det(Id− zσ)
.

The coefficient of zd in this formal generating function is the number of
linearly independent homogeneous invariants of degree d.

Proof. See [51, Theorem 2.2.1]. �
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Example 11.7. Consider the cyclic group G = Z4 in Example 11.2. For the
four matrices σ in Example 11.2, the quadratic polynomials det(Id−zσ) are
(1−z)2, (1+z)2 and twice 1+z2. Adding up their reciprocals and dividing
by |G| = 4, we see that the Hilbert series of K[x]G is

(11.7)
1 + z4

(1− z2)(1− z4)
= 1 + z2 + 3z4 + 3z6 + 5z8 + · · · .

This agrees with the Hilbert series of the ring on the right in (11.4), where
deg(y1) = 2 and deg(y2) = deg(y3) = 4. Indeed, every element of that ring
can be uniquely represented as a sum of a polynomial in K[y1, y2] and y3
times a polynomial in K[y1, y2]. One says that the ring is a free module with
basis {1, y3} over K[y1, y2]. This explains the numerator and denominator
on the left of (11.7). It proves that the invariants I1, I2, I3 generate K[x]G.

11.2. Classical Invariant Theory

Hilbert’s Finiteness Theorem also holds for an infinite group G ⊂ GL(n,K)
that has a Reynolds operator ∗ which satisfies (a), (b) and (c) in Lemma 11.3.
This property is equivalent to G being reductive. Recall from Section 10.1
that a group G is reductive if every finite-dimensional representation is com-
pletely reducible. We apply this result to the space of homogeneous poly-
nomials of degree d in n variables. These form a representation K[x]d, and
K[x]Gd is a subrepresentation. If there exists a complementary subrepre-

sentation H such that H ⊕ K[x]Gd = K[x]d, then we may define ∗ as the
projection with kernel H. Summing over all degrees d ∈ N and extending
the projection ∗ linearly to K[x], we get the Reynolds operator for G.

Corollary 11.8. Fix a reductive group G of n× n matrices, and let IG be
the ideal in K[x] generated by all homogeneous invariants of positive degree.
If {g1, g2, . . . , gm} is any set of homogeneous polynomials that generates IG,
then its image {g∗1, g∗2, . . . , g∗m} under the Reynolds operator generates the
invariant ring K[x]G as a K-algebra.

Proof. Let M = 〈x1, . . . , xn〉 be the homogeneous maximal ideal in K[x],
and consider the finite-dimensional vector space IG/MIG. It has a ba-
sis of invariants since IG is generated by invariants. This means that the
Reynolds operator acts as the identity on IG/MIG. The residue classes of
g1, g2, . . . , gm modulo MIG also span IG/MIG as a vector space, and hence
so do the invariants g∗1, g

∗
2, . . . , g

∗
m. By the graded Nakayama’s Lemma, we

find that g∗1, g
∗
2, . . . , g

∗
m generate the ideal IG. As in the proof of Theo-

rem 11.4, we conclude that g∗1, g
∗
2, . . . , g

∗
m generate the K-algebra K[x]G. �
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11.2. Classical Invariant Theory 177

Classical invariant theory was primarily concerned with the case where
G is a representation of the group SL(d,K) of d× d matrices with determi-
nant 1. Here d is an integer that is usually much smaller than n. We continue
to assume that K is a field of characteristic zero. We have assumed that G
is the image of a group homomorphism SL(d,K)→ GL(n,K). It is known
that SL(d,K) is a reductive group, i.e. there also exists an averaging opera-
tor ∗ : K[x]→ K[x]G which has the same formal properties as the averaging
operator of a finite group, stated in Lemma 11.3. See also Remark 10.9.

That Reynolds operator ∗ can be realized either by integration or by
differentiation. In the first realization, one replaces the sum in (11.5) by
an integral. Namely, one takes K = C and integrates over the compact
subgroup SU(d,C) with respect to Haar measure. The same kind of integral
also works in Theorem 11.6. If G = SL(d,C) then one can compute the
Hilbert series of the invariant ring by averaging reciprocal characteristic
polynomials. In other words, Molien’s Theorem generalizes to G = SL(d,C).

An alternative to integrating with respect to Haar measure on SU(d,C)
is to apply a certain differential operator known as Cayley’s Ω-process. This
process, which is explained in [51, §4.3], can also be used to transform
arbitrary polynomials into invariants.

A third method for computing invariants is to use plain old linear al-
gebra. Indeed, suppose we fix an integer d ∈ N and seek a basis for the
space K[x]Gd of homogeneous invariants of degree d. We then pick a general
polynomial f of degree d with unknown coefficients, and we examine the
equations σf = f for σ ∈ G. Each of these translates into a linear system
of equations in the unknown coefficients of f . By taking enough matrices
σ, we obtain a linear system of equations whose solutions are precisely the
invariants of degree d. In the case where G is a connected Lie group, such
as SL(d,C), one can replace the condition σf = f with the requirement
that f be annihilated by the associated Lie algebra. Setting up these lin-
ear equations and solving them is usually quite efficient on small examples.
See [51, §4.5].

In what follows we take the matrix group to be an n-dimensional poly-
nomial representation of G = SL(d,K) for some d, n ∈ N. This is a direct
sum of irreducible representations, indexed by partitions, as in Chapter 10.

Example 11.9. Let U = (Kd)m be the space of d×m matrices. The group
G = SL(d,K) acts naturally on column vectors of length d, so we view U as
the direct sum of m copies of the defining representation, one copy for each
column in our matrix. Equivalently, G acts on U by matrix multiplication
on the left. This induces an action on the ring K[U ] of polynomials in the
entries of a d × m matrix of variables. If m < d then this action has no
nonconstant invariants. If m ≥ d then the

(
m
d

)
maximal minors of the d×m
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matrix are invariants. This invariance holds because the determinant of the
product of two d×d matrices is the product of the determinants. It is known
that the invariant ring K[U ]G is generated by these

(m
d

)
determinants. This

is the First Fundamental Theorem of Invariant Theory; cf. [51, §3.2].
Note that we already encountered the invariant ring K[U ]G in Chap-

ter 5. This ring is the coordinate ring of the Grassmannian of d-dimensional
subspaces in Km. Thus, K[U ]G is isomorphic to a polynomial ring in

(
m
d

)
variables modulo the ideal of quadratic Plücker relations.

Arguably, the most important irreducible representations of the group
G = SL(d,K) are the pth symmetric powers of the defining representation
Kd. Here p can be any positive integer. We denote such a symmetric
power by V = K[u1, . . . , ud]p = Symp(K

d). Its elements are homogeneous
polynomials of degree p in d variables. The G-module V has dimension
n =

(
p+d−1

p

)
. A basis consists of the monomials of degree p in d variables.

The action of G on V is simply by linear change of coordinates.

Example 11.10 (d = 2, p = 3). Fix the space V = Sym3(K
2) of binary

cubics

(11.8) f(u1, u2) = x1u
3
1 + x2u

2
1u2 + x3u1u

2
2 + x4u

3
2.

The coefficients xi are the coordinates on V � K4. The way we set things
up, the group SL(2,K) acts on this space by left multiplication, in its guise
as the group G of 4× 4 matrices of the form

φ(σ) =

⎡⎢⎣ σ3
11 σ2

11σ12 σ11σ
2
12 σ3

12

3σ2
11σ21 σ2

11σ22 + 2σ11σ12σ21 σ2
12σ21 + 2σ11σ12σ22 3σ2

12σ22

3σ11σ
2
21 σ12σ

2
21 + 2σ11σ21σ22 σ11σ

2
22 + 2σ12σ21σ22 3σ12σ

2
22

σ3
21 σ2

21σ22 σ21σ
2
22 σ3

22

⎤⎥⎦ .
For a given 2 × 2 matrix σ ∈ G = SL(2,K), the determinant of the 4 × 4
matrix φ(σ) is equal to (σ11σ22 − σ12σ21)

6 = 1. The G-action on V is given
by x �→ φ(σ)x where x is the column vector (x1, x2, x3, x4)

T . One invariant
under this action is the discriminant of the binary cubic f(u1, u2), which is

(11.9) Δ = 27x21x
2
4 − 18x1x2x3x4 + 4x1x

3
3 + 4x32x4 − x22x

2
3.

It turns out that the discriminant generates the invariant ring:

K[x]G = K[Δ].

Every G-invariant can be written uniquely as a polynomial in Δ.

Invariants of binary forms (d = 2) are a well-studied subject in invariant
theory. Complete lists of generators for the invariant ring are known up to
degree p = 10. For p = 2, there is also only the discriminant Δ = x22−4x1x3.
For p = 4, we have two generating invariants of degrees 2 and 3. However,
for p = 10, the invariant ring has 106 minimal generators.
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11.3. Geometric Invariant Theory 179

We close with an example seen twice in the previous chapter.

Example 11.11. Following Example 10.4, consider the action of G =
SO(2,K) on the space V of binary cubics. The invariant ringK[x]G is gener-
ated by two quadrics and two quartics. These are z1z2, z3z4 and z1z

3
3 , z2z

3
4

for the corresponding action via the diagonal matrix D(θ) that was derived
for K = C in Example 10.10. In the notation of (11.8), this translates into

I1 = x21 − 2x1x3 + x22 − 2x2x4 + x23 + x24,

I2 = 9x21 + 6x1x3 + x22 + 6x2x4 + x23 + 9x24,

I3 = 27x31x4 − 9x21x2x3 + 2x1x
3
2 + 9x1x

2
2x4 − 6x1x2x

2
3 − 9x1x

2
3x4

− 27x1x
3
4 + x32x3 + 6x22x3x4 − x2x

3
3 + 9x2x3x

2
4 − 2x33x4,

I4 = 27x41 + 18x21x
2
2 − 18x21x

2
3 − 162x21x

2
4 + 24x1x

2
2x3 + 72x1x2x3x4 − x42

− 8x1x
3
3 − 8x32x4 + 6x22x

2
3 − 18x22x

2
4 + 24x2x

2
3x4 − x43 + 18x23x

2
4 + 27x44.

These four invariants can be found by Derksen’s algorithm (Theorem 11.13).

11.3. Geometric Invariant Theory

According to Felix Klein, invariant theory plays a fundamental role in geom-
etry. A polynomial in the coordinates of a space is invariant under the group
of interest if and only if that polynomial expresses a geometric property. For
instance, consider the space V of binary cubics f in Example 11.10. The
hypersurface defined by f in P1 consists of three points. The vanishing of
the invariant Δ means that these three points are not all distinct.

In geometric invariant theory, one considers the variety V(IG) defined
by all homogeneous invariants of positive degree. This variety is known as
the nullcone. Its points are known as unstable points. For a finite group G,
the nullcone consists of just the origin. In symbols, V(IG) = {0}.

For G = SL(d,K) the situation is more interesting, and the geometry of
the nullcone is very important for understanding the invariant ring K[x]G.
Corollary 11.8 says, more or less, that computing K[x]G is equivalent to
finding polynomial equations that define the nullcone.

Example 11.12 (d = p = 3). We consider the 10-dimensional vector space
V = Sym3(K

3) whose elements are the ternary cubics

f(u) = x1u
3
1 + x2u

3
2 + x3u

3
3 + x4u

2
1u2 + x5u

2
1u3

+ x6u
2
2u1 + x7u

2
2u3 + x8u

2
3u1 + x9u

2
3u2 + x0u1u2u3.

The group G = SL(3,K) acts on V by linear change of coordinates. The
corresponding invariant ring is generated by two invariants I4 and I6 of
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degrees 4 and 6 respectively. In symbols, K[x]G = K[I4, I6]. The degree-4
invariant is unique up to scaling. It is the following sum of 25 monomials:

I4 = x40 − 8x20x4x9 − 8x20x5x7 − 8x20x6x8 − 216x0x1x2x3 + 24x0x1x7x9

+ 24x0x2x5x8 + 24x0x3x4x6 + 24x0x4x7x8 + 144x1x2x8x9

+ 24x0x5x6x9 + 144x1x3x6x7 − 48x1x6x
2
9 − 48x1x

2
7x8 − 48x2x4x

2
8

+ 144x2x3x4x5 − 48x2x
2
5x9 − 48x3x

2
4x7 − 48x3x5x

2
6 + 16x24x

2
9

− 16x4x5x7x9 − 16x4x6x8x9 + 16x25x
2
7 − 16x5x6x7x8 + 16x26x

2
8.

The degree-6 invariant is similarly unique. It is a sum of 103 monomials:

I6 = x60 − 12x40x4x9 − 12x40x5x7 − 12x40x6x8

+ 540x30x1x2x3 + · · ·+ 96x5x
2
6x7x

2
8 − 64x36x

3
8.

The invariant I4 is the Aronhold invariant. This plays an important role in
the theory of tensor decomposition. Indeed, we can regard f as a symmetric
3× 3× 3 tensor. A random tensor f has rank 4. The Aronhold invariant f
vanishes for those tensors of border rank ≤ 3. In other words, I4 = 0 holds if
and only if f is a sum of three cubes of linear forms, or can be approximated
by a sequence of such. See the discussion of ranks of tensors in Chapter 9.

On the geometric side, we can identify f with the cubic curve V(f) it
defines in the projective plane P2. To a number theorist, this is an elliptic
curve. An important invariant of this curve is the discriminant Δ.

The discriminant of a ternary cubic has degree 12. An explicit formula is

(11.10) Δ = I34 − I26 .

This expression vanishes if and only if the cubic curve V(f) has a singular
point. Typically, this singularity is a node. In the special case where both
I4 and I6 vanish, the singular point is a cusp. Thus, for ternary cubics, the
nullcone V(IG) is given by plane cubics that have a cusp. The moduli space
of elliptic curves is parametrized by the j-invariant, which equals I34/Δ.

We now present a general purpose algorithm, due to Harm Derksen,
for computing the invariant ring of a reductive algebraic group G that acts
polynomially on a vector space V = Kn. The group G can be represented as
an algebraic variety inside GL(n,K), that is, by polynomial equations in the
entries of an unknown n× n matrix. This works for both finite groups and
polynomial representations of SL(d,K), such as the ones discussed above.
As before, we use the notation σ �→ φ(σ) to write the representation of G on
V = Kn explicitly. The ring K[σ] denotes the coordinate ring of G, which
is typically represented as a polynomial ring modulo an ideal.

The product G×V ×V is an algebraic variety, with coordinates (σ,x,y).
Inside this coordinate ring K[σ,x,y], let JG be the ideal generated by the
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11.3. Geometric Invariant Theory 181

n entries of the vector y−φ(σ)x. This ideal is radical, and it is prime when
G is a connected group such as SL(d,K). Its variety describes the action of
the group. The elimination ideal JG ∩K[x,y] is also radical (resp. prime).
Its variety contains pairs of points in V that lie in the same G-orbit.

Theorem 11.13 (Derksen’s algorithm). The ideal IG that defines the null-
cone is the image in K[x] of the elimination ideal JG ∩K[x,y] under the
substitution y = 0. From any finite list of generators for the ideal IG, we can
construct algebra generators for the invariant ring K[x]G via Corollary 11.8.

Proof. Let I be any homogeneous invariant of positive degree. Then I(x) ≡
I(φ(σ)x) ≡ I(y) modulo the ideal JG that defines the group action. There-
fore, I(x)− I(y) lies in the elimination ideal JG ∩K[x,y]. We find I(x) in
the ideal obtained by substituting y = 0. This proves that IG is contained in
the ideal that is output by Derksen’s algorithm. For the converse direction,
we refer to the argument given in the proof of [14, Theorem 3.1]. �

Remark 11.14. The ideal IG is generally not the radical ideal of the null-
cone. It is generated by homogeneous invariants of positive degree. For
instance, if n = 2 and G = {± Id2}, then IG = 〈x21, x1x2, x22〉 is not radical.

Example 11.15 (p = d = 2). Consider the 3-dimensional space V =
Sym2(K

2) of binary quadrics

f(u1, u2) = x1u
2
1 + x2u1u2 + x3u

2
2.

The coordinate ring of the variety SL(2,K)×V ×V is the polynomial ring

K[σ,x,y] = K
[
σ11, σ12, σ21, σ22, x1, x2, x3, y1, y2, y3

]
modulo the principal ideal 〈σ11σ22−σ12σ21− 1〉. Note that this ring has 10
generators. The ideal that encodes our action is

JG =
〈
σ2
11x1 + σ11σ21x2 + σ2

21x3 − y1, σ
2
12x1 + σ12σ22x2 + σ2

22x3 − y3,
2σ11σ12x1 + (σ11σ22 + σ12σ21)x2 + 2σ21σ22x3 − y2

〉
.

We eliminate the four variables σij that represent the group elements. This
yields the principal ideal

JG ∩K[x,y] = 〈 4x1x3 − x22 − 4y1y3 + y22 〉.

We now set y1 = y2 = y3 = 0. The result is the familiar discriminant
Δ = 4x1x3 − x22. In this manner, Derksen’s algorithm finds the invariant
ring for binary quadrics. It confirms that K[x]G = K[Δ].

In Example 11.10, we determined the invariant ring for SL(2,K) acting
on 2 × 2 × 2 tensors that are symmetric. In what follows, we extend this
computation to nonsymmetric tensors. Thus, we present a case study in
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invariant theory for d = 2 and n = 8. We identify K8 with the space (K2)⊗3

of 2× 2× 2 tensors. The corresponding polynomial ring is denoted by

K[x] = K[x111, x112, x121, x122, x211, x212, x221, x222].

The group G = SL(2,K) acts on K2 by matrix-vector multiplication. This
action extends naturally to the triple tensor product of K2. Explicitly, if

σ =

(
σ11 σ12
σ21 σ22

)
is a 2 × 2 matrix in G, then σ acts by performing the

following substitution in each polynomial on K[x]:

(11.11) xijk �→
2∑

r=1

2∑
s=1

2∑
t=1

xrstσriσsjσtk.

Here are two nice polynomials that are invariant under this action:

Example 11.16. Up to scaling, there is a unique polynomial of degree
2 that is invariant under G = SL(2,K). That invariant is the following
quadric, which we call the hexagon invariant:

Hex(x) = x112x122 − x122x121 + x121x221 − x221x211 + x211x212 − x212x112.

Another nice invariant is the hyperdeterminant, which has degree 4:

Det(x) = x2
221x

2
112+x2

211x
2
122+x2

121x
2
212+x2

111x
2
222

+ 4x111x221x122x212+4x121x211x112x222

− 2x211x221x112x122 − 2x121x221x112x212 − 2x121x211x122x212

− 2x111x221x112x222 − 2x111x211x122x222 − 2x111x121x212x222.

We saw this in Example 4.10. One checks by computation that the substi-
tution (11.11) maps the hexagon invariant Hex(x) to itself times the third
power of det(σ) = σ11σ22 − σ12σ21. Similarly, the hyperdeterminant Det(x)
transforms to itself times det(σ)6. Both are left invariant when det(σ) = 1.

Invariants can be used to test whether two tensors lie in the same G-
orbit. Here is a concrete example. We write our 2×2×2 tensors as vectors in
R8 as follows: c = (c111, c112, c121, c122, c211, c212, c221, c222). The following
two tensors appear in the theory of signatures of paths, seen briefly in Section
8.3. It is of interest to know whether their G-orbits agree up to scaling:

caxis =
(
1
6 ,

1
2 , 0 ,

1
2 , 0 , 0 , 0 ,

1
6

)
and cmono =

(
1
6 ,

1
4 ,

1
6 ,

4
15 ,

1
12 ,

2
15 ,

1
10 ,

1
6

)
.

The two polynomials in Example 11.16 are invariants of SL(2,K) acting
on the tensor space R8. The following rational function is invariant under
GL(2,K). It is homogeneous of degree 0,so it represents a rational function
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11.3. Geometric Invariant Theory 183

on the projective space P7, invariant under projective transformations:

(11.12)
Hex(x)2

Det(x)
.

We find that the rational invariant (11.12) evaluates to the number 81 on
the tensor caxis, and it evaluates to 45 on the tensor cmono. Hence the orbit
closures of our two special core tensors of format 2×2×2 are disjoint in P7.

We now come to determination of the ring of invariants for the G-action
on the space K8 of 2× 2× 2 tensors. Using Derksen’s algorithm, we derive
the following result:

Theorem 11.17. The invariant ring K[x]SL(2) of 2 × 2 × 2 tensors has
Krull dimension 5. It is minimally generated by 13 invariants, namely the
hexagon invariant of degree 2, eight invariants of degree 4 (including the
hyperdeterminant), and four invariants of degree 6.

In addition to the hyperdeterminant, there are three additional invari-
ants of degree 4 that deserve special attention. Each has 17 terms when
expanded. One of these invariants is

(11.13)
(x111x222 − x212x121)

2 + x121x222x
2
112 + x111x212x

2
122 + x121x222x

2
211

+ x111x212x
2
221 − (x122 + x221)(x112 + x211)(x111x222 + x212x121)
+ 2x111x122x212x221 + 2x112x121x211x222.

The other two invariants in this family are obtained by permuting indices.

Corollary 11.18. The three quartics in (11.13) together with Hex and Det

are algebraically independent. All other invariants in K[x]SL(2) are integral
over the polynomial subring generated by these five. The five invariants cut

out the nullcone V
(
K[x]

SL(2)
+

)
, which has dimension 4 and degree 12 in P7.

It is instructive to restrict the 13 generating invariants in Theorem 11.17
to the 4-dimensional subspace Sym3(K

2) of symmetric 2×2×2 tensors. We
discussed this in Example 11.10. The restriction is carried out by setting

x111 = x1, x112 = x121 = x211 =
1

3
x2, x122 = x212 = x221 =

1

3
x3, x222 = x4.

The resulting symmetric tensors correspond to binary cubics (11.8). The
hyperdeterminant and the five other generators of degree 4 all specialize
to the discriminant Δ of the binary cubic. The other eight generators of
K[x]SL(2), including the hexagon invariant, specialize to zero. In this man-
ner, the invariant ring in Theorem 11.17 maps onto the invariant ring of
binary cubics. What about the other irreducible SL(2) modules in (K2)⊗3?
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Exercises

(1) LetG be the symmetry group of the square [−1, 1]2 in the plane R2. This
is an order-8 subgroup in GL(2,R). List all eight matrices. Determine
the invariant ring R[x1, x2]

G.

(2) Let G be the symmetry group of the regular 3-cube, as a subgroup of
GL(3,R). How many matrices are inG, and what are their characteristic
polynomials? Determine the Molien series (11.7) of this group. What
does it tell you about the invariant ring?

(3) Fix n = 5. Let ψ(j) denote the number of monomials in the expansion
of the power sum Pj in terms of the elementary symmetric functions
E1, E2, E3, E4, E5. Compute ψ(j) for some small values, say j ≤ 20.
Guess a formula for ψ(j). Can you prove it?

(4) Show that Noether’s degree bound is always tight for finite cyclic groups.

(5) Find a subgroup of GL(4,K) that has order 15. Compute the invariant
ring of your matrix group.

(6) Let T be the group of 3 × 3 diagonal matrices with determinant 1,
acting on the space V = Sym3(K

3) of ternary cubics. This group is the
torus T � (K∗)2. Determine the invariant ring K[V ]T . Do you see any
relationship to the invariants in Example 11.12?

(7) Let G = An be the alternating group of order n!/2. Its elements are the
even permutation matrices. Determine the invariant ring K[x]G.

(8) List all 103 monomials of the invariant I6 of ternary cubics in Exam-
ple 11.12. Compute the explicit formulas, in terms of the 10 coefficients
x1, x2, . . . , x9, x0, for the discriminant and the j-invariant.

(9) Consider the action of SL(3,K) on the space Sym2(K
3) � K6 of sym-

metric 3×3 matrices. The entries of the 6×6 matrix φ(σ) are quadratic
forms in σ11, σ12, . . . , σ33. Write this matrix explicitly, similarly to the
4× 4 matrix φ(σ) shown in Example 11.10. What is the invariant ring?

(10) Using an internet source, find generators for the ring of invariants of
the action of SL(2,K) on the space Sym5(K

2) of binary quintics. Write
them explicitly as polynomials in the coefficients x1, x2, x3, x4, x5, x6.

(11) Using Derksen’s algorithm, compute the invariant ring for binary quar-
tics (p = 4, d = 2). How many minimal generators does this ring have?

(12) The rotation group SO(2,R) acts by left multiplication on the space of
2× 2 matrices. Describe the orbits and determine the invariant ring.
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(13) Consider the action of SO(2,R) on the 5-dimensional space of binary
quartics. Describe the orbits and determine the invariant ring.

(14) Hilbert’s 14th problem asked: Is the invariant ring of every matrix group
G ⊂ GL(n,K) finitely generated? Find the answer and explain it.
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Chapter 12

Semidefinite
Programming

“Premature optimization is the root of all evil”, Donald Knuth

The transition from linear algebra to nonlinear algebra has a natural
counterpart in convex optimization, namely the passage from linear pro-
gramming to semidefinite programming. This transition is what we now
embark on. The term “program” or “programming”, as it is used in this
chapter, is simply an old-fashioned way of saying “optimization problem”.

Linear programming concerns the solution of linear systems of inequal-
ities and the optimization of linear functions subject to linear constraints.
The feasible region is a convex polyhedron, and the optimal solutions form a
face of that polyhedron. In semidefinite programming we work in the space
of symmetric n× n matrices. The inequality constraints now stipulate that
some linear combination of matrices be positive semidefinite. The feasible
region given by such constraints is a closed convex set, known as a spectrahe-
dron. We again seek to optimize a linear function, but over a spectrahedron
instead of a polyhedron. The condition for a polynomial to be a sum of
squares may be regarded as a semidefinite program. This gives a connec-
tion to the real Nullstellensatz (Chapter 6), and it establishes semidefinite
programming as a key tool for computing in real algebraic geometry.

12.1. Spectrahedra

In this chapter we work over the field R of real numbers. This field comes
with an order. The Spectral Theorem of linear algebra states that all

187
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188 12. Semidefinite Programming

eigenvalues of a symmetric matrix A ∈ Sym2(R
n) are real. Moreover, there

is an orthonormal basis of Rn consisting of eigenvectors of A. We say that
the matrix A is positive definite if it satisfies the following conditions. It is a
basic fact about quadratic forms that these three conditions are equivalent:

(1) All n eigenvalues of A are positive real numbers.

(2) All 2n principal minors of A are positive real numbers.

(3) Every nonzero column vector u ∈ Rn satisfies uTAu > 0.

Here, by a principal minor we mean the determinant of any square submatrix
of A whose set of column indices agrees with its set of row indices. For the
empty set, we get the 0× 0 minor of A, which equals 1. Next there are the
n diagonal entries of A, which are the 1× 1 principal minors. We continue
with principal minors of size 2 × 2, then 3 × 3, etc. At the end of this list,
we get to the determinant of A, which is the unique n× n principal minor.

Each of the three conditions (1), (2) and (3) behaves as expected when
we pass to the closure. This is not obvious because the closure of an open
semialgebraic set {f > 0}, where f ∈ R[x], is generally smaller than the
closed semialgebraic set {f ≥ 0} that is defined by the same polynomial f .

Example 12.1. Let f = x3 + x2y + xy2 + y3 − x2 − y2. The set {f > 0}
is the open halfplane above the line x+ y = 1 in R2. The closure of the set
{f > 0} is the corresponding closed halfplane. It is strictly contained in the
set {f ≥ 0}. Namely, {f ≥ 0} is the union of {f > 0} and the origin (0, 0).
To see this, it helps to factor the polynomial f into irreducible factors.

Luckily, no such thing happens with condition (2) for positive definite
matrices. In fact, the closure of the set of positive definite matrices is ob-
tained by allowing the case of equality in each of the three conditions.

Theorem 12.2. For a symmetric n× n matrix A, the following three con-
ditions are equivalent. If these hold then A is called positive semidefinite:

(1’) All n eigenvalues of A are nonnegative real numbers.

(2’) All 2n principal minors of A are nonnegative real numbers.

(3’) Every nonzero column vector u ∈ Rn satisfies uTAu ≥ 0.

The semialgebraic set PSDn of all positive semidefinite symmetric n×n ma-
trices is a full-dimensional closed convex cone in Sym2(R

n).

We use the notation X ( 0 to express that a symmetric matrix X is
positive semidefinite. A spectrahedron S is the intersection of the cone PSDn

with an affine-linear subspace L of the ambient space Sym2(R
n). Hence,

spectrahedra are closed convex semialgebraic sets.
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12.1. Spectrahedra 189

An affine-linear space L of symmetric matrices is given either by a linear
parametrization or as the solution set to a system of (usually inhomoge-
neous) linear equations. In the latter representation,

(12.1) L =
{
X ∈ Sym2(R

n) : 〈A1, X〉 = b1, . . . , 〈As, X〉 = bs
}
.

Here A1, A2, . . . , As ∈ Sym2(R
n) are fixed matrices and b1, b2, . . . , bs ∈ R are

fixed scalars. We employ the standard inner product in the space of square
matrices, which is given by the trace of the matrix product:

(12.2) 〈A,X〉 := trace(AX) =
n∑

i=1

n∑
j=1

aijxij .

The associated spectrahedron S = L ∩ PSDn consists of all positive semi-
definite matrices that lie in the subspace L. The same matrices can be used
to describe a different subspace in its parametric representation, namely

(12.3)
{
A0 + x1A1 + · · ·+ xsAs : (x1, . . . , xs) ∈ Rs

}
⊂ Sym2(R

n).

Here A0 is an additional matrix. If this formulation is used, then it is
customary to identify the spectrahedron with its preimage in Rs. In symbols,

(12.4) S =
{
(x1, . . . , xs) ∈ Rs : A0 + x1A1 + · · ·+ xsAs ( 0

}
.

Proposition 12.3. Every convex polyhedron is a spectrahedron. Convex
polyhedra are precisely the spectrahedra that arise when the ambient affine-
linear subspace of Sym2(R

n) consists only of diagonal n× n matrices.

Proof. Suppose that the matrices A0, A1, . . . , As are diagonal matrices.
Then (12.4) is the solution set in Rs of a system of n inhomogeneous linear
inequalities. Such a set is a convex polyhedron. Every convex polyhedron in
Rs has such a representation. We simply write its defining linear inequalities
as the diagonal entries of the n× n matrix A0 + x1A1 + · · ·+ xsAs. �

In the previous proposition, the subspace L is an affine-linear subspace
of Sym2(R

n) that consists only of diagonal matrices. The formula S =
L ∩ PSDn with L as in (12.1) corresponds to the standard representation
of a convex polyhedron as the set of nonnegative points in an affine-linear
space. Here the equations for X in (12.1) include those that require the
off-diagonal entries of each X to be zero:

〈X,Eij〉 = xij = 0 for i �= j.

The other matrices Ai are diagonal and their bi are typically nonzero.

Example 12.4. Let L be the space of symmetric 3 × 3 matrices whose
three diagonal entries are all equal to 1. This is an affine-linear subspace of
dimension s = 3 in Sym2(R

3) � R6. The spectrahedron S = L ∩ SDP3 is
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190 12. Semidefinite Programming

the yellow convex body seen in Figure 1.1. To draw this spectrahedron in
R3, one uses the representation (12.4) with s = 3, namely

S =

{
(x, y, z) ∈ R3 :

⎛⎝1 x y
x 1 z
y z 1

⎞⎠ ( 0

}
.

The boundary of S consists of all points (x, y, z) where the matrix has de-
terminant zero and its nonzero eigenvalues are positive. The determinant is
a polynomial of degree 3 in x, y, z, so the boundary lies in a cubic surface
in R3. This cubic surface also contains points where the three eigenvalues
are positive, zero and negative. Such points are drawn in red in Figure 1.1.
They lie in the Zariski closure of the yellow boundary points.

We next slice our 3-dimensional spectrahedron to get a planar picture.

Example 12.5. Suppose that L ⊂ Sym2(R
3) is a general 2-dimensional

plane that intersects the 6-dimensional cone PSD3. The spectrahedron S is
a convex body in R2 whose boundary is a smooth cubic curve, drawn in red
in Figure 12.1 on the left. On that boundary, the 3×3 determinant vanishes
and the other two eigenvalues are positive. For points (x, y) ∈ R2\S, the
matrix has at least one negative eigenvalue. The black curve lies in the
Zariski closure of the red curve. It separates points in R2\S whose remaining
two eigenvalues are positive from those with two negative eigenvalues.

Figure 12.1. A plane curve of degree 3 (left) and its dual curve of
degree 6 (right). The red part on the left bounds a spectrahedron while
that on the right bounds its convex dual. The points on the dual curve
are lines that are tangent to the primal curve. Biduality holds.

To be explicit, suppose that our planar cubic spectrahedron is written as

(12.5) S =

{
(x, y) ∈ R2 :

⎛⎝ 1 x x+ y
x 1 y

x+ y y 1

⎞⎠ ( 0

}
.
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12.2. Optimization and Duality 191

The cubic curve is the locus where the 3× 3 matrix in (12.5) is singular. Its
determinant equals

(12.6) f = 2x2y + 2xy2 − 2x2 − 2xy − 2y2 + 1.

The curve {f = 0} has four connected components in R2, one in red and
three in black, as shown in Figure 12.1 on the left. The boundary of the
cubic spectrahedron S is the convex part of the curve that is shown in red.

The picture on the right in Figure 12.1 shows the dual curve. This
lives in the dual plane whose points (u, v) represent the lines � = {(x, y) :
ux+vy = 1} in the given plane R2. The points in the dual curve correspond
to lines � that are tangent to the original curve. For an introduction to
duality in algebraic geometry we refer to [5, §5.2.4]. Chapter 5 in [5] argues
that this algebraic duality agrees with duality in convexity or optimization.

The curve that is dual to (12.6) has degree 6, and its equation can be
found by the following computation of an elimination ideal in R[x, y, u, v]:

(12.7)

〈 f(x, y) , u · x+ v · y − 1 , ∂f/∂x · v − ∂f/∂y · u 〉 ∩ R[u, v]
= 〈 8u6 − 24u5v + 21u4v2 − 2u3v3 + 21u2v4 − 24uv5

+8v6 − 24u5 + 60u4v − 24u3v2 − 24u2v3 + 60uv4

− 24v5 + 12u4 − 24u3v + 36u2v2 − 24uv3 + 12v4 + 24u3

− 36u2v − 36uv2 + 24v3 − 24u2 + 24uv − 24v2 + 4 〉.

Do try this out! The black points on the sextic in Figure 12.1 correspond
to lines that are tangent at black points of the cubic, and similarly for the
red points. Moreover, the convex set enclosed by the red sextic on the right
in Figure 12.1 is dual as a convex set to the spectahedron on the left.

The polynomials in (12.6) and (12.7) have degrees 3 and 6 respectively,
confirming what was asserted in the caption to Figure 12.1. A random line
L will meet the curve in three (left) or six (right) complex points. Consider
the point p on the other side of duality that corresponds to the line L. The
points of L correspond to the lines through p. There are three (right) or six
(left) complex lines through p that are tangent to the curve.

12.2. Optimization and Duality

We now finally come to semidefinite programming (SDP). This refers to the
problem of maximizing or minimizing a linear function over a spectrahedron.
Linear programming is the special case where the spectrahedron consists
of diagonal matrices. If the spectrahedron is given in its standard form
representation (12.1), then we get the SDP in its primal form:

(12.8)
Minimize 〈C,X〉 subject to 〈A1, X〉 = b1,
〈A2, X〉 = b2, . . . , 〈As, X〉 = bs and X ( 0.
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192 12. Semidefinite Programming

Here C = (cij) is a n × n matrix that represents the cost function. Every
convex optimization problem has a dual problem. At first glance, it is not so
easy to relate SDP duality to duality in algebraic geometry, as seen for plane
curves in Figure 12.1. Making that connection is the point of [5, Chapter 5].

We abbreviate bTx =
∑s

i=1 bixi. The semidefinite programming prob-
lem dual to (12.8) takes the following form:

(12.9) Maximize bTx subject to C − x1A1 − x2A2 − · · · − xsAs ( 0.

In this formulation, the spectrahedron of feasible points lives in Rs, similarly
to (12.4). We refer to either of the formulations (12.8) and (12.9) as a
semidefinite program, also abbreviated SDP. The relationship between the
primal SDP and the dual SDP is given by the following theorem:

Theorem 12.6 (Weak Duality Theorem). If x is any feasible solution to
(12.9) and X is any feasible solution to (12.8), then bTx ≤ 〈C,X〉. If the
equality bTx = 〈C,X〉 holds, then both x and X are optimal.

The term feasible means only that the point x (resp. X) satisfies the
equations and inequalities that are required in (12.9) (resp. (12.8)). The
point is optimal if it is feasible and it solves the program, i.e. it attains the
maximum (resp. minimum) value for that optimization problem.

Proof. The inner product of two positive semidefinite matrices is a non-
negative real number:

0 ≤ 〈C −
s∑

i=1

xiAi, X〉 = 〈C,X〉 −
s∑

i=1

xi · 〈Ai, X〉 = 〈C,X〉 − bTx.

This shows that the optimal value of the minimization problem (12.8) is an
upper bound for the optimal value of the maximization problem (12.9). If
the equality is attained by a pair (X,x) of feasible solutions, then X must
be optimal for (12.8) and x must be optimal for (12.9). �

There is also a Strong Duality Theorem which states that, under suitable
hypotheses, the duality gap 〈C,X〉 − bTx must attain the value zero for
some feasible pair (X,x). These hypotheses are always satisfied for diagonal
matrices, and we recover the Duality Theorem of Linear Programming as a
special case. Note that this is equivalent to Farkas’ Lemma in Theorem 6.13.

Interior point methods for linear programming are numerical algorithms
that start at an interior point of the feasible polyhedron and create a path
from that point towards an optimal vertex. The same class of algorithms
works for semidefinite programming. These algorithms run in polynomial
time and are well behaved in practice. Semidefinite programming has a much
greater expressive power than linear programming. Many more problems can
be phrased as an SDP.We illustrate this with an example from linear algebra.
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12.2. Optimization and Duality 193

Example 12.7 (The largest eigenvalue). Let A be a positive definite sym-
metric n × n matrix. Consider the problem of computing its largest eigen-
value λmax(A). We can solve this without writing down the characteristic
polynomial and extracting its roots. Let C = Id be the identity matrix and
consider the SDP problems (12.8) and (12.9) with s = 1 and b = 1. They are

(12.8)′ Minimize trace(X) subject to X ( 0 and 〈A,X〉 = 1.

(12.9)′ Maximize x subject to Id− xA ( 0.

If x∗ is the common optimal value of (12.8)′ and (12.9)′, then λmax(A) =
1/x∗.

The inner product 〈A,X〉 = trace(A · X) of two positive semidefinite
matrices A and X can only be zero when their matrix product A ·X is zero.
We record this for our situation:

Lemma 12.8. Let X be a feasible solution of (12.8) and let x be a feasible
solution of (12.9). Then the duality gap 〈C,X〉 − bTx is zero if and only if
the product of symmetric matrices (C −

∑s
i=1 xiAi) ·X is the zero matrix.

This lemma implies the following algebraic reformulation of duality:

Corollary 12.9. Consider the following system of s linear equations and
n2 bilinear equations in the

(
n+1
2

)
+ s coordinates of the pair (X,x):

(12.10) 〈A1, X〉 = b1 , . . . , 〈As, X〉 = bs and (C −
s∑

i=1

xiAi) ·X = 0.

Let (X,x) be as in Lemma 12.8 and assume X ( 0 , C−
∑s

i=1 xiAi ( 0 and
that (12.10) holds. Then X is optimal for (12.8) and x is optimal for (12.9).

The equations (12.10) are the Karush-Kuhn-Tucker (KKT) equations.
These play a major role when one is exploring semidefinite programming
from an algebraic perspective. In particular, they allow one to study the
nature of the optimal solution as a function of the data. A key feature
of the KKT system is that the two optimal matrices have complementary
ranks. This follows from the complementary slackness condition on the right
of (12.10):

rank
(
C −

s∑
i=1

xiAi

)
+ rank(X) ≤ n.

In particular, if X is known to be nonzero, then the determinant of the
matrix C −

∑s
i=1 xiAi vanishes. For instance, for the eigenvalue problem in

Example 12.7, we have (Id− xA) ·X = 0 and 〈A,X〉 = 1. This implies that
det(Id− xA) = 0, so 1/x is a root of the characteristic polynomial.
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194 12. Semidefinite Programming

Example 12.10. Consider the problem of maximizing a linear function
�(x, y) = ux+ vy over the spectrahedron S in (12.5). This is an SDP in the
dual formulation (12.9) with s = 2 and b = (u, v) and with

A1 = −

⎛⎝0 1 1
1 0 0
1 0 0

⎞⎠ and A2 = −

⎛⎝0 0 1
0 0 1
1 1 0

⎞⎠ .

The KKT system (12.10) is a system of equations in eight unknowns:

2x12 + 2x13 + u = 2x13 + 2x23 + v = 0 and⎛⎝ 1 x x+y
x 1 y

x+y y 1

⎞⎠ ·
⎛⎝x11 x12 x13
x12 x22 x23
x13 x23 x33

⎞⎠ =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠.

Here u and v are parameters. By eliminating the variables xij from the
equations above, we obtain an ideal I in Q[u, v, x, y] that characterizes the
optimal solution (x∗, y∗) to our SDP as an algebraic function of (u, v). Let
�∗ now be a new unknown, and consider the elimination ideal

(
I + 〈ux +

vy − �∗〉
)
∩ Q[u, v, �∗]. Its generator is a ternary sextic in u, v, �∗. This is

precisely the homogenization of the dual sextic in (12.7). It expresses the
optimal value �∗ as an algebraic function of degree 6 in the cost (u, v).

This relationship between the dual hypersurface and the optimal value
function generalizes to arbitrary polynomial optimization problems, includ-
ing semidefinite programs. This is the content of [5, Theorem 5.23]. We
refer to the book [5], and especially Chapter 5, for further reading on spec-
trahedra, semidefinite programming, and the relevant duality theory.

A fundamental task in convex algebraic geometry [5] is computing the
convex hull of a given algebraic variety or semialgebraic set. Recall that
the convex hull of a set is the smallest convex set containing the given set.
Spectrahedra or their linear projections, known as spectrahedral shadows,
can be used for this task. This matters for optimization since minimizing a
linear function over a set is equivalent to minimizing over its convex hull.

Example 12.11 (Toeplitz spectrahedron). Consider the convex body

(12.11) K =

{
(x, y, z) ∈ R3 :

⎡⎢⎣1 x y z
x 1 x y
y x 1 x
z y x 1

⎤⎥⎦ ( 0

}
.

The determinant of the given Toeplitz matrix of size 4× 4 factors as

(x2 + 2xy + y2 − xz − x− z − 1)(x2 − 2xy + y2 − xz + x+ z − 1).

The spectrahedron (12.11) is the convex hull of the cosine moment curve

(12.12)
{(

cos(θ), cos(2θ), cos(3θ)
)
: θ ∈ [0, 2π]

}
.
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Figure 12.2. The Toeplitz spectrahedron and its dual convex body.

The curve and its convex hull are shown on the left in Figure 12.2. The
two endpoints, (x, y, z) = (1, 1, 1) and (x, y, z) = (−1, 1,−1), correspond to
matrices of rank 1. All other points on the curve have rank 2.

We call (12.11) the Toeplitz spectrahedron. To construct this convex
body geometrically, we form the cone from each endpoint over the cosine
curve, and we intersect these two quadratic cones. The two cones intersect
along this curve and the line through the endpoints of the cosine curve.

Shown on the right in Figure 12.2 is the convex body K∗ dual to the
Toeplitz spectrahedron K. Its points (a1, a2, a3) correspond to the trigono-
metric polynomials 1+a1 cos(θ)+a2 cos(2θ)+a3 cos(3θ) that are nonnegative
on the interval [0, 2π]. This convex body K∗ is not a spectrahedron because
it has a nonexposed edge, that is, a 1-dimensional face which is not the
intersection of K∗ with a supporting hyperplane (cf. [5, Exercise 6.13]).

We close this section with a reformulation of SDP that will appeal to
algebraists. It expresses the primal (12.8) and the dual (12.9) in a form that
looks symmetric. After replacing the constraint matrices A1, A2, . . . , As by
linear combinations, we may assume that b1 = 1 and b2 = · · · = bs = 0.

Let V be the subspace of Sym2(R
n) spanned by {A2, . . . , As}, and let

U be the subspace of Sym2(R
n) spanned by {C,A1} and V. We assume

dim(V) = s− 1 and dim(U) = s+ 1. Our instance defines a pair of flags

(12.13) V ⊂ U ⊂ Sym2(R
n) and U⊥ ⊂ V⊥ ⊂ Sym2(R

n)∗.

In what follows we assume that U and V are generic subject to the inclusion
(12.13). This ensures that strong duality holds, i.e. the duality gap is zero.

The KKT equations (12.10) can now be written as

(12.14) X ∈ V⊥, Y ∈ U and X · Y = 0.
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196 12. Semidefinite Programming

The matrices X and Y are considered up to scaling, that is, they are un-

known points in the projective space P(Sym2(R
n)) = P(

n+1
2 )−1. The flag V ⊂

U constitutes our data, specifying a variety in P(
n+1
2 )−1×P(

n+1
2 )−1 via (12.14).

Corollary 12.12. The semidefinite programming problem (12.8) is equiva-
lent to solving the bilinear system of equations (12.14) subject to X,Y ( 0.

Proof. Using strong duality, this is a reformulation of Corollary 12.9. �

12.3. Sums of Squares

Semidefinite programming can be used to model and solve arbitrary poly-
nomial optimization problems. The key to doing so is the representation
of nonnegative polynomials in terms of sums of squares, or, more generally,
the real Nullstellensatz (see Chapter 6). We explain this for the simplest
scenario, namely the problem of unconstrained polynomial optimization.

Let f(x1, . . . , xn) be a polynomial of even degree d = 2p, and suppose
that f attains a minimal real value f∗ on Rn. Our goal is to compute f∗ and
a point u∗ ∈ Rn such that f(u∗) = f∗. Minimizing a function is equivalent
to finding the best possible lower bound λ for that function. Our goal is
therefore equivalent to solving the following optimization problem:

(12.15) Maximize λ such that f(x)− λ ≥ 0 for all x ∈ Rn.

This is a difficult problem. Instead, we consider the following relaxation:

(12.16) Maximize λ such that f(x)− λ is a sum of squares in R[x].

Here relaxation means that we have modified the set of feasible solutions.
Indeed, every sum of squares is nonnegative, but not every nonnegative
polynomial is a sum of squares of polynomials. For instance, the Motzkin
polynomial x4y2 + x2y4 + 1 − 3x2y2 is nonnegative, but it is not a sum of
squares of polynomials, by Example 6.11. For that reason, the optimal value
of (12.16) is always a lower bound for the optimal value of (12.15), but the
two values can be different in some cases. However, here is the good news:

Proposition 12.13. The optimization problem (12.16) is a semidefinite
program.

Proof. Let x[p] be the column vector whose entries are all monomials in
x1, . . . , xn of degree ≤ p. Thus x[p] has length

(
n+p
n

)
. Let G = (gij) be

a symmetric
(
n+p
n

)
×
(
n+p
n

)
matrix with unknown entries. Then the scalar

(x[p])T ·G · x[p] is a polynomial of degree d = 2p in x1, . . . , xn. We set

(12.17) f(x)− λ = (x[p])T ·G · x[p].
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12.3. Sums of Squares 197

By collecting coefficients of the x-monomials, we get a system of
(2p+n

n

)
linear

equations in 1 +
((n+p

n )+1
2

)
unknowns, namely λ and the matrix entries gij .

Suppose the linear system (12.17) has a solution (G, λ) such that G is
positive semidefinite. Then we can write G = HTH where H is a real matrix
with r rows and

(p+n
n

)
columns. (This is known as a Cholesky factorization

of G; see Exercise 2.) The polynomial in (12.17) then equals

(12.18) f(x)− λ = (Hx[p])T · (Hx[p]).

This is the scalar product of a vector of length r with itself. Hence f(x)−λ
is a sum of squares of polynomials of degree ≤ p. Conversely, every repre-
sentation of f(x) − λ as a sum of squares of polynomials uses polynomials
of degree ≤ p and can hence be written in the form (12.18).

Our argument shows that the problem (12.16) is equivalent to

(12.19)
Maximize λ subject to (G, λ) satisfying
the linear equations (12.17) and G ( 0.

This is a semidefinite programming problem, so the proof is complete. �

If n = 1 or d = 2 or (n = 2 and d = 4), then every nonnegative
polynomial of degree d in n real variables is a sum of squares. These are
precisely the cases where (12.15) and (12.19) are equivalent. See [5, §3.1.2].

Example 12.14 (n = 1, p = 2, d = 4). Suppose we seek to find the min-
imum of the degree-4 polynomial f(x) = 3x4 + 4x3 − 12x2. Of course, we
know how to do this using calculus. Here we explain the SDP approach.

The linear equations (12.17) have a 1-dimensional space of solutions.
Introducing a parameter μ for that line, the solutions can be written as

(12.20) f(x)− λ =
(
x2 x 1

)⎛⎝ 3 2 μ− 6
2 −2μ 0

μ− 6 0 −λ

⎞⎠⎛⎝x2

x
1

⎞⎠ .

Consider the set of all pairs (λ, μ) such that the 3 × 3 matrix in (12.20)
is positive semidefinite. This set is a cubic spectrahedron in the plane R2,
just like that shown on the left in Figure 12.1. We seek to maximize λ over
all points in that spectrahedron. The optimal point is (λ∗, μ∗) = (−32,−2).
Substituting this into the matrix in (12.20), we obtain a positive semidefinite
matrix of rank 2. This can be factored as G = HTH, where H has format
2× 3. The resulting representation (12.18) as a sum of two squares is

f(x)− λ∗ = f(x) + 32 =
(
(
√
3x− 4√

3
) · (x+ 2)

)2
+

8

3
(x+ 2)2.

The right-hand side is nonnegative for all x. It takes the value 0 at x = −2.
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198 12. Semidefinite Programming

Any polynomial optimization problem can be translated into a relaxation
that is a semidefinite programming problem. For unconstrained optimiza-
tion we saw this in Proposition 12.13. Remarkably, the same approach works
for arbitrary optimization problems where both the objective function and
the constraints are given by polynomials. Indeed, suppose we wish to mini-
mize f(x) subject to some polynomial constraints. We seek a certificate for
f(x) − λ < 0 to have no solution. This certificate is promised by the real
Nullstellensatz or the Postitivstellensatz. We discussed these in Chapter 6.

If we fix a degree bound, then the existence of a certificate translates
into a semidefinite program, and so does the additional requirement for λ
to be minimal. The translation is explained in [5, §3.4.3]. This relaxation
may or may not give the correct solution for some fixed degree bound.

If one increases the degree bound, then the SDP formulation is more
likely to succeed, albeit at the expense of having to solve a much larger
problem. This is a powerful and widely used approach to polynomial opti-
mization, known as SOS programming. The term Lasserre hierarchy refers
to varying the degree bounds. It is often found in the computer science
literature.

Every spectrahedron S = L ∩ PSDn has a special point in its relative
interior. This point, defined as the unique matrix in S whose determinant
is maximal, is known as the analytic center. Finding the analytic center of
S is a convex optimization problem, since the function X �→ log det(X) is
strictly concave on the cone of positive definite matrices X. The analytic
center is important for semidefinite programming because it serves as the
starting point for interior point methods. Indeed, the central path of an SDP
starts at the analytic center and runs to the optimal face. It is computed
by a sequence of numerical approximations.

Example 12.15. The determinant function takes on all values between 0
and 1 on the spectrahedron S in (12.5). The value 1 is attained only by the
identity matrix, for (x, y) = (0, 0). This point is the analytic center of S.

We close this section by relating spectrahedra and their analytic centers
to statistics. For further reading on this connection we refer to the article
[55]. Every positive definite n×n matrix Σ = (σij) is the covariance matrix
of a multivariate normal distribution. Its inverse Σ−1 is also symmetric and
positive definite. The matrix Σ−1 is known as the concentration matrix.

A Gaussian graphical model is specified by requiring that some off-
diagonal entries of Σ−1 be zero. These entries correspond to the nonedges of
the graph. Maximum likelihood estimation for this graphical model trans-
lates into a matrix completion problem. Suppose that S is the sample co-
variance matrix of a given data set. We regard S as a partial matrix, with
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visible entries only on the diagonal and on the edges of the graph. One
considers the set of all completions of the nonedge entries that make the
matrix S positive definite. The set of all these completions is a spectrahe-
dron. Maximum likelihood estimation for the data S in the graphical model
amounts to maximizing the logarithm of the determinant. We hence seek to
compute the analytic center of the spectrahedron of all matrix completions.

Example 12.16 (Positive definite matrix completion). Suppose that the
eight entries σij in the following symmetric 4× 4 matrix are visible, but the
two entries x and y are unknown:

(12.21) Σ =

⎛⎜⎜⎝
σ11 σ12 x σ14
σ12 σ22 σ23 y
x σ23 σ33 σ34
σ14 y σ34 σ44

⎞⎟⎟⎠ .

This corresponds to the graphical model of the 4-cycle whose edges are
12, 23, 34, 41. Given visible entries σij , we consider the set of pairs (x, y) that
make Σ positive definite. This set is the interior of a planar spectrahedron
Sσ bounded by a quartic curve. The maximum likelihood estimator is the
analytic center of Sσ.

One is also interested in conditions on the σij such that int(Sσ) is
nonempty. When can we find (x, y) that make Σ positive definite? One
necessary condition is that the diagonal entries σii are positive. A further
condition is that the four visible principal 2× 2 minors are positive:

(12.22) σ11σ22 > σ2
12 , σ22σ33 > σ2

23 , σ33σ44 > σ2
34 , σ11σ44 > σ2

14.

But these necessary conditions are not sufficient. The answer is as follows.

The region of all matrices σ with int(Sσ) �= ∅ is a semialgebraic convex
cone. Its boundary is a hypersurface of degree 8. The polynomial defining
that hypersurface is

σ2
11σ

2
44σ

4
23 − 2σ22σ

2
33σ44σ

2
12σ

2
14 − 2σ11σ33σ

2
44σ

2
12σ

2
23 − 2σ11σ22σ33σ44σ

2
14σ

2
23

+4σ33σ44σ
2
12σ

2
14σ

2
23 + 8σ11σ22σ33σ44σ12σ14σ23σ34 − 4σ33σ44σ

3
12σ14σ23σ34

− 4σ22σ33σ12σ
3
14σ23σ34 + σ2

22σ
2
33σ

4
14 − 4σ11σ44σ12σ14σ

3
23σ34 − 2σ11σ22σ33σ44σ

2
12σ

2
34

− 2σ11σ
2
22σ33σ

2
14σ

2
34 + 4σ22σ33σ

2
12σ

2
14σ

2
34 − 2σ2

11σ22σ44σ
2
23σ

2
34 + 4σ11σ44σ

2
12σ

2
23σ

2
34

+4σ11σ22σ
2
14σ

2
23σ

2
34 − 4σ11σ22σ12σ14σ23σ

3
34 + σ2

11σ
2
22σ

4
34 + σ2

33σ
2
44σ

4
12.

This polynomial is found by eliminating x and y from the determinant and
its partial derivatives with respect to x and y, after saturating by the ideal
of 3× 3 minors. For more details on this example see [55, §4.2].
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Exercises

(1) Prove Theorem 12.2.

(2) Show that a real symmetric matrix G is positive semidefinite if and only
if it admits a Cholesky factorization G = HTH over the real numbers,
with H upper triangular.

(3) Consider the problem of maximizing the smallest eigenvalue among all
matrices in an affine-linear subspace of Sym2(R

n). Express this problem
as a semidefinite program. For n = 3, solve it for the subspace in (12.5).

(4) Maximize and minimize the linear function 13x + 17y + 23z over the
spectrahedron S in Example 12.4. Use SDP software if you can.

(5) Maximize and minimize the linear function 13x + 17y + 23z over the
Toeplitz spectrahedron in Example 12.11. Use SDP software if you can.

(6) Write the dual SDP and solve the KKT system for the previous two prob-
lems. Also write down the symmetric formulation in Corollary 12.12.

(7) Compute the convex body dual to the spectrahedron S in Example 12.4.

(8) Consider the problem of minimizing the univariate polynomial x6+5x3+
7x2 + x. Express this problem as a semidefinite program and solve it.

(9) True or false? A spectrahedron S = L ∩ PSDn is a polyhedron if and
only if the linear space L consists only of diagonal matrices.

(10) In the partial matrix (12.21) set σ11 = σ22 = σ33 = σ44 = 5, σ12 = σ23 =
σ34 = 1 and σ14 = 2. Compute the spectrahedron Sσ, draw a picture,
and find the analytic center of Sσ. What is the statistical interpretation?

(11) Find numerical values for the eight entries σij of the partial 4×4 matrix
in (12.21) such that (12.22) holds but int(Sσ) = ∅.

(12) Let s = 3 and n = 4, pick a general flag V ⊂ U as in (12.13), and consider
the subvariety of P9×P9 defined by the KKT equations (12.14). Working
over C, show that this variety is finite and determine its cardinality.

(13) Study the convex hull of following curve which seems similar to (12.12):{(
cos(θ), cos(2θ), sin(3θ)

)
: θ ∈ [0, 2π]

}
.

Can you draw a picture? Is this convex body a spectrahedron?
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Chapter 13

Combinatorics

“Combinatorics is the nanotechnology of mathematics”,
Sara Billey

Combinatorics interacts in many fruitful ways with algebra and geom-
etry, e.g. in the interplay between polytopes and toric varieties in Chapter
8. We here discuss combinatorial themes that are important for nonlinear
algebra. The first such theme is matroid theory. Matroids encode indepen-
dence, just like groups encode symmetry. The theory of matroids has many
connections to toric geometry, and we will present a few of them. One of
our aims is to highlight connections between toric varieties, matroids, and
Grassmannians (Chapter 5). In these connections, lattice polytopes play a
prominent role. We conclude by presenting a snapshot of generating func-
tions. Their role as Hilbert series brings us back to the two key invariants of
an algebraic variety: dimension and degree. The emphasis of this chapter is
not on combinatorics per se, but rather on the role it plays within nonlinear
algebra. In short, what this chapter offers is a pinch of combinatorics in a
vast sea of algebra.

13.1. Matroids

In this section we give an introduction to the theory of matroids. The
name matroids reveals that these objects can be seen as generalizations of
matrices. As we will see, every matrix over a field defines a matroid.

We fix a finite set E, which will be the ground set for our matroids.
We shall distinguish a family of subsets of E that are called independent.

201
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202 13. Combinatorics

Thus a matroid M is a family I ⊂ 2E of subsets of E that we refer to as
independent sets. These are assumed to satisfy certain axioms, which reflect
the familiar setting where E is a set of vectors in a vector space V . In that
setting, being independent simply means being linearly independent.

A first observation is that whenever we have an independent set I ⊂ E,
it is reasonable to assume that every subset of I is also independent. We
thus obtain the first axiom of a matroid for the family I:

1. If I ∈ I and J ⊂ I, then J ∈ I.

What we have defined so far is a simplicial complex . Another requirement for
I is to be nonempty. Equivalently, we want the empty set to be independent:

2. We have ∅ ∈ I.

To obtain a matroid, we need one more axiom. To motivate it we make the
following observation. Consider two finite subsets I and J of a vector space
V . Suppose that each of these sets consists of elements that are linearly
independent and that |I| < |J |. Then we can extend I by an element j ∈ J
in such a way that I ∪{j} is still linearly independent. This fact from linear
algebra is precisely what we need to get the last axiom for the family I:

3. If I, J ∈ I and |I| < |J |, then I ∪ {j} ∈ I holds for some j ∈ J\I.

Definition 13.1. A matroid is a family of subsets I satisfying Axioms 1, 2
and 3.

Exercise 1 asks the reader to prove the assertion in the next sentence.

Example 13.2. The following families I are matroids:

• (Representable matroid) Let V be a vector space over an arbitrary
field F . Let E ⊂ V be a nonempty, finite subset. We define I to be
the family of subsets of E that are linearly independent. We say
that this matroid is representable over F . In coordinates, V � Fn,
and we may write the set E as the rows of an |E| × n matrix.

• (Graphic matroid) Let G be a graph with edge set E. Let I be the
family of those subsets of E that do not contain a cycle. Equiva-
lently, I is the family of forests in G.

• (Algebraic matroid) Let F ⊂ K be an arbitrary field extension.
Let E be a finite subset of K. Let I be the family of subsets of E
that are algebraically independent over F .

• (Uniform matroid) Let E be a finite set and k ≤ |E|. Let I be the
family of subsets of cardinality at most k in E. This matroid is
denoted by Uk,E or Uk,|E|.
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13.1. Matroids 203

Matroids are known for having many equivalent definitions, depending
on one’s point of view. For example, thanks to the first axiom, to determine
a matroid we do not have to know all independent sets, just those that
are inclusion-maximal. By analogy to linear algebra, the inclusion-maximal
independent sets are called bases. It turns out (as the reader is asked to
prove in Exercise 2) that a nonempty family B ⊂ 2E of subsets of E is the
set of bases of some matroid if and only if the following axiom is satisfied:

• For all bases B1, B2 ∈ B and each element b2 ∈ B2\B1 there exists
b1 ∈ B1\B2 such that (B1\{b1}) ∪ {b2} ∈ B.

The seemingly weak axiom onB in fact implies the following two statements:

• For all B1, B2 ∈ B and b2 ∈ B2\B1 there exists b1 ∈ B1\B2 such
that both (B1\{b1}) ∪ {b2} and (B2\{b2}) ∪ {b1} are bases in B.

• For all B1, B2 ∈ B and any subset A2 ⊂ B2\B1 there exists a sub-
set A1 ⊂ B1\B2 such that both (B1\A1) ∪ A2 and (B2\A2) ∪ A1

are in B.

The first point is known as the symmetric exchange property and the
second as the multiple symmetric exchange property. The fact that both
exchange properties hold is nontrivial; we refer to the proofs in [37,59]. We
will soon see the algebraic meaning of the exchange properties.

Exercise 3 states that all bases of a matroid have the same cardinality.
The cardinality of a basis is known as the rank of a matroid. More generally,
for a matroid on a ground set E, we may define the rank of any subsetA ⊂ E.

Definition 13.3. For a matroid on the ground set E, specified by its col-
lection of independent sets I ⊂ 2E , we define the rank function

r : 2E → Z, A �→ max
I∈I

{|I ∩A|}.

Thus, the rank of a set is the largest cardinality of any independent subset.

We note that for a representable matroid, the rank is simply the dimen-
sion of the vector subspace spanned by the given vectors. For any matroid,
representable or not, the rank function r satisfies the following:

• 0 ≤ r(A) for all A ⊂ E, and r(∅) = 0.

• r(A) ≤ r(A ∪ {b}) ≤ r(A) + 1 for all A ⊂ E and b ∈ E.

Further, the rank function has one more property, known as submodularity :

• For all A,B ⊂ E we have r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).
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In Exercise 7 the reader is asked to prove that any function r : 2E → Z

satisfying the three axioms above is a rank function of a matroid. The
independent sets can be reconstructed as those I ⊂ E for which r(I) = |I|.
Thus, the above rank axioms give another possible definition of a matroid.

Matroid theory has numerous connections to topics seen earlier in this
book. Two of these connections will be explored in the next two sections.
We close this section with two other connections, namely those to solving
polynomial equations (Chapter 3) and to tropical algebra (Chapter 7).

Suppose we are given a matroid M and a field K. Two basic questions
arise: Is M representable over K? What is the set of all matrices that
represent M? This leads to a system of polynomial equations. Namely, let
E = {1, 2, . . . ,m} and let n = r(E) be the rank of M . Let R(M) denote
the set of all matrices X ∈ Km×n whose rows represent M . This is known
as the realization space of the matroid M . Thus a subset I of the rows of X
is linearly independent in Kn if and only if it is independent in M . For any
subset B ⊂ E with |B| = n, we write detB(X) for the n × n determinant
given by the rows of X that are indexed by B. By definition, R(M) equals{

X ∈ Km×n : detB(X) �= 0 for B ∈ B and detB(X) = 0 for B �∈ B
}
.

This is an affine variety. The conditions can be written as one equation

z ·
∏
B∈B

detB(X) = 1, where z is a new variable.

With this, the set R(M) is a closed subvariety in the affine space Kmn+1.

Example 13.4 (Fano plane). The Fano plane is a matroid M of rank n = 3
on m = 7 elements. The nonbases are 124, 235, 346, 457, 156, 267 and 137.
These are the triples in the ground set that are not bases. Note that scaling
the rows and columns of a matrix by a nonzero scalar does not change the
matroid. Every element X ∈ R(M) satisfies det123(X) �= 0. To check
whether M is representable, we may assume that X has an identity matrix
in rows 1, 2 and 3. After further scaling of the rows and columns, the
transpose of X equals

XT =

⎛⎝1 0 0 1 0 1 z
0 1 0 x 1 1 0
0 0 1 0 y 1 1

⎞⎠ .

The zero entries in columns 4, 5 and 7 come from the nonbases 124, 235 and
713. Similarly, the nonzero entries are specified by the bases. Whenever
possible, these are scaled to 1. The bases 134, 125 and 237 imply x, y, z �= 0.
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We now consider the constraints detB(X) = 0 that are imposed by the
four nonbases 346, 457, 561 and 672. These give the generators of the ideal

〈x− 1, xyz + 1, y − 1, z − 1 〉 ⊂ K[x, y, z].

If the characteristic of our field K is different from 2, then this is the unit
ideal and hence M is not representable. However, if char(K) = 2, then the
point (x, y, z) = (1, 1, 1) is a solution and gives a representation of M .

The Fano plane is depicted in Figure 13.1. Here, lines represent linear
dependencies. As the matroid is not representable over R, one encodes the
fact that 457 is not a basis by putting these three points on a circle.

Figure 13.1. The Fano plane.

We have seen that representability of matroids leads to varieties. Re-
markably, also the converse holds. Given any affine variety V that is defined
over Z, one can construct a matroid M such that R(M) is essentially equal
to V . This is the content of the celebrated Mnëv’s Universality Theorem.

Matroids play a fundamental role also in tropical geometry. Following
Chapter 7, for every ideal I in a Laurent polynomial ring K[x±] we have an
associated tropical variety trop(V(I)). This tropical variety is a subset of
Rn. It is called a tropical linear space if I is generated by linear polynomials.

Example 13.5. Let n = 3 and I = 〈x1 + x2 + x3 + 1, x1 + 2x2 + 3x3 + 4〉.
The classical variety V(I) is a line in the affine 3-space K3. Its tropicaliza-
tion trop(V(I)) is a balanced graph in R3 with four unbounded rays in the
coordinate directions e1, e2, e3 and −e1− e2− e3. This tropical line captures
the structure of the associated matroid, i.e. the uniform matroid U2,4. It is

represented by the matrix seen in the ideal generators: X =

[
1 1 1 1
1 2 3 4

]T
.

In general one defines a tropical linear space trop(M) for any matroidM .
This construction is explained in [38, §4.2]. Tropical linear spaces are the
linear spaces in tropical geometry. They are fundamental to the concept of a
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206 13. Combinatorics

tropical manifold. In classical mathematics, a manifold is a space that looks
locally like a linear space. A tropical manifold is a space that looks locally
like a matroid M . Each of its charts is a tropical linear space trop(M).

13.2. Lattice Polytopes

In this section we study the interplay between toric geometry and matroids.
Starting from the basics, we recall the definition of a lattice polytope that
we know from Chapter 8. We work in the real vector space Rn. A polytope
P is the convex hull of a finite set of points p1, . . . , pk ∈ Rn:

P :=
{
x ∈ Rn : x =

k∑
i=1

λipi, where λ1, . . . , λk ≥ 0 and
k∑

i=1

λi = 1
}
.

We call P a lattice polytope if p1, . . . , pk ∈ Zn. If none of the pi is redundant
in the representation of P , then p1, . . . , pk are the vertices of P .

To pass from a combinatorial object, such as a matroid, to its polytope,
we proceed as follows. Elements e ∈ E correspond to standard basis vectors
be of R

|E|. Any subset A ⊂ E can be identified with a point pA :=
∑

e∈A be ∈
R|E|. In this way a family of subsets may be identified with a set of points.

Definition 13.6 (Matroid basis polytope). Let M be a matroid on the
ground set E, with the set of bases B. We use the notation introduced
above. We define the matroid basis polytope PM ⊂ R|E| as the convex hull
of the points pB :=

∑
e∈B be ∈ R|E|, where B ranges over the set B of bases.

By construction, PM is a lattice polytope. We will study the associated
toric varietyXPM

, as defined in Section 8.2. From now on we write XM since
PM is determined by the matroid M . By definition, XM is a toric variety in
the projective space P|B|−1, parametrized by the monomials

∏
i∈B ti where

B runs over B. We have dim(XM ) ≤ |E| − 1 and equality usually holds.

Example 13.7. Fix the uniform matroid M = U2,4. Then PM is the regular
octahedron. The toric variety XM ⊂ P5 has the parametric representation

(13.1) (t1, t2, t3, t4) �→ (t1t2, t1t3, t1t4, t2t3, t2t4, t3t4).

The variety XM has dimension 3 and degree 4. Using implicitization as in
Section 4.2, we find that its defining prime ideal is 〈y1y6−y2y5, y2y5−y3y4〉.

One important property a lattice polytope and its toric variety can have
is normality. This was introduced in Definitions 8.7 and 8.19. Neil White
[58] showed that toric varieties arising from matroids are always normal.

Theorem 13.8. A matroid basis polytope is normal in the lattice it spans.
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We shall present a proof of this theorem. Our approach rests on the
following important combinatorial result. For a proof we refer to [42, 12.3.1].

Theorem 13.9 (Matroid Union Theorem). Let M1, . . . ,Mk be matroids on
the same ground set E with respective families of independent sets I1, . . . , Ik
and rank functions r1, . . . , rk. Let

I := {I ⊂ E : I =
k⋃

i=1

Ii for Ii ∈ Ii}.

Then I is also the family of independent sets for a matroid, known as the
join of M1, . . . ,Mk. The rank function for the join matroid satisfies

r(A) = min
S⊂A

{|A \ S|+
k∑

i=1

ri(S)}.

As a corollary, we obtain the following theorem due to Jack Edmonds.

Theorem 13.10. Let M be a matroid with rank function rM . Then its
ground set E can be partitioned into k independent sets if and only if

|A| ≤ k · rM (A) for all subsets A ⊂ E.

Proof. The ⇒ implication is straightforward.

For the opposite implication consider the join U of M with itself k times.
We apply the matroid union theorem to compute the rank of E:

rU (E) = min
A⊂E

{|E| − |A|+ k · rM (A)}.

By the assumption, we have |E| − |A|+ k · rM (A) ≥ |E|, and equality holds
for A = ∅. Hence, rU (E) = |E|. This means that E is an independent set
in U , and hence by definition it is a union of k independent sets of M . �

Let M be a matroid with the family I of independent sets. We take
E = {1, 2, . . . , n} and consider any subset E′ ⊂ E. The restriction of M to
E′ is the matroid where A ⊂ E′ is independent if and only if A ∈ I.

Proof of Theorem 13.8. Let p ∈ (kPM ) ∩ Zn. We know that

p =
∑
B∈B

λB · pB with
∑
B∈B

λB = k and 0 ≤ λB ∈ Q.

By clearing denominators, we find a positive integer d such that

d · p =
∑

λ′
B · pB ,

where
∑

λ′
B = d · k and 0 ≤ λ′

B ∈ Z. By restricting the matroid M to a
subset, we may assume that all coordinates of p = (p1, . . . , pn) are nonzero.
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We next define two matroids. The first matroid N has the ground set
EN := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ pi}. In other words, we replace a point i in
the original matroid by pi new points. A subset {(i1, j1), . . . , (is, js)} ⊂ EN

is independent in the matroid N if and only if

• all iq’s are distinct, and

• {i1, . . . , is} is an independent set in M .

Bases of N map naturally to bases of M . Also, the rank function for N is
the same as the one for M if we forget the second coordinates. The point p
has a decomposition as a sum of k points corresponding to bases of M if and
only if the matroid N is covered by k bases (i.e. the ground set is a union
of k bases). Hence, by Theorem 13.10, our aim is to prove the following
statement: For any A ⊂ EN we have |A| ≤ k · rN (A).

For the second matroid N ′, we replace any point of N by d new points.
The ground set of N ′ is EN ′ := {(i, j, l) : 1 ≤ i ≤ n, 1 ≤ j ≤ pi, 1 ≤ l ≤ d}.
A subset {(i1, j1, l1), . . . , (is, js, ls)} ⊂ EN ′ is independent if and only if

• all iq’s are distinct, and

• {i1, . . . , is} is an independent set in M .

We have a natural projection π : EN ′ → EN by forgetting the last coor-
dinate. We note that rN ′(π−1(A)) = rN (A). As the point d · p is decom-
posable, we know that the matroid N ′ can be covered by kd bases. Hence,
|B| ≤ dk · rN ′(B) for any B ⊂ EN ′ . Applying this to π−1(A), we obtain

d|A| = |π−1(A)| ≤ dk · rN ′(π−1(A)) = dk · rN (A).

This is equivalent to the statement we wanted to prove. �

Our next aim is to relate matroids to the geometry of special subvarieties
of Grassmannians. We recall that one definition of the Grassmannian is that
G(k, n) is the orbit of [e1∧· · ·∧ek] ∈ P(

∧k Kn) under the action of the group
GL(n) of invertible n× n matrices. While the Grassmannian is an orbit of
the big group GL(n), we may ask how smaller groups act on G(k, n). In
particular, consider the torus T := (K∗)n of diagonal matrices. This acts

on P(
∧k Kn) and on G(k, n). However, G(k, n) is generally not an orbit or

orbit closure of T , since dim(G(k, n)) = k(n− k) exceeds dim(T ) = n.

We fix a point p ∈ G(k, n). The following questions motivate us:

• What is the T -orbit of p?

• What is the closure of this orbit?

• How can we describe this variety?

A beautiful answer is provided by the characterization of matroid polytopes
due to Gelfand, Goresky, MacPherson and Serganova [38, Theorem 4.2.12].
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A point p = [v1 ∧ · · · ∧ vk] ∈ G(k, n) represents the subspace V =
〈v1, . . . , vk〉 in Kn. We write the vectors v1, . . . , vk as a k × n matrix Np.

From Chapter 5 we know that the coordinates of p ∈ P(
∧k Kn) are the

maximal minors of Np. How does a torus element t = (t1, . . . , tn) ∈ T act
on p? In general, t acts on a standard basis vector ei1 ∧ · · ·∧ eik by rescaling
it with ti1 · · · tik . Hence, the orbit of p is the image of the monomial map

T % (t1, . . . , tn) �→
(
ti1 · · · tikdeti1...ik(Np)

)
1≤i1<···<ik≤n

∈ P(
n
k)−1.

Example 13.11. Fix k = 2 and n = 4. Let p ∈ G(2, 4) be the row space of

Np =

[
1 1 1 1
1 2 3 4

]
.

This is the same subspace as that seen in Examples 13.5 and 13.7. In Plücker
coordinates on the Grassmannian, the corresponding point in P5 is

(e1 + e2 + e3 + e4) ∧ (e1 + 2e2 + 3e3 + 4e4)
= e1 ∧ e2 + 2e1 ∧ e3 + 3e1 ∧ e4 + e2 ∧ e3 + 2e2 ∧ e4 + e3 ∧ e4.

Hence, the T -orbit of p in G(2, 4) ⊂ P5 is parametrized as follows:

(13.2) (t1, t2, t3, t4) �→ (t1t2, 2t1t3, 3t1t4, t2t3, 2t2t4, t3t4).

This is almost the same as the monomial map in (13.1). The only difference
is the constants given by minors of the matrix Np. However, these constants

do not depend on t ∈ T . We can define an automorphism of P(
∧k Kn)

that turns the orbit into an image of a monomial map, by rescaling the
coordinates. The prime ideal of this orbit is 〈4y1y6 − y2y5, 3y2y5 − 4y3y4〉.

In general, if all k × k minors of Np are nonzero, in which case the
matroid of Np is uniform, then the T -orbit of p is isomorphic to the image
of the map given by all square-free monomials of degree k. The associated
basis polytope is the hypersimplex. If the matroid is not uniform, then we
delete all zero coordinates of p and consider the torus orbit in P|B|−1.

For instance, if the lower right matrix entry “4” in Example 13.11 is re-
placed by “3”, then (13.2) becomes (t1, t2, t3, t4) �→(t1t2, 2t1t3, 2t1t4, t2t3, t2t4)
and the closure of the image of this map is the hypersurface in P4 defined
by 〈y2y5 − y3y4〉. Our discussion establishes the following general result.

Proposition 13.12. The closure of the T -orbit of any point p = [v1∧· · ·∧vk]
in a Grassmannian G(k, n) is isomorphic to the toric variety represented by
the matroid basis polytope, for the representable matroid defined by columns
of the k × n matrix Np with ith row equal to vi.
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The results of Chapter 8 combined with Theorem 13.8 imply:

Corollary 13.13. Any torus orbit closure in a Grassmannian in its Plücker
embedding is projectively normal.

We conclude that the toric varieties associated with matroids include all
torus orbit closures in Grassmannians. But they are more general because
there exist matroids that are not representable. We now present a toric
variety that arises as a torus orbit closure in G(3, 7) only when char(K) = 2.

Example 13.14 (Fano matroid). Fix n = 7 and let M be the Fano matroid

from Example 13.4. It has seven nonbases and hence |B| = 28 =
(7
3

)
− 7.

Thus, the toric variety XM lives in P27. It has dimension 6 and degree 232.
The prime ideal of XM is minimally generated by 140 quadrics yiyj − ykyl.

We now turn to the interpretation of basis exchange properties in terms
of toric ideals. Consider a matroid with basis polytope P . We recall that

• the ideal of the associated toric variety is generated by binomials;

• every binomial in the ideal corresponds to an integral relation
among lattice points of P .

How do these statements specialize in the case of matroids? The vertices of P
are characteristic vectors of bases. A sum of vertices is a sum of characteristic
vectors. This corresponds to taking a union of bases as multisets.

Example 13.15. Consider the uniform matroid U2,4. Its basis polytope is
a regular octahedron. A typical integral relation between its vertices is

(1, 1, 0, 0) + (0, 0, 1, 1) = (1, 0, 1, 0) + (0, 1, 0, 1).

As a union of bases, this corresponds to the identity

{1, 2} ∪ {3, 4} = {1, 3} ∪ {2, 4}.
With appropriate indexing of the variables, this translates into the quadratic
binomial y12y34 − y13y24 in the ideal of the associated toric threefold in P5.

Two multisets of bases are compatible if their unions (as multisets) are
the same. Equivalently, every element of E belongs to the same number of
bases in the first and second multisets of bases. We conclude that the bino-
mials in the ideal of the toric variety represented by a matroid basis polytope
are in bijection with pairs of compatible multisets of bases. The quadrics in
a toric ideal correspond to pairs of basis pairs ({B1, B2}, {B3, B4}) satisfying
B1 ∪B2 = B3 ∪B4. In transitioning between these basis pairs, we change

• B1 by subtracting a set A1 ⊂ B1\B2 and adding A2 ⊂ B2\B1, and

• B2 by adding A1 to it and subtracting A2.
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13.3. Generating Functions 211

We see that quadrics in the ideal of XM correspond to multiple symmetric
exchanges. It follows that symmetric basis exchanges, i.e. the case where
|A1| = |A2| = 1, form a distinguished set of quadrics in the ideal. The
following four conjectures are due to Neil White.

Conjecture 13.16. The following is true for an arbitrary matroid M .

• Representable case: The ideal of any T -orbit in a Grassmannian is
(1) generated by quadrics, and
(2) generated by quadrics coming from symmetric basis exchanges.

• General case: Any two finite multisets of bases (Bi) and (Bj) such
that

⋃
Bi =

⋃
Bj can be transformed to one another through a

finite sequence of the following steps:
(1) replace two bases B and B′ in one multiset by two bases B̃ and

B̃′ obtained by multiple symmetric exchanges (i.e. B ∪ B′ =
B̃ ∪ B̃′);

(2) replace two bases B and B′ in one multiset by two bases B̃ and

B̃′ obtained by a symmetric exchange (i.e. B̃ = B ∪ {b1}\{b2}
and B̃′ = B′ ∪ {b2}\{b1}).

In these conjectures, the general case implies the representable case.

13.3. Generating Functions

In this section we introduce multivariate generating functions that are given
by rational functions. The key example is multigraded Hilbert series. We
discuss methods for computing them, and we explore connections to regular
triangulations. In particular, we discuss Ehrhart series of lattice polytopes.

We start with the familiar example of the polynomial ring K[x]. In
Chapter 1 we introduced its Hilbert function d �→ h(d). The value h(d) =
dimKK[x]d is the number of monomials of degree d or, equivalently, the
number of lattice points u satisfying u ≥ 0 and

∑n
i=1 ui = d. Let Δ be

the standard simplex, i.e. the convex hull of the standard basis vectors.
The Hilbert function counts the number of lattice points in dilations of Δ,
i.e. h(d) = |dΔ ∩ Zn|. Further, by Example 1.22, the Hilbert series equals

HS(z) =
∞∑
q=0

|qΔ ∩ Zn| · zq =
1

(1− z)n
.

Our next aim is to refine our counting. So far we have treated all monomials
of the same degree on an equal footing. What happens if we try to remember
each monomial, not only its degree? Then we obtain the generating function

(13.3) MHS(x) =
1∏n

i=1(1− xi)
=
∑
u∈Nn

xu1
1 xu2

2 · · ·xun
n .
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Note that the polytopes qΔ are slices of the nonnegative orthant C = Rn
≥0.

The sum in (13.3) may be regarded as a sum over all lattice points of C.
We next replace C by more general cones.

Definition 13.17. Let C ⊂ Rn be a rational pointed polyhedral cone. We
define the associated multigraded Hilbert series to be the formal power series

MHSC(x) =
∑

c∈C∩Zn

xc.

If C ⊂ Rn
≥0 then we reconstruct the Hilbert series of K[C] from the

multigraded Hilbert series by setting x1 = · · · = xn = z. However, MHSC
remembers much more information: all lattice points of the cone. Our next
aim is to represent MHSC as a rational function, just as we did for C = Rn

≥0.
A cone generated by linearly independent vectors is called simplicial.

Lemma 13.18. Let C be a simplicial cone with generators c1, . . . , cd ∈ Zn.
There is a Laurent polynomial κC(x) with nonnegative coefficients such that

MHSC(x) =
κC(x)∏d

i=1(1− xci)
.

Proof. Consider the following half-open parallelepiped:

P := {x ∈ C : x =
d∑

i=1

λici, 0 ≤ λ1, . . . , λd < 1}.

Since the ci are linearly independent and generate C as a cone, every lattice
point c ∈ C has a unique representation c = p+

∑d
i=1 sici where p ∈ P is a

lattice point and the si are nonnegative integers. We obtain

MHSC(x) =
∑

c∈C∩Zn

xc =
∑

p∈P∩Zn

xp

(
d∏

i=1

( ∞∑
si=0

xsici

))

=
∑

p∈P∩Zn

xp

(
d∏

i=1

1

1− xci

)
=

∑
p∈P∩Znxp∏d

i=1(1− xci)
.

Hence κC(x) is the sum of all monomials representing lattice points in P . �
Remark 13.19. We freely manipulated infinite summations in Lemma
13.18. This is justified by the hypothesis that C is pointed, which ensures
that the series is absolutely convergent on some open set in Rn.

Proposition 13.20. Let C be a pointed, rational polyhedral cone with gen-
erators c1, . . . , cd ∈ Zn. Here C is not necessarily simplicial. Then we have

MHSC(x) =
κC(x)∏d

i=1(1− xci)
,

where κC(x) is a Laurent polynomial with integral coefficients.
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Proof. We triangulate the cone C, i.e. we write it as a union of simplicial
cones with rays ci that intersect in lower-dimensional simplicial cones. This
may be done e.g. by induction on the number d. Using inclusion-exclusion
over all cones, we write MHSC(x) as an alternating sum of multivariate
Hilbert series for simplicial cones. Lemma 13.18 now implies the claim. �

Remark 13.21. The proofs of Proposition 13.20 and Lemma 13.18 suggest
an algorithm for computing the multigraded Hilbert series. This procedure
also gives a combinatorial interpretation of the numerator κC(x).

The case where C is a cone over a lattice polytope P ⊂ Rn is particularly
nice. We identify P with the polytope P ×{1} ⊂ Rn×R. Let C ⊂ Rn+1 be
the cone over P , i.e. the smallest cone that contains P × {1}.

Proposition 13.22. Let C and P be as defined above. The Hilbert function
for C with respect to the grading induced by the last variable is given by

h(q) = |qP ∩ Zn+1|.

The function h coincides with a polynomial for all q ∈ Z≥0. This is the
Ehrhart polynomial of P , which counts the lattice points in dilations of P .

Proof. The only nontrivial statement is that h(q) is equal to a polynomial
for all positive integers q. By induction on d := dimP and by triangulating
P , it is enough to prove the statement in the case where P is a simplex with
vertices v1, . . . , vd. Let f(q) :=

(
d+q−1

q

)
=
(
d+q−1
d−1

)
for q ≥ 0 and f(q) = 0

for q < 0. Similiarly to the proof of Lemma 13.18, we have

h(q) =

d−1∑
i=0

ai · f(q − i),

where ai is the number of lattice points with their last coordinate i in the set

{
x ∈ Rn+1 : x =

d∑
i=1

λi(vi, 1) where 0 ≤ λ1, . . . , λd < 1
}
.

We only have to consider ai for i < d, as there are no lattice points in this
parallelepiped with last coordinate greater than or equal to d.

We note that f is not a polynomial if we consider the negative arguments.
The punchline is that the polynomial g(q) := (d+q−1)(d+q−2) · · · q/(d−1)!
equals f also for negative integers q, as long as q ≥ −d+ 1. Hence,

h(q) =
d−1∑
i=0

ai · g(q − i) for q ∈ Z≥0.

This sum is a polynomial in q. It is the Ehrhart polynomial of P . �
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Given a lattice polytope P with N lattice points, we associate to it a
toric variety XP in PN−1 as in Chapter 8. Hence, we obtain a binomial ideal
IP ⊂ K[x] = K[x1, . . . , xN ]. Fix a term order ≺. The initial ideal in≺(IP )
is a monomial ideal. Its radical rad(in≺(IP )) has the following property:

• If a productm of distinct variables does not belong to rad(in≺(IP )),
then neither does any monomial that divides m.

This may be restated as follows:

• The subsets S of the set of variables {x1, . . . , xN} that satisfy∏
x∈S x �∈ rad(in≺(IP )) form a simplicial complex.

Our aim is to give a geometric description of this simplicial complex. The
main idea is that the variables xi are in bijection with lattice points of P .
Let Δ be the collection of polytopes contained in P that are convex hulls of
sets of points S such that the product of variables in S is not in rad(in≺(IP )).

Example 13.23. Consider the square P = conv((0, 0, 1), (0, 1, 1), (1, 0, 1),
(1, 1, 1)). The associated variety is the surface in P3 defined by x1x4−x2x3.
We fix a term order for which x1x4 is the leading term. The subdivision Δ of
P contains two triangles: conv((0, 0, 1), (0, 1, 1), (1, 0, 1)) and conv((0, 1, 1),
(1, 0, 1), (1, 1, 1)). The minimal nonface is the pair of vertices (0, 0, 1) and
(1, 1, 1). This pair corresponds to the unique generator x1x4 of the initial
ideal. If we change the term order so that x2x3 becomes the leading term,
then we obtain a different triangulation of P , given by the other diagonal.

Our next result relates Gröbner bases to triangulations.

Theorem 13.24. Using the notation introduced above, Δ is a triangulation
of P . The minimal nonfaces of Δ correspond to generators of rad(in≺(IP )).

Proof. The proof can be found in [52, Chapter 8]. �

Definition 13.25. The triangulations of the form Δ, induced by any term
order, are called regular. There exist triangulations that are not regular.

The story that we are telling has three aspects: combinatorial, algebraic
and geometric. From the combinatorial point of view, we are triangulating
a lattice polytope P into simplices. The algebraic part is the finest, in that
we degenerate a toric ideal IP to a monomial ideal that shares with IP all
the most important invariants, such as dimension and degree. Let us now
describe the geometry in this picture. Here we degenerate the variety V(IP )
to V(in≺(IP )). One of the problems is that in≺(IP ) may be not radical, so
we may lose some information, but let us ignore this for a moment.
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What is V(in≺(IP ))? This variety equals V(rad(in≺(IP ))), so the ques-
tion is: What is the set of zeros of a square-free monomial ideal? The answer
is given by the solution to Exercise 12 in Chapter 2.

We find that the variety V(rad(in≺(IP ))) is a union of coordinate sub-
spaces. Each subspace is spanned by basis vectors (ei)i∈S with

∏
i∈S xi �∈

rad(in≺(IP )). The simplices in the induced triangulation of P correspond
naturally to components of V(in≺(IP )); as the triangulation breaks the poly-
tope into simple pieces, our variety is split into simple components.

We note that the idea of computing the dimension and degree of an
ideal by passing to the initial ideal is equivalent to the idea of computing
the Hilbert series of a cone by subdividing it into simplicial cones.

We know that the dimension of the (projective) toric variety associated
to a polytope P equals the dimension of P . What about the degree?

Proposition 13.26. Let P ⊂ Rd be a lattice polytope, where P ∩ Zd spans
the lattice Zd. The degree of the ideal IP equals the volume of P times d !.

Sketch of the proof. The degree divided by the factorial of dim(XP ) is
the leading coefficient of the Ehrhart polynomial h. Thus it is enough to
show the following claim: For any ε > 0 there exists a constant C such that

(13.4) (volP − ε)qd − C ≤ hP (q) ≤ (volP + ε)qd + C for all q ∈ Z>0.

Here, as before, hP (q) is the number of lattice points in qP . It is easy
to prove the inequality (13.4) for rational polytopes that are products of
intervals. This fact implies the claim, by covering P with small products of
intervals, according to the definition of the Lebesgue measure.

Thus, hP is of degree d and has leading coefficient equal to volP . The
proposition follows from the definition of the degree given in Section 1.3. �

Example 13.27. Let P be a d-dimensional simplex, given as the convex
hull of 0 and d basis vectors. The Ehrhart polynomial is given by h(q) =(
d+q
d

)
= 1

d!q
d + lower-order terms. Indeed, volP = 1/d! and dimP = d.

The usual Euclidean volume multiplied by d! is known as the normalized
volume. The simplex conv(0, e1, e2, . . . , ed) has normalized volume 1. The
normalized volume of any lattice polytope is a positive integer. This integer
equals the degree of the toric variety, if one works in the correct lattice.

How is the triangulation compatible with the degree computation? The
sum of volumes of its (maximal) simplices is equal to the volume of P .
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Theorem 13.28. Let P be a d-dimensional lattice polytope whose lattice
points generate the lattice Zd. Let IP be the associated toric ideal. If ≺ is a
term order and Δ the associated triangulation of P , then the following hold:

(1) The minimal primes of in≺(IP ) are in bijection with the maximal
simplices in the triangulation Δ.

(2) The primary ideal corresponding to a minimal prime of in≺(IP ) has
as degree the normalized volume of the associated simplex in Δ.

Exercises

(1) Show that Example 13.2 presents matroids.

(2) (a) Fix the family of independent sets I for a matroid M . Prove that
the inclusion-maximal elements in I satisfy the axioms for bases.

(b) Fix a nonempty set B ⊂ 2E satisfying the axioms for bases of a
matroid. Prove that I := {I ⊂ E | ∃B ∈ B : I ⊂ B} satisfies the
axioms for independent sets of a matroid.

(3) Prove that all bases of a matroid have the same cardinality.

(4) Prove that the points pB in Definition 13.6 are vertices of the polytope
PM . Prove that these are the only lattice points in PM .

(5) In this exercise we examine matroid duality.
(a) Let B ⊂ 2E be a set of bases of a matroid M . Let B∗ := {B ⊂ E :

E \B ∈ B}. Prove that B∗ is a set of bases of a matroid M∗. The
matroid M∗ is known as the dual matroid (of M).

(b) Prove that a dual of a representable matroid is representable.

(6) Prove that for any matroid the rank function is submodular.

(7) Prove that any function 2E → Z satisfying the three axioms of the rank
function is indeed a rank function of some matroid.

(8) How many distinct torus orbit closures are there in G(2, 4)? How many
are there up to isomorphism (of algebraic varieties)?

(9) Prove White’s conjectures for uniform matroids.

(10) Let M be the rank-3 matroid on E = {1, 2, . . . , 8} with nonbases 124,
235, 346, 457, 568, 671, 782 and 813. Is M representable? Study R(M).

(11) Let I be an ideal generated by three linear polynomials in five variables,
so that V(I) is a plane in K5. Determine the tropical plane trop(V(I)).

(12) Use Theorem 13.28 to triangulate the matroid basis polytopes of U3,5

and U3,6.
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(13) Carry out the computation reported in Example 13.14. Identify an ini-
tial monomial ideal of this toric ideal. Compute its Hilbert series MHS.

(14) Find a matroid M of rank 4 that has precisely 12 bases. Determine its
rank function r and its polytope PM . Verify White’s conjectures for M .

(15) Let C be the cone over the regular 3-cube [0, 1]3. Compute MHSC .
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flattening of a tensor, 141, 164
Fundamental Theorem of Algebra, 25
Fundamental Theorem of Tropical

Geometry, 111

Gaussian graphical model, 198
Grassmannian, 62, 73, 75, 162, 178,

208, 209
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Plücker quadric, 77, 168
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Toeplitz matrix, 194
Toeplitz spectrahedron, 194
toric ideal, 118
toric model, 126
toric variety, 117, 121, 128, 209, 214

normal, 118
torus orbit, 123
transportation polytopes, 125
triangular prism, 124
triangulation, 211, 214, 216
tropical

convexity, 109
determinant, 105
eigenvalue and eigenvector, 106
linear space, 205
polynomial, 102, 110
polytope, 109
projective torus, 108
rank, 104, 106, 111
root, 102
semiring, 99
triangle, 109
variety, 111
zero, 110

tropicalization
of a polynomial, 102, 110
of a variety, 111
of the determinant, 105

ultrametric, 101
unstable points, 179

valuation, 101
value group, 101
variety, 19, 22
Veronese variety, 71, 122, 162
vertex of a polytope, 206

W -state, 142, 149
Weak Duality Theorem, 192
Weierstrass form, 32
weight spaces, 158
weights, 158

Young diagram, 84, 160
Young flattening, 166

Zariski topology, 20, 22
zero divisor, 5
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Nonlinear algebra provides modern math-

ematical tools to address challenges arising 

in the sciences and engineering. It is useful 

everywhere, where polynomials appear: in 

particular, data and computational sciences, 

statistics, physics, optimization. The book 

offers an invitation to this broad and fast-

developing area. It is not an extensive 

encyclopedia of known results, but rather 

a first introduction to the subject, allowing 

the reader to enter into more advanced topics. It was designed as the next step 

after linear algebra and well before abstract algebraic geometry. The book presents 

both classical topics—like the Nullstellensatz and primary decomposition—and 

more modern ones—like tropical geometry and semidefinite programming. The 

focus lies on interactions and applications. Each of the thirteen chapters introduces  

fundamental concepts. The book may be used for a one-semester course, and 

the over 200 exercises will help the readers to deepen their understanding of the 

subject.
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