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In this lecture we discuss the problem of computing the volume of a subset X of Rn that
is full-dimensional and semialgebraic. Being semialgebraic means that X is described by a
finite Boolean combination of polynomial inequalities. We say that X is basic semialgebraic
if that description is a conjunction of polynomial inequalities. In symbols, this means

X =
{
x ∈ Rn : f1(x) ≥ 0 and f2(x) ≥ 0 and · · · and fk(x) ≥ 0

}
,

where f1, f2, . . . , fk are polynomials in n unknowns with real coefficients.
The simplest scenario arises when k = 1, so X is the domain of nonnegativity of one

polynomial f(x) = f(x1, . . . , xn) with real coefficients. Our task is to evaluate the integral

Vol(X) =

∫
X

1 · dx, (1)

where dx denotes Lebesgue measure. Of course, it makes perfect sense to also consider
integrals

∫
X
g(x)dx, where g(x) is some polynomial function. The value of such an integral

is a real number which is called a period [3]. Our integrals are known as period integrals.
We begin with an instance where the volume can be computed explicitly using calculus.

Figure 1: The yellow convex body is the elliptope. It is bounded by Cayley’s cubic surface.

Example 1 (Elliptope). Consider the set X of all points (x, y, z) in R3 such that the matrix

M =

1 x y
x 1 z
y z 1
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is positive semidefinite. The set X is convex and semialgebraic: it consists of all points
(x, y, z) in the cube [−1, 1]3 such that det(M) = 2xyz − x2 − y2 − z2 + 1 is nonnegative.
Figure 1 appears in [7, Figure 1.1] and it serves as the logo of the Nonlinear Algebra group
at the Max-Planck Institute for Mathematics in the Sciences in Leipzig. It illustrates several
applications of algebraic geometry. In statistics, it is the set of all correlation matrices. In
optimization, it is the feasible region of a semidefinite programming problem [7, Chapter 12].

We now compute the volume of the elliptope. We begin by rewriting of its boundary
surface. Solving the equation det(M) = 0 for z with the quadratic formula, we obtain

z = xy ±
√
x2y2 − x2 − y2 + 1 = xy ±

√
(1− x2)(1− y2) for (x, y) ∈ [−1, 1]2,

The plus sign gives the upper yellow surface and the minus sign gives the lower yellow surface.
The volume of the elliptope X is obtained by integrating the difference between the upper
function and the lower function over the square. Hence the desired volume equals

vol(X) =

∫ 1

−1

∫ 1

−1

2
√

(1− x2)(1− y2) dxdy = 2

[∫ 1

−1

√
1− t2 dt

]2
.

The univariate integral on the right gives the area of a semicircle with radius 1. We know
from trigonometry that this area equals π/2, where π = 3.14159265.... We conclude that

vol(X) = π2/2 = 4.934802202...

Thus our elliptope covers about 61.7 % of the volume of the cube [−1, 1]3 that surrounds it.

The number π2/2 we found is an example of a period. It is generally much more difficult to
accurately evaluate such integrals. In fact, this challenge has played an important role in the
history of mathematics. Consider the problem of computing the arc length of an ellipse. This
requires us to integrate the reciprocal square root of cubic polynomial f(t). Such integrals
are called elliptic integrals, and they represent periods of elliptic curves. Furthermore, in
an 1841 paper, Abel introduced abelian integrals, where g(t) is an algebraic function in one
variable t. How to evaluate such an integral? This question leads us to Riemann surface and
then to their Jacobians. And, violà, we arrived at the theory of abelian varieties.

This lecture presents two current paradigms for accurately computing integrals like (1).
The first method rests on the theory of D-modules, that is, on the algebraic study of linear
differential equations with polynomial coefficients. Our volume is found as a special value
of a parametric volume function that is encoded by means of its Picard-Fuchs differential
equation. This method, which tends to appeal to algebraic geometers, was introduced by
Lairez, Mezzarobba and Safey El Din in [4]. We shall closely follow the exposition in [9].

The second approach is due to Lasserre and his collaborators [2, 10, 11]. On first glance
it might appeal more to analysts and optimizers, but there is also plenty of deep algebraic
structure under the hood. The idea is to consider all momentsma =

∫
X
xadx of our semialge-

braic set X and to use relations among these moments to infer an accurate approximation of
m0 = vol(X). That numerical inference rests on semidefinite programming [7, Chapter 12].

In calculus, we learn about definite integrals in order to determine the area under a graph.
Likewise, in multivariable calculus, we examine the volume enclosed by a surface. We are
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here interested in areas and volumes of semi-algebraic sets. When these sets depend on one
or more parameters, their volumes are holonomic functions of the parameters. We explain
what this means and how it can be used for highly accurate evaluation of volume functions.

Suppose that M is a D-module. The letter D denotes the Weyl algebra (cf. [8, 9]):

D = C⟨x1, . . . , xn, ∂1, . . . , ∂n⟩.

In applications, M is usually a space of infinitely differentiable functions on a subset of Rn

or Cn. Such D-modules are torsion-free. For a function f ∈ M , its annihilator is the D-ideal

AnnD (f) := {P ∈ D | P • f = 0 } .

In general, it is a non-trivial task to compute this annihilating ideal. But, in some cases,
computer algebra systems can help us to compute holonomic annihilating ideals. For rational
functions r ∈ Q(x) this can be done in Macaulay2 with a built-in command as follows:

needsPackage "Dmodules"; D = QQ[x1,x2,d1,d2, WeylAlgebra => {x1=>d1,x2=>d2}];

rnum = x1; rden = x2; I = RatAnn(rnum,rden)

This code fragment shows that r = x1/x2 has AnnD(r) = D{ ∂2
1 , x1∂1 − 1, x2∂1∂2 + ∂1}.

Suppose now that f(x1, . . . , xn) is an algebraic function. This means that f satisfies
some polynomial equation F (f, x1, . . . , xn) = 0. Using the polynomial F as its input, the
Mathematica package HolonomicFunctions can compute a holonomic representation of f .
The output is a linear differential operator of lowest degree annihilating f . See Example 3.

Let M be a D-module and f ∈ M . We say that f is holonomic if, for each i ∈ {1, . . . , n},
there is an operator Pi ∈ C[x1, . . . , xn]⟨∂i⟩\{0} that annihilates f . If this holds then AnnD(f)
is a holonomic D-ideal. Suppose this holds, and fix a general point x0 ∈ Cn. Let m1, . . . ,mn

denote the orders of the differential operators P1, . . . , Pn in the definition of holonomic. Thus,
Pk is an operator in ∂k of order mk whose coefficients are polynomials in x1, . . . , xn.

We fix initial conditions for f by specifying the following m1m2 · · ·mn numerical values:

(∂i1
1 · · · ∂in

n • f)|x=x0 where 0 ≤ ik < mk for k = 1, . . . , n. (2)

Then the operators P1, . . . , Pn together with the initial conditions (2) specify the function f .
Many interesting functions are holonomic. To begin with, every rational function r in

x1, . . . , xn is holonomic, because r is annihilated by r(x)∂i − ∂r/∂xi for i = 1, 2, . . . , n. By
clearing denominators in this operator, we obtain a non-zero Pi ∈ C[x]⟨∂i⟩ with mi = 1 that
annihilates r. See the Macaulay2 example above. These operators, together with fixing the
value r(x0) at a general point x0 ∈ Cn, constitute a canonical holonomic representation of r.

Holonomic functions in one variable are solutions to ordinary linear differential equations
with rational function coefficients. Examples include algebraic functions, some elementary
trigonometric functions, hypergeometric functions, Bessel functions, period integrals, and
many more. But, not every nice function is holonomic. A necessary condition for a mero-
morphic function f(x) to be holonomic is that it has only finitely many poles in C.

For a concrete example, we start with the holonomic function sin(x). This is annihilated
by the operator ∂2 + 1. Its reciprocal f(x) = 1

sin(x)
has infinitely many poles, so is not

holonomic. Hence the class of holonomic functions is not closed under division. It is also not
closed under composition of functions, since both 1

x
and sin(x) are holonomic. We record:
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Proposition 2. Let f(x) be holonomic and g(x) algebraic. Then f(g(x)) is holonomic.

For the proof see [9, Proposition 2.3]. The term “holonomic function” is due to Zeilberger
[12]. Koutschan [1] developed practical algorithms for manipulating holonomic functions.
These are implemented in his Mathematica package HolonomicFunctions, as seen below.

Example 3. Every algebraic function f(x) is holonomic. Consider the function y = f(x)
that is defined by y4 + x4 + xy

100
− 1 = 0. Its annihilator in D can be computed as follows:

<< RISC‘HolonomicFunctions‘

q = y^4 + x^4 + x*y/100 - 1

ann = Annihilator[Root[q, y, 1], Der[x]]

This Mathematica code determines an operator P of lowest order in annD(f). We find

P = (2x4 + 1)2(25600000000x12 − 76800000000x8 + 76799999973x4 − 25600000000) ∂3

+6x3(2x4 + 1)(51200000000x12 + 76800000000x8 − 307199999946x4 + 179199999973) ∂2

+3x2(102400000000x16+204800000000x12+2892799999572x8−3507199999444x4+307199999953) ∂
−3x(102400000000x16 + 204800000000x12 + 1459199999796x8 − 1049599999828x4 + 51199999993).

This operator is an encoding of the algebraic function y = f(x) as a holonomic function.

In computer algebra, one represents a real algebraic number as a root of a polynomial with
coefficients in Q. However, this minimal polynomial does not specify the number uniquely.
For that, one also needs an isolating interval or sign conditions on derivatives. The situation
is analogous for encoding a holonomic function f in n variables. We specify f by a holonomic
system of linear PDEs together with a list of initial conditions. The canonical holonomic
representation is one possibility. Initial conditions such as (2) are designed to determine
the function uniquely inside the linear space Sol(I), where I ⊆ AnnD(f). For instance,
in Example 3, we would need three initial conditions to specify the function f(x) uniquely
inside the 3-dimensional solution space to our operator P . We could fix the values at three
distinct points, or we could fix the value and the first two derivatives at one special point.

To be more precise, we generalize the canonical representation (2) as follows. A holonomic
representation of a function f is a holonomic D-ideal I ⊆ annD (f) together with a list
of linear conditions that specify p uniquely inside the finite-dimensional solution space of
holomorphic solutions. The existence of this representation makes f a holonomic function.
The next example shows the relevance of holonomic functions for metric algebraic geometry.

Example 4 (The area of a TV screen). Let

q(x, y) = x4 + y4 +
1

100
xy − 1. (3)

We are interested in the semi-algebraic set S = {(x, y) ∈ R2 | q(x, y) ≤ 0}. This convex set
is a slight modification of a set known in the optimization literature as “the TV screen”. Our
aim is to compute the area of the semi-algebraic convex set S as accurately as is possible.

One can get a rough idea of the area of S by sampling. This is illustrated in Figure 2.
From the equation we find that S is contained in the square defined by −1.2 ≤ x, y ≤ 1.2.
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We sampled 10000 points uniformly from that square, and for each sample we checked the
sign of q. Points inside S are drawn in blue and points outside S are drawn in pink. By
multiplying the area (2.4)2 = 5.76 of the square with the fraction of the number of blue
points among the samples, we learn that the area of the TV screen is approximately 3.7077.

Figure 2: The TV screen is the convex region consisting of the blue points.

We now compute the area more accurately using D-modules. Let pr : S → R be the
projection on the x-coordinate, and write v(x) = ℓ (pr−1(x) ∩ S) for the length of a fiber.
This function is holonomic and it satisfies the third-order differential operator in Example 3.

The map pr has two branch points x0 < x1. They are the real roots of the resultant

Resy(q, ∂q/∂y) = 25600000000x12 − 76800000000x8 + 76799999973x4 − 25600000000. (4)

These values can be written in radicals, but we take an accurate floating point representation:

x1 = −x0 = 1.000254465850258845478545766643566750080196276158976351763236 . . .

The desired area equals vol(S) = w(x1), where w is the holonomic function

w(x) =

∫ x

x0

v(t)dt.

One operator that annihilates w is P∂, where P ∈ annD(v) is the third-order operator
above. To get a holonomic representation of w, we also need some initial conditions. Clearly,
w(x0) = 0. Further initial conditions on w′ are derived by evaluating v at other points. By
plugging values for x into (3) and solving for y, we find w′(0) = 2 and w′(±1) = 1/ 3

√
100.

Thus, we now have four linear constraints on our function w, albeit at different points.
Our goal is to determine a unique function w ∈ Sol(P∂) by incorporating these four initial

conditions, and then to evaluate w at x1. To this end, we proceed as follows. Let xord ∈ R
be any point at which P∂ is not singular. Using the command local basis expansion that
is built into the SAGE package ore algebra, we compute a basis of local series solutions to
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P∂ at the point xord. Since that point is non-singular, that basis has the following form:

sxord,0(x) = 1 + O((x− xord)
4),

sxord,1(x) = (x− xord) + O((x− xord)
4),

sxord,2(x) = (x− xord)
2 + O((x− xord)

4),
sxord,3(x) = (x− xord)

3 + O((x− xord)
4).

(5)

Locally at xord, our solution is given by a unique choice of four coefficients cxord,i, namely

w(x) = cxord,0 · sxord,0(x) + cxord,1 · sxord,1(x) + cxord,2 · sxord,2(x) + cxord,3 · sxord,3(x).

At a regular singular point xrs, complex powers of x and log(x) can appear in the local basis
extension at xrs. Any initial condition at that point determines a linear constraint on these
coefficients. For instance, w′(0) = 2 implies c0,1 = 2, and similarly for our initial conditions
at −1, 1 and x0. One challenge is that the initial conditions pertain to different points. To
address this, we calculate transition matrices that relate the basis (5) of series solutions at
one point to the basis of series solutions at another point. These are invertible 4×4 matrices.

With the method described above, we find the basis of series solutions at x1, along with
a system of four linear constraints on the four coefficients cx1,i. These constraints are derived
from the initial conditions at 0, ±1 and x0, using the 4× 4 transition matrices. By solving
these linear equations, we compute the desired function value up to any desired precision:

w(x1) = 3.708159944742162288348225561145865371243065819913934709438572....

In conclusion, this number is the area of the TV screen S defined by the polynomial q(x, y).

Let us now come back to properties of holonomic functions. Holonomic functions are very
well-behaved with respect to many operations. They turn out to have remarkable closure
properties. In the following, let f and g be functions in n variables x1, . . . , xn.

Proposition 5. If f, g are holonomic functions, then both f + g and f · g are holonomic.

Proof. For each i ∈ {1, 2, . . . , n}, there exist non-zero operators Pi, Qi ∈ C[x]⟨∂i⟩, such that
Pi•f = Qi•g = 0. Set ni = order(Pi) andmi = order(Qi). The C(x)-span of

{
∂k
i • f

}
k=0,...,ni

has dimension ≤ ni. Similarly, the C(x)-span of the set
{
∂k
i • g

}
k=0,...,mi

has dimension ≤ mi.

Now consider ∂k
i • (f + g) = ∂k

i • f + ∂k
i • g. The C(x)-span of

{
∂k
i • (f + g)

}
k=0,...,ni+mi

has dimension ≤ ni +mi. Hence, there exists a non-zero operator Si ∈ C[x]⟨∂i⟩, such that
Si•(f+g) = 0. Since this holds for all indices i, we conclude that the sum f+g is holonomic.

A similar proof works for the product f ·g. For each i ∈ {1, 2, . . . , n}, we now consider the
set

{
∂k
i • (f · g)

}
k=0,1,...,nimi

. By applying Leibniz’ rule for taking derivatives of a product, we

find that the mini +1 generators are linear dependent over C(x). Hence, there is a non-zero
operator Ti ∈ C[x]⟨∂i⟩ such that Ti • (f · g) = 0. We conclude that f · g is holonomic.

The proof above gives a linear algebra method for computing an annihilating D-ideal I
of finite holonomic rank for f + g (resp. of f · g), starting from such D-ideals for f and g.
The following example, similar to one in [12, Section 4.1], illustrates Proposition 5.
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Example 6 (n = 1). Consider the functions f(x) = exp(x) and g(x) = exp(−x2). Their
canonical holonomic representations are If = ⟨∂ − 1⟩ with f(0) = 1 and Ig = ⟨∂ + 2x⟩ with
g(0) = 1. We are interested in the function h = f + g. Its first partial derivatives are h

∂ • h
∂2 • h

 =

1 1
1 −2x
1 4x2 − 2

 ·
(
f
g

)
.

By computing the left kernel of this 3× 2-matrix, we find that h = f + g is annihilated by

Ih = ⟨(2x+ 1)∂2 + (4x2 − 3)∂ − 4x2 − 2x+ 2⟩, with h(0) = 2, h′(0) = 1.

For the product j = f · g we have j′ = f ′g + fg′ = f · g + f · (−2xg) = (1 − 2x)j, so the
canonical holonomic representation of j is the D-ideal Ij = ⟨∂ + 2x− 1⟩ with j(0) = 1.

Proposition 7. Let f be holonomic in n variables and m < n. Then the restriction of f to
the coordinate subspace {xm+1 = . . . = xn = 0} is a holonomic function in x1, . . . , xm.

Proof. For i ∈ {m+ 1, . . . , n}, we consider the right ideal xiD in the Weyl algebra D. This
ideal is a left module over Dm = C⟨x1, . . . , xm, ∂1, . . . , ∂m⟩. The sum of these ideals with
AnnD(f) is hence a left Dm-module. Its intersection with Dm is called the restriction ideal:

(AnnD(f) + xm+1D + · · ·+ xnD) ∩ Dm. (6)

By [8, Prop. 5.2.4], this Dm-ideal is holonomic and it annihilates f(x1, . . . , xm, 0, . . . , 0).

Proposition 8. The partial derivatives of a holonomic function are holonomic functions.

Proof. Let f be holonomic and Pi ∈ C[x]⟨∂i⟩\{0} with Pi • f = 0 for all i. We can write

Pi as Pi = P̃i∂i + ai(x), where ai ∈ C[x]. If ai = 0, then P̃i • ∂f
∂xi

= 0 and we are done.
Assume ai ̸= 0. Since both ai and f are holonomic, by Proposition 5, there is a non-zero
linear operator Qi ∈ C[x]⟨∂i⟩ such that Qi • (ai · f) = 0. Then QiP̃i annihilates ∂f/∂xi.

A key insight from the theory of D-modules (see [8, Section 5.5]) is that integration is
dual, in the sense of the Fourier transform, to restriction. Here is the dual to Proposition 7.

Proposition 9. Let f : Rn → C be a holonomic function. Then the definite integral

F (x1, . . . , xn−1) =

∫ b

a

f(x1, . . . , xn−1, xn)dxn

is a holonomic function in n− 1 variables, assuming the integral converges.

By dualizing (6), we obtain the following Dm-ideal, known as the integration ideal:(
AnnD(f) + ∂m+1D + · · ·+ ∂nD

)
∩ Dm for m < n.

The expression is dual to the restriction ideal (6) under the Fourier transform. This exchanges
xi and ∂i. Ifm = n−1 then the integration ideal annihilates the holonomic function F above.
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Equipped with our tools for holonomic functions, we now return to the computation of
volumes of compact semi-algebraic sets. We follow the work of P. Lairez, M. Mezzarobba
and M. Safey El Din in [4]. They compute this volume by deriving a differential operator
that encodes the period of a certain rational integral [3]. Here is the key definition.

Let R(t, x1, . . . , xn) be a rational function and consider the formal period integral∮
R(t, x1, . . . , xn)dx1 · · · dxn. (7)

Fix an open subset Ω of either R or C. An analytic function ϕ : Ω → C is a period of the
integral (7) if, for any s ∈ Ω, there exists a neighborhood Ω′ ⊆ Ω of s and an n-cycle γ ⊂ Cn

with the following property. For all t ∈ Ω′, γ is disjoint from the poles of Rt := R(t, •) and

ϕ(t) =

∫
γ

R(t, x1, . . . , xn)dx1 · · · dxn. (8)

If this holds, then there exists an operator P ∈ D\{0} of the Fuchsian class annihilating ϕ(t).
Let S = {f ≤ 0} ⊂ Rn be a compact basic semi-algebraic set, defined by a polynomial

f ∈ Q[x1, . . . , xn]. Let pr : Rn → R denote the projection on the first coordinate. The set of
branch points of pr is the following subset of the real line, which is assumed to be finite:

Σf =
{
p ∈ R | ∃x = (x2, . . . , xn) ∈ Rn−1 : f(p, x) = 0 and ∂f

∂xi
(p, x) = 0 for i = 2, . . . , n

}
.

The polynomial in the unknown p that defines Σf is obtained by eliminating x2, . . . , xn. It
can be represented as a multivariate resultant, generalizing the Sylvester resultant in (4).

Fix an open interval I in R with I ∩Σf = ∅. For any x1 ∈ I, the set Sx1
:= pr−1(x1)∩S

is compact and semi-algebraic in (n − 1)-space. We are interested in its volume. By [4,
Theorem 9], the function v : I → R, x1 7→ voln−1 (Sx1) is a period of the rational integral

1

2πi

∮
x2

f(x1, x2, . . . , xn)

∂f(x1, x2, . . . , xn)

∂x2

dx2 · · · dxn. (9)

Let e1 < e2 < · · · < eK be the branch points in Σf and set e0 = −∞ and eK+1 = ∞. This

specifies the pairwise disjoint open intervals Ik = (ek, ek+1). They satisfy R\Σf =
⋃K

k=0 Ik.

Fix the holonomic functions wk(t) =
∫ t

ek
v(x1)dx1. The volume of S then is obtained as

voln (S) =

∫ eK

e1

v(x1)dx1 =
K−1∑
k=1

wk (ek+1) .

How does one compute such an expression? As a period of the rational integral (9), the
volume v is a holonomic function on each interval Ik. A key step is to compute an operator
P ∈ D1 that annihilates v|Ik for all k. Then the product P∂ annihilates the functions wk(x1)
for all k. By imposing sufficiently many initial conditions, we can reconstruct the functions
wk from the operator P∂. One initial condition that comes for free for each k is wk(ek) = 0.

The differential operator P is known as the Picard–Fuchs equation of the period in ques-
tion. The following software packages can be used to compute such Picard–Fuchs equations:
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• HolonomicFunctions by C. Koutschan in Mathematica,

• ore algebra by M. Kauers in SAGE,

• periods by P. Lairez in MAGMA,

• Ore Algebra by F. Chyzak in Maple.

We next show how one can compute the volume in practice. Starting from the polynomial
f , we compute the Picard–Fuchs operator P ∈ D1 and we find sufficiently many compatible
initial conditions. Therefore, for each interval Ik, where k = 1, . . . , K − 1, we perform the
following steps. We describe this for the ore algebra package in SAGE:

(i) Using the command local basis expansion, compute a local basis of series solutions
for the linear differential operator P∂ at various points in [ek, ek+1).

(ii) Using the command op.numerical transition matrix, numerically compute a tran-
sition matrix for the series solution basis from one point to another one.

(iii) From the initial conditions construct linear relations between the coefficients in the
local basis extensions. Using step (ii), transfer them to the branch point ek+1.

(iv) Plug in to the local basis extension at ek+1 and thus evaluate the volume of S∩pr−1 (Ik).

We now illustrate this recipe by computing the volume of a convex body in 3-space.

Example 10 (Quartic surface). Fix the quartic polynomial

f(x, y, z) = x4 + y4 + z4 +
x3y

20
− xyz

20
− yz

100
+

z2

50
− 1, (10)

and consider the set S = {(x, y, z) ∈ R3 | f(x, y, z) ≤ 0}. Our aim is to compute vol3 (S).

Figure 3: The quartic bounds the convex region consisting of the gray points.

As in Example 4 with the TV screen, we can get a rough idea of the volume of S by
sampling. This is illustrated in Figure 3. Our set S is compact, convex, and contained in the
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cube defined by −1.05 ≤ x, y, z ≤ 1.05. We sampled 10000 points uniformly from that cube.
For each sample we checked the sign of f(x, y, z). By multiplying the volume (2.1)3 = 9.261
of the cube by the fraction of the number of gray points and the number of sampled points,
SAGE found within few seconds that the volume of the quartic body S is ≈ 6.4771. In order to
obtain a higher precision, we now compute the volume of our set S with help of D-modules.

Let pr : R3 → R be the projection onto the x-coordinate. Let v(x) = vol2 (pr
−1(x) ∩ S)

denote the area of the fiber over any point x in R. We write e1 < e2 for the two branch
points of the map pr restricted to the quartic surface {f = 0}. They can be computed with
resultants. The projection has 36 complex branch points. The first two of them are real and
therefore are the branch points of pr. We obtain e1 ≈ −1.0023512 and e2 ≈ 1.0024985.

By [4, Theorem 9], the area function v(x) is a period of the rational integral

1

2πi

∮
y

f(x, y, z)

∂f(x, y, z)

∂y
dydz.

We set w(t) =
∫ t

e1
v(x)dx. The desired 3-dimensional volume equals vol3(S) = w(e2).

Using Lairez’ implementation periods in MAGMA, we compute a differential operator P of
order eight that annihilates v(x). Again, P∂ then annihilates w(x). One initial condition is
w(e1) = 0. We obtain eight further initial conditions w′(x) = vol2(Sx) for points x ∈ (e1, e2)
by running the same algorithm for the 2-dimensional semi-algebraic slices Sx = pr−1(x)∩S.
In other words, we make eight subroutine calls to an area measurement as in Example 4.

From these nine initial conditions we derive linear relations of the coefficients in the local
basis expansion at e2. These computations are run in SAGE as described in steps (i), (ii), (iii)
and (iv) above. We find the approximate volume of our convex body S to be

≈ 6.438832480572893544740733895969956188958420889235116976266328923128826
9155273887642162091495583989038294311376088934526903525560097601024171
190804769405534826558114212766135380613959757935305271022089419155701
52158647017087400219438452914068685622775954171509711339913473405961
7632892206072085516332397969163383760070738760107318247752061504714
367250460900923409066377732273390396822296235214963623286613117557
930687544148360721225681053481178760058264738867105810326818911
578448323758536767168707442532146029753762594261578920477859.

This numerical value is guaranteed to be accurate up to 550 digits.

We now present the second method for computing volumes, based on semidefinite pro-
gramming. This was developed by Lasserre and his collaborators. See [2, 10, 11] and refer-
ences therein. We consider an inclusion of semialgebraic sets K ⊂ B ⊂ Rn, where K and B
are compact. Here B is a set that serves as a bounding box, like B = [−1, 1]n. We assume
that the moments of Lebesgue measure on B are known or easy-to-compute, i.e. we are given

βu =

∫
B

xudx =

∫
B

xu1
1 xu2

2 · · ·xun
n dx1dx2 · · · dxn for u ∈ Nn.

The moments mu of Lebesgue measure on X are unknown. These are our decision variables:

mu =

∫
K

xudx =

∫
X

xu1
1 xu2

2 · · ·xun
n dx1dx2 · · · dxn for u ∈ Nn. (11)
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Our aim is to compute m0 = vol(K). The idea is to use the following infinite-dimensional lin-
ear program: Maximize the integral

∫
dµ, where µ and µ̂ range over measures on Rn, where

µ is supported on K, µ̂ is supported on B, and the sum µ+ µ̂ is Lebesgue measure on B. The
unique optimal solution (µ, µ̂) to this linear program is given as follows: µ∗ is Lebesgue mea-
sure on K, µ̂∗ is Lebesgue measure on B\K, and the optimal value is vol(K) =

∫
dµ∗. This

is described in [10, equation (1)]. The linear programming dual is given in [10, equation (2)].
We can express our linear program in terms of the moment sequences m = (mu) and

m̂ = (m̂u) of the two unknown measures µ and µ̂. Namely, we paraphrase: Maximize m0

subject to mu + m̂u = βu for all u ∈ Nd, where m and m̂ are valid moment sequences of
measures on Rn, with m supported on X. This brings us to the moment problem, which is the
question how to characterize valid moment sequences. This is problem with a long history
in mathematics, and an exact characterization is very difficult. However, in recent years, it
has been realized that there are effective necessary conditions. These involve semidefinite
programming formulations in finite dimensions, which are built via localizing matrices.

Suppose for simplicity that K = {x ∈ Rn : f(x) ≥ 0} is defined by a single polynomial
f =

∑
w cwx

w in n variables, and fix an integer d that is larger than the degree of f . We
shall construct three symmetric matrices of format

(
n+d
d

)
×

(
n+d
d

)
whose entries are linear

in the decision variables. The rows and columns of our matrices are indexed by elements
u ∈ Nn with |u| = u1+ · · ·+un at most d. These correspond to monomials xu of degree ≤ d.

Our first matrix Md(m) has the entry mu+v in row u and column v. Our second matrix
Md(m̂) as the entry m̂u+v in row u and column v. And, finally, our third matrix Md(fm)
has the entry

∑
w cwmu+v+w in row u and column v. We consider the semidefinite program

Maximize m0 subject to mu + m̂u = βu for all u ∈ Nd with |u| ≤ d, where
the symmetric matrices Md(m),Md(m̂) and Md(fm) are positive semidefinite.

(12)

Here, the third matrix is usually replaced by Md′(fm) where d′ = d − ⌈deg(f)/2⌉. The
objective function value depends on d, it decreases as d increases, and the limit for d → ∞
is equal to the volume of X. Indeed, this sequence of SDP problems is an approximation to
the infinite-dimensional linear programming problem above, and convergence is shown in [2].

The remainder of this lecture shows how to solve (12) in practise. It is based on [2, 10, 11],
and we discuss an implementation Mathematica. This material was developed by Chiara
Meroni, and we are very grateful to her for allowing us to include it in these lecture notes.

Our point of departure is the following question: given a sequence of real numbers m =
(mα)α, does there exist a set S and a measure µS supported on S such that (11) holds?
Given d ∈ N, denote by Nn

d the set of multiindices α ∈ Nn such that |α| = α1+ . . .+αn ≤ d.
Fix a set K as above, let r = ⌈deg f

2
⌉, and consider a sequence of real numbers m = (mα)α.

The associated moment matrix and the localizing matrix are respectively

Md(m) =
(
mα+β

)
α,β∈Nn

d

, Md−r(fm) =
( ∑

w∈W

cwmw+α+β

)
α,β∈Nn

d

. (13)

The moment matrix has size
(
n+d
d

)
×
(
n+d
d

)
whereas the localizing matrix has size

(
n+d−r
d−r

)
×(

n+d−r
d−r

)
. A necessary condition for a sequence m = (mα)α to have a representing measure

supported on K is that for every d ∈ N the matrix inequalities Md(m) ≽ 0 and Md−r(fm) ≽

11



0 hold. This result is a formulation of Putinar’s Positivstellensatz [2, Theorem 2.2]. In
particular, the positive definiteness of the moment matrix is a necessary condition for m to
have a representing measure; the inequality with the localizing matrix forces the support of
the representing measure to be contained in the superlevel set {f(x) ≥ 0}, namely K.

Example 11. As a sanity check, consider the disc K = {(x, y) ∈ R2 | f = 1− x2 − y2 ≥ 0}.
One can compute its moments via the formula

m(α1,α2) = ((−1)α1 + 1) ((−1)α2 + 1)
Γ
(
α1+1

2

)
Γ
(
α2+1

2

)
4Γ

(
1
2
(α1 + α2 + 4)

) .
For d = 3, the moment and localizing matrices in (13) are

M3(m) =



π 0 π
4

0 0 0 0 π
4

0 0

0 π
4

0 π
8

0 0 0 0 π
24

0
π
4

0 π
8

0 0 0 0 π
24

0 0

0 π
8

0 5π
64

0 0 0 0 π
64

0

0 0 0 0 π
4

0 π
24

0 0 π
8

0 0 0 0 0 π
24

0 0 0 0

0 0 0 0 π
24

0 π
64

0 0 π
64

π
4

0 π
24

0 0 0 0 π
8

0 0

0 π
24

0 π
64

0 0 0 0 π
64

0

0 0 0 0 π
8

0 π
64

0 0 5π
64


, M2(fm) =


π
2

0 π
12

0 0 π
12

0 π
12

0 0 0 0
π
12

0 π
32

0 0 π
96

0 0 0 π
12

0 0

0 0 0 0 π
96

0
π
12

0 π
96

0 0 π
32

 ,

which are indeed positive definite.

We consider the infinite-dimensional linear program on measures whose optimal value is
the volume of K ⊂ B. The program is stated in [2, Equation 3.1] and [10, Equation 1]:

P : max
µK ,µB\K

∫
dµK

s.t. µK + µB\K = µ∗
B,

(14)

where µS is a positive finite Borel measure supported on S, and µ∗
B is the Lebesgue measure

on B. The adjective “infinite-dimensional” refers to the fact that we are optimizing over a set
of measures, which is uncountable. Based on the theory of dual Banach spaces, one can talk
about dual convex bodies or convex cones, and construct the theory of dual programming.
In our case, the dual to the space of positive finite Borel measures is the set of positive
continuous functions. This observation leads to the definition of an LP dual to P :

P ∗ : inf
γ

∫
γ dµ∗

B

s.t. γ ≥ 1K ,

(15)

where γ is a positive continuous function on B and 1K is the indicator function of K. It
is known that there is no duality gap between P and P ∗, i.e. the optimal values of (14)
and (15) coincide. Notice that the optimal value of P ∗ is an infimum and not a minimum,
since we are trying to approximate the discontinuous indicator function 1K using continuous
functions. This detail is relevant for the slow rate of approximation of the basic method.
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The infinite-dimensional LP can be approximated as closely as desired by a hierarchy
of finite-dimensional Semidefinite Programs, see [5]. The sequence of optimal values of the
hierarchy converges monotonically to the optimal value of the LP [2, Theorem 3.2]. There is
again a primal and dual version of the SDP problems. In our setting, the primal hierarchy is

Pd : max
m,m̂

m0

s.t. m+ m̂ = b,

Md(m) ≽ 0, Md(m̂) ≽ 0, Md−r(fm) ≽ 0,

(16)

where m = (mα)α∈Nn
2d
, m̂ = (m̂α)α∈Nn

2d
, and b collects the moments of B indexed by Nn

2d.
This formulation is [10, Equation 3]. The optimal value of Pd is an upper bound for vol(K),
since we are optimizing over a larger set. The corresponding dual SDP is [2, Equation
3.6], which is formulated using sums of squares of polynomials. The authors of [2, 10, 11]
implemented the SDPs using GloptiPoly MATLAB. Our computations in the next examples
are performed in Mathematica. We are going to include the linear condition m + m̂ = b
inside the condition on the moment matrix of m̂, by imposing directly that Md(b−m) ≽ 0.

Example 12 (TV screen). Fix the convex set K1 = {x, y ∈ [−1.2, 1.2]2 | f1(x, y) ≥ 0} ⊂ R2

where f1 = −q is the quartic in (3). This shown in Figures 2 and 4. We saw that vol(K1) =
3.7081599447.... Let us now try the SDP formulation, with d = 10. The moment matrices
M10(m) and M10(b−m) have format 66× 66. For instance, the second matrix looks like

M10(b−m) =


4−m(0,0) −m(0,1)

4
3
−m(0,2) −m(0,3) ···

−m(0,1)
4
3
−m(0,2) −m(0,3)

4
5
−m(0,4) ···

4
3
−m(0,2) −m(0,3)

4
5
−m(0,4) −m(0,5) ···

−m(0,3)
4
5
−m(0,4) −m(0,5)

4
7
−m(0,6) ···

...
...

...
...

...

 .

The localizing matrix M8(f1m) has format 45× 45. Its (α, β) entry equals

mα+β −m(4,0)+α+β −m(0,4)+α+β −
1

100
m(1,1)+α+β.

The optimal value of the semidefinite program P10 is 4.4644647361..., the optimal value of
P15 is 4.3251948878..., and for P20 we get 4.3329467504.... These numbers are upper bounds
for the actual volume, as predicted. However, these bounds are still far from the truth.

Example 13 (Elliptope). Set f2(x, y) = 1− x2 − y2 − z2 + 2xyz. This defines the elliptope
K2 = {x, y ∈ [−1, 1]3 | f2(x, y) ≥ 0} ⊂ R3, shown in Figures 1 and 4. We know volK2 =

π2

2
=

4.934802202.... The upper bounds computing from the semidefinite program for d = 4, 8, 12
are respectively 7.3254012963..., 6.6182632506..., and 6.303035372.... This is still pretty bad.

We saw in Examples 12 and 13 that the convergence of the approximation via the SDP
method is quite slow. One method to improve the convergence is the method of Stokes
constraints. This was introduced and analyzed in [6, 10, 11] and we shall now explain it.

In the infinite-dimensional linear program P ∗ (and in its corresponding SDP hierarchy)
we aim to approximate a piecewise-differentiable function, 1K with continuous functions
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Figure 4: Left: the TV screen from Example 12. Right: the elliptope from Example 13.

(respectively, polynomials). This produces the well-known Gibbs effect, creating many os-
cillations near the boundary of K in the polynomial solutions of the SDP. To remedy this,
we add certain linear constraint that do not modify the infinite-dimensional LP problem
but add more information to the finite-dimensional SDP. One concrete way to do this uses
Stokes’ theorem (and its consequences) and the fact that f vanishes on the boundary of K.

Let U be an open set such that the Euclidean closure of U is our set K. Since ∂K is
smooth almost everywhere, the classical Stokes Theorem applies. This states that∫

∂K

ω =

∫
K

dω

for any (n−1)-differential form ω on Rn. One consequences of this theorem is Gauss formula∫
∂K

V (x) · n̂(x) dHn−1(x) =

∫
K

div V (x) dx.

Here V (x) is a vector field, div denotes divergence, n̂(x) is the exterior normal vector at
x ∈ ∂K, and Hn−1 is (n − 1)-dimensional Hausdorff measure. If the vector field is a scalar
field times a constant vector, say V (x) = v(x)c, then we obtain the following equations:

c ·
(∫

∂K

v(x)n̂(x) dHn−1(x)

)
=

∫
K

div
(
v(x)c

)
dx = c ·

(∫
K

∇v(x) dx

)
because div

(
v(x)c

)
= ∇v(x) · c+ v(x) div c and the divergence of a constant vector is zero.

Since this equality must be valid for every c ∈ Rn, we have∫
∂K

v(x)n̂(x) dHn−1(x) =

∫
K

∇v(x) dx. (17)

If v = 0 on ∂K, then the left hand side of (17) is zero. This condition can be expressed
in terms of measures and distributions, and added to (14) and (15) as in [10, Equation 17
and Remark 3]. In the setting of our SDP, the Stokes constraints are written as follows. Let
v(x) = f(x)xα for any multiindex α ∈ Nn with |α| ≤ d+ 1− deg f . Then we require

∇
(
f(x)xα

)∣∣
xβ→mβ

= 0.
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We now replacing each monomial with the corresponding moment. This yields n new linear
conditions for each α as above.

Example 14. For the SDP in Examples 12 and 13, the Stokes constraints for a given α are:

K1 :

α1mα+(−1,0) − (α1 + 4)mα+(3,0) − α1mα+(−1,4) − α1+1
100 mα+(0,1) = 0,

α2mα+(0,−1) − α2mα+(4,−1) − (α2 + 4)mα+(0,3) − α2+1
100 mα+(1,0) = 0,

K2 :

α1mα+(−1,0,0) − (α1 + 2)mα+(1,0,0) − α1mα+(−1,2,0) − α1mα+(−1,0,2) + 2(α1 + 1)mα+(0,1,1) = 0,

α2mα+(0,−1,0) − α2mα+(2,−1,0) − (α2 + 2)mα+(0,1,0) − α2mα+(0,−1,2) + 2(α2 + 1)mα+(1,0,1) = 0,

α3mα+(0,0,−1) − α3mα+(2,0,−1) − α3mα+(0,2,−1) − (α3 + 2)mα+(0,0,1) + 2(α3 + 1)mα+(1,1,0) = 0.

Table 1 compares the optimal values of the SDP (13) with and without Stokes constraints.

K Volume d
without Stokes with Stokes

maxPd time maxPd time

3.708159...

10 4.464464... 0.621093 3.709994... 0.482376

15 4.325194... 5.694727 3.708185... 6.413848

20 4.332946... 29.069448 3.708163... 45.568927

4.934802...

4 7.325401... 0.124392 5.612716... 0.077315

8 6.618263... 7.222441 4.976796... 7.178571

12 6.303035... 696.886298 4.937648... 1105.619231

Table 1: The optimal values of (13) with and without Stokes constraints for Examples 12 and
13. The column “maxPd” displays the optimal value, whereas the column “time” gives the
time, in seconds, for running the command SemidefiniteOptimization in Mathematica.

As Table 1 shows, the convergence with Stokes constraints is much faster than without
constraints. The heuristics is that now, with the (dual) Stokes constraints added to P ∗, the
function we are trying to approximate is not just the indicator function of K. A more precise
explanation is given in [11], for a slightly different type of Stokes constraints. The authors,
in fact, prove that when adding this new type of constraints, obtained again from Stokes
theorem, the optimal solution of the new P ∗ becomes a minimum. This eliminates any kind
of Gibbs effect, and guarantees faster convergence. In [11], the authors mention that, from
numerical experiments, it is reasonable to expect that the original Stokes constraints and the
new Stokes constraints are equivalent, but there is no formal proof of this statement yet. We
close with the remark that general semialgebraic sets fit into this framework; see [2, 10, 11].
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