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1. Introduction and background

Consider the discrete conditional independence model M given by

{X1 ⊥⊥ X2 | X3, X1 ⊥⊥ X3 | X2}.
The intersection axiom for conditional independence can be applied with the state-
ments of M as premises to derive the conclusion X1 ⊥⊥ (X2, X3). But the inde-
pendence axiom only holds in general when X is in the interior of the probability
simplex, and it’s a natural question to ask what can be inferred about X when it
may lie on the boundary, that is, what the primary decomposition of IM is.

A conjecture of Dustin Cartwright and Alexander Engström recorded in [2,
p. 152], our Theorem 2.1, characterises the minimal primary components of M
for discrete distributions at the set-theoretic level, in terms of subgraphs of a com-
plete bipartite graph. We state and prove this conjecture in Section 2. Then in
Section 3 we discuss the ideal-theoretic question.

2. The set-theoretic conjecture

Let Kp,q be the complete bipartite graph with bipartitioned vertex set [p]q [q].
The following theorem was the conjecture of Cartwright and Engström, essentially
as it appeared in the original source.

Theorem 2.1 (Cartwright-Engström). The minimal primes of the ideal IM cor-
respond to the subgraphs of Kr2,r3 that have the same vertex set [r2]q [r3] and that
have all connected components isomorphic to some complete bipartite graph Kp,q

with p, q ≥ 1.

Call the subgraphs of Kr2,r3 of the form described in the theorem admissible.
Then, restating,

(1) V (IM) =
⋃
G

V (PG)

as sets, where the union is over admissible graphs G. In particular, the value of r1

is irrelevant to the combinatorial nature of the primary decomposition.
Let pijk be the unknown probability P (X1 = i, X2 = j,X3 = k) in a distribution

from the model M. Given a subgraph G with edge set E(G), the prime to which
it corresponds is PG = P

(0)
G + P

(1)
G where

P
(0)
G = (pijk : (j, k) 6∈ E(G)),

P
(1)
G = (pi1j1k1pi1j2k2 − pi1j2k2pi2j1k1 : (jα, kβ) ∈ E(G)).
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For later we’ll also want to refer to the individual summands PC
G of P

(1)
G , including

only the generators {pijk : (j, k) ∈ C} arising from edges in the component C. If G is
admissible, the ideal PG is prime since it’s the sum of a collection of ideals generated
in disjoint subsets of the unknowns pijk each of which is prime: for each connected
component C ⊆ G and fixed i, the generators of PC

G are the 2×2 determinantal ideal
of (pijk)(j,k)∈C , and all the other variables are themselves generators, appearing in
P

(0)
G .
To give some combinatorial intuition for this, suppose (pijk) ∈ V (PG). Look at

the 3-tensor (pijk) “head-on” with respect to the (j, k) face: that is, think of it as
a format r2 × r3 table whose entries are vectors (p·jk) of format r1.

The components of G determine subtables of this table. Suppose one of these
subtables has format s2 × s3. Collapse it into an r1 × (s2s3) matrix. Then the
conditions (pij1k1pij2k2 − pij1k2pij2k1) ⊆ P

(1)
G says that the 2× r1 matrix obtained

by setting the vectors at (j1, k1) and (j2, k2) side by side has rank ≤ 1. Therefore
all nonzero vectors in our subtable are equal up to possible scalar multiplication.
Entries outside of any subtable must be the zero vector, by the vanishing of P

(0)
G .

Thus we see that, for G and G′ distinct admissible graphs and r1 ≥ 2, PG does
not contain PG′ . That is, the decomposition asserted in Theorem 2.1 is irredundant.
Indeed, either G contains an edge (j, k) that G′ doesn’t, in which case the vector
(p·jk) is zero on V (G′) but generically nonzero on V (G), or G ⊆ G′ but two edges
(j, k), (j′, k′) in different components of G are in the same component of G′, in which
case the vectors (p·jk) and (p·j′k′) are linearly dependent on V (G′) but generically
linearly independent on V (G).

The ideas of the proof of Theorem 2.1 were anticipated in part 4 of the problem
stated in [2, §6.6], which was framed for the prime corresponding to the subgraph
G, the case where the conclusion of the intersection axiom is valid.

Proof of Theorem 2.1. The ⊇ containment of (1) is direct from the definition of
PG: any format r1× r2 slice through (pijk), say fixing r3 = k, is rank ≤ 1, since the
submatrix on columns j for which (j, k) ∈ E(G) is rank 1 and the other columms
are zero.

So we prove the ⊆ containment. Let (pijk) ∈ V (IM). Construct the bipartite
graph G′ on the bipartitioned vertex set [r2]q [r3] with edge set

{(j, k) : pijk 6= 0 for some i}.

If (pijk) ∈ ∆r1r2r3−1 lies in the closed probability simplex, then this is the set of
(j, k) for which the marginal probability p+jk is nonzero.

Consider two edges of G′ which share a vertex, assume for now a vertex in the
first partition, so that they may be written (j, k) and (j′, k) for j, j′ ∈ [r2], k ∈ [r3].
Now (pijk) satisfies the conditional independence statement X1 ⊥⊥ X2 | X3, so that
the matrix (

p1jk · · · pr1jk

p1j′k · · · pr1j′k

)
has rank ≤ 1. Since neither of its rows is 0, each row is a nonzero scalar multiple of
the other. If our two edges had shared a vertex in the second partition, the same
argument would go through using the statement X1 ⊥⊥ X3 | X2. Now if (j, k) and
(j′, k′) are two edges of a single connected component of G′, iterating this argument
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along a path between them shows that the vectors (pijk)i and (pij′k′)i are nonzero
scalar multiples of one another.

Let G be obtained from G′ by first completing each connected component to a
complete bipartite graph on the same set of vertices (giving a graph G′), and then
connecting each isolated vertex in turn to all vertices of an arbitrary block in the
other bipartition. The resulting graph G is admissible. Observe also that edges
in different connected components of G′ remain in different connected components
of G.

To establish that (pijk) ∈ V (PG), we must show that given any two edges (j, k),
(j′, k′) in the same component of G, the matrix

(2)
(

p1jk · · · pr1jk

p1j′k′ · · · pr1j′k′

)
has rank ≤ 1. This is immediate from the fact that no connected components were
merged. If either of the edges (j, k) or (j′, k′) did not occur in G′, the corresponding
row of (2) is 0; otherwise, both edges belong to the same connected component of G′

and we just showed that rank (2) ≤ 1. �

In fact, we’ve done more than prove the last containment. In making G by adding
edges to G′, given that we weren’t allowed to join two connected components that
each contained edges, the only choice we had was where to anchor the isolated
vertices.

Corollary 2.2. The components V (PG) containing a point (pijk) are exactly those
for which G can be obtained from G′ by adding edges incident in G′ to isolated
vertices, where G′ is as in the last proof.

It is noted in [2, §6.6] that the number η(p, q) of admissible graphs G on [p]q [q]
is given by the generating function

(3) exp((ex − 1)(ey − 1)) =
∑

p,q≥0

η(p, q)
xpyq

p!q!

which in that reference is said to follow from manipulations of Stirling numbers.
We can also see (3) as a direct consequence of a bivariate form of the exponential
formula for exponential generating functions [3, §5.1], using that

(ex − 1)(ey − 1) =
∑

p,q≥1

xpyq

p!q!

is the egf for complete bipartite graphs with p, q ≥ 1, the possible connected com-
ponents of admissible graphs.

3. Ideal-theoretic results

It turns out that IM is exactly the intersection of the minimal primes found in
the previous section.

Theorem 3.1. The primary decomposition

(4) IM =
⋂
G

PG
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holds, where the union is over admissible graphs G on [r2]q [r3]. In particular IM
is a radical ideal.

In view of the last section we must only prove radicality. This we do by showing
that IM has a radical initial ideal. That is, the next proposition proves Theorem 3.1.

Proposition 3.2. Let ≺ be any term order on monomials in the pijk, and let PG

have the primary decomposition in≺ PG =
⋂

π∈ΠG
QG,π. Then

in≺IM =
⋂
G,π

QG,π =
⋂
G

in≺PG,

G ranging over admissible graphs and π within Π(G). Each QG,π is squarefree, so
in IM is radical.

Before embarking on this, we outline a bit of the standard treatment of binomial
and toric ideals. [[warning! I don’t know the best reference, and this presentation
is probably awkward for those who know this stuff.]]. Let I be a binomial ideal in
C[x1, . . . , xs]. The exponents of the binomials generating I define a lattice in Zs,
and the kernel of a Z-linear map φI : Zm → Zs whose image is this lattice provides
a multigrading, in terms of the minimal sufficient statistics, with respect to which
I is homogeneous. For any d, the monomials pu for u ∈ φ−1

I (d) ∩ (Z≥0)s span the
d-graded part of C[x1, . . . , xs]. Define an undirected graph H whose vertices are
this fiber and whose edges, the moves, are (u, u′) whenever xu − xu′

is a monomial
multiple of a binomial generator of I. Then

Id =
{ ∑

φI(u)=d

cuu :
∑

u∈C cu = 0 for each connected component C ⊆ H

}
.

As the PG are toric ideals, their primary decompositions are understood, and are
associated to regular triangulations of certain polytopes. The ideal of 2× 2 minors
of a matrix Y = (yij), of which PK := PKr2r3

is a particular case, was treated
explicitly by Sturmfels [1]. This same treatment extends to arbitrary graphs G,
since these are generated as the sum of such ideals PC

G in several disjoint sets
of variables, plus individual sums of other variables, generating P

(0)
G . So given a

collection of primary decompositions in≺ PC
G =

⋂
π∈ΠC(G) QC

G,π,

in≺PG =
⋂
(πi)

(⊕
i

QCi

G,πi

)
⊕ P

(0)
G .

We quote some useful results from that paper’s treatment.

Theorem 3.3 (Sturmfels, [1]). Let I be the ideal of 2×2 minors of an r×s matrix
of indeterminates.

(a) For any term order ≺, in≺ I is a squarefree monomial ideal.
(b) Any two initial ideals of I have the same Hilbert function.

The distinct Gröbner bases of I are in one-to-one correspondence with the regular
triangulations of the product of simplices ∆r−1⊗∆s−1. We repeat from [1] one es-
pecially describable example, corresponding to the so-called staircase triangulation.
Suppose our term order is the revlex term order over the lexicographic variable or-
der on subscripts. Call this term order ≺dp. Then the primary components of inPG
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are parametrised by the paths π through the format r×s flattening of the matrix of
indeterminates, starting at the upper-left corner, taking only steps right and down,
and terminating at the lower left corner. The component QG,π is generated by all
(r − 1)(s− 1) indeterminates not lying on the path π. Alternatively, these primes
QG,π are generated by exactly the minimal subsets of the indeterminates xij which
include at least one of xij′ and xi′j whenever i < i′ and j < j′.

Proof of Proposition 3.2. Write I = IM. By Theorem 3 it’s enough to show

(5) in≺I =
⋂
G

in≺ PG

We will do this in two steps: first we’ll show I ⊆ PG for each G, giving the ⊆
containment of (5); then we’ll show an equality of Hilbert functions H(in I) =
H(
⋂

G inPG).
Containment. Let f ∈ I. Immediately, terms of f containing a variable pijk for
(j, k) 6∈ E(G) are in P

(0)
G ⊆ PG, so we may assume f has no such terms.

The minimal sufficient statistics of a monomial pu are given by the row and
column marginals of the format r1×r2r3 flattening of the table of exponents (uijk).
This is the content of Proposition 1.2.9 of [2], our model M being the model of the
simplicial complex [1][23].

Let f ∈ Id, and suppose f has no variables corresponding to nonedges of G. Let C
be a connected component of G. Then we have that, on each connected component
of the graph of the fiber φ−1(d), the sum sC,i =

∑
j,k∈C uijk is constant, since each

individual move holds it constant: the only types of moves are

((i, j, k) + (i′, j′, k), (i, j′, k) + (i′, j, k))

((i, j, k) + (i′, j, k′), (i, j, k′) + (i′, j, k))

and neither of these changes the value of sC,i, because, by the assumption on f ,
j, j′ respectively k, k′ must lie in a single connected component of G. But the sC,i

are exactly the minimal sufficient statistics for PC
G which aren’t already minimal

sufficient statistics of I. That is, on each span of monomials on which the sufficient
statistics of PG are constant, the coefficients of f sum to zero. Therefore f ∈ (PG)d,
and we’ve shown I ⊆ PG.
Hilbert functions. We may compute H(I) instead of H(in I). On the other side,
by (b) of Theorem 3, we’re free to choose the term order we use in computing
H(
⋂

G inPG), and we will choose ≺dp.
The images of monomials in C[pijk]/I are a basis, so we want to count these.

The multigrading of C[pijk] by minimal sufficient statistics passes to the quotient,
and so given any multidegree d, the generators of C[pijk]/I are in bijection with
the connected components of the graph on the fiber φ−1

I (d).
Let u ∈ (Z≥0)r1r2r3 , and construct the bipartite graph G′ on the bipartitioned

vertex set [r2]q [r3] with edge set

{(j, k) : uijk 6= 0 for some i}.
Note that G′ depends only on φ(u). For any connected component C of G′, our
sC,i from above is constant for each i.

We next claim that any two exponent vectors u, u′ supported on i× E(C) such
that sC,i(u) = sC,i(u′) for all i and u+jk = u′+jk for all j, k are in the same
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component. We show by induction that there are moves carrying u′ to u. Let (j, k)
be an edge of C whose removal leaves C connected. If there is no index i such that
u′ijk < uijk, then there can’t be any index i′ with u′i′jk > ui′jk either, since the
(j, k) marginals are equal. Otherwise pick such an i, and let j′, k′ be any indices
such that u′ij′k′ is positive. There is a path of edges e0 = (j′, k′), e1, . . . , el = (j, k)
such that ei and ei+1 share a vertex for each i, and by performing a succession
of moves replacing (i, em) + (im, em+1) by (im, em) + (i, em+1), we reach from u′

a vector of exponents in which the (i, j, k) entry has increased. By repeating this
process for each i we can can reach a vector u′′ with u′′i,j,k = ui,j,k for each i, and
then induction onto the graph C \ (j, k) completes the argument.

Hence the components of φ−1(d) are in bijection with the ways to assign a vector
of nonnegative integers sC,i to each component C of G′ such that

∑
C sC,i = sG′,i,

where the entries of sG′,i are particular components of d. This determines H(I) =
H(in I).

We turn to H(
⋂

G inPG). Choose a multidegree d and let G′ be the graph
defined above. By the discussion surrounding . a monomial of multidegree d is
contained in none of the inPG if and only if it’s not a multiple of pij′k′pi′jk for
any (j, k) and (j′, k′) in the same component of G′ with i < i′ and (j, k) < (j′, k′)
lexicographically.

Consider a subtable of the r1×r2r3 flattening of the matrix of exponents uijk, re-
taining only the rows corresponding to edges of a single component C of G′. Then
we claim that, given the row and column marginals of this flattening, there’s a
monomial whose flattened exponent table has these marginals and is not a multiple
of pij′k′pi′jk for any i < i′ and (j, k) < (j′, k′) lexicographically. Indeed, this min-
imum is the least monomial with its marginals with respect to ≺dp. By definition
of ≺dp, a monomial with the factor pij′k′pi′jk is greater than the monomial that
results by replacing this factor with pijkpi′j′k′ . So in the least monomial

∏
p

uijk

ijk , no

such replacements are possible; on the other hand, in any monomial m′ =
∏

p
u′

ijk

ijk

that is not the least, we must have u′i′j′k′ < ui′j′k′ for the last indices at which
these exponents differ; then, since the marginals are preserved, there are indices
i < i′, (j, k) < (j′, k′) with u′i′jk > ui′jk ≥ 0 and u′ij′k′ > uij′k′ ≥ 0. In particular
m′pijkpi′j′k′/pij′k′pi′jk is a monomial less than m′.

Therefore, the monomials of multidegree d not in
⋂

G inPG are in bijection with
the ways to choose the row marginals of each of these tables to achieve the sums
dictated by d, that is, the ways to choose a vector of nonnegative integers sC,i

for each component C of G′ such that
∑

C sC,i = sG′,i. Thus H(
⋂

G inPG) =
H(in I). �

As an appendix, I include Singular code to compute the primary decomposition
of IM, which I used for my initial investigations. On my machine this ran relatively
quickly up through around r1r2r3 = 24.

LIB "primdec.lib";
int r1=2; int r2=3; int r3=4; // adjust as appropriate
int i;
ring R=0,(p(1..r1)(1..r2)(1..r3)),dp;
matrix M[r1][r2]; matrix N[r1][r3];
ideal I=0;
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for(i=1; i<=r3; i{+}{+}) {
M = p(1..r1)(1..r2)(i);
I = I + minor(M,2);

}
for(i=1; i<=r2; i{+}{+}) {
N = p(1..r1)(i)(1..r3);
I = I + minor(N,2);

}
primdecGTZ(I);
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