1. [Kirwan 3.1] Let C and D be curves in \mathbb{P}^2 with no common components. Show that $\text{Sing}(C \cup D) = \text{Sing}(C) \cup \text{Sing}(D) \cup (C \cap D)$. Deduce that every reduced curve in \mathbb{P}^2 has only finitely many singular points.

2. [Kirwan 3.3] Show that any five points in \mathbb{P}^2 lie on a conic. Deduce that every curve of degree 4 in \mathbb{P}^2 with 4 singular points is reducible.

5. [Kirwan 3.16] Show that if p is an inflection point of a nonsingular cubic curve C in \mathbb{P}^2 then there are exactly four tangent lines to C which pass through p.

6. [Kirwan 4.1] Let C and D be nonsingular curves of degrees n and m in \mathbb{P}^2. Show that if C is homeomorphic to D then either $m = n$ or $\{n, m\} = \{1, 2\}$.

7. [Kirwan 4.4] Show that the map $(s : t : 0) \mapsto (st^3 : (s+t)^4 : t^4)$ defines a homeomorphism from the line $\{z = 0\}$ to a quartic curve in \mathbb{P}^2. Why does this not contradict the statement in the previous exercise?