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1. Introduction

This article gives an elementary introduction to the theory of Chow forms.
It is based on a sequence of four lectures given at the conference on “Invari-
ant Methods in Discrete and Computational Geometry”, Curacao, Nether-
lands Antilles, June 1994. We thank the organizer, Neil White, for giving
us the opportunity to participate and present this material. This work was
supported in part by the National Science Foundation and the Dayid and
Lucile Packard Foundation.

The Chow form is a device for assigning invariant “geometric” coordi-
nates to any subvariety of projective space. It was introduced by Cayley [5]
for curves in 3-spaces and later generalized by Chow and van der Waerden
[6]. Geometric operations in terms of Chow forms extend the operations of
the Cayley-Grassmann algebra for linear subspaces. This indicates the use
of Chiow forms as a computational tool for projective geometry.

Most of the results presented here are classical and well known, proofs
are either sketched or omitted, and details can be found in the references.
An exception is the algorithm for computing the join in §4, which will
appear in the Ph. D. thesis of the first author. We refer to the fecent book of
Gel’fand, Kapranov and Zelevinsky {13] for an excellent exposition of Chow
forms in the context of elimination theory. A comprehensive treatment of
Chow forms will appear in the forthcoming monograph by Gaeta [11].

1.1. DEFINITION OF THE CHOW FORM

We first recall the definition of Pliicker coordinates: Given a d-dimensional

linear subspace L of n-dimensional complex projective space P, we can

write L as the intersection of n — d hyperplanes. Each hyperplane corre-
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sponds to a point in the dual projective space, and we write the coordinates
of these points as the rows of an (n — d) x (n 4+ 1) matrix M. Left mul-
_ tiplication gives a GL(n — d, C)-action on the hyperplanes that preserves
the subspace L. The invariants of this action are the maximal minors of
M, and these minors determine L uniquely. Conversely, L determiunes the
vector of minors up to multiplication by a nonzero constant. Thus we can
represent I by the projective vector of maximal minors of M, which we
call the (primal) Pliicker coordinates or brackets of L. The set of
all d-dimensional linear subspaces of P*, thus coordinatized, is called the
Grassmannian and is denoted by G(d, n).

Notational conventions: We number the columns of M from 0 to n, and
we specify & given maximal minor by writing the indices of the columns
involved between square brackets. We order the brackets from [0, 1,...,n—
d—1]to [d+ 1,d+ 2,...,n] lexicographically. For example, the Pliicker
coordinates of a line in P? will be written in the form ([01] : [02] : [03] :
[12]: [13]: [23)).

The subspace L can also be written as the span of d + 1 points. This
gives a (d+ 1) x (n + 1) matrix N with the same uniqueness properties as
M. The maximal minors of N are the dual Pliicker coordinates. We denote
them by double brackets [[ig, %1, .. .,%4]]. Primal and dual coordinates with
complementary index sets are the same up to a sign change.

We now replace the linear space L by an arbitrary projective variety

X = {xeP": filx)=--=fi(x)=0},

where the f; are homogeneous polynomials in k[zg,z;,...,Z,] and k is
a subfield of the complex nuinbers. Typically, & is the field -of rational
numbers. We suppose that X is irreducible, that is, X is not the union
of two proper subvarieties, and that the dimension of X is d. See [7], [15],
[22] for the definition of “dimension” and other basic concepts in algebraic
geometry.

Let L be an (n — d — 1)-dimensional linear subspace of P*. i L is
chosen generically, then X N L is empty. Let ¥ be the set of all (n —d —1)-
dimensional linear subspaces L of P* such that X N L is nonempty.

Theorem 1.1 The set Y. is an irreducible hypersurface in the Grassman-
nign G(n—d— 1,n).

For a proof see e.g. Section 3.2.B in [13]. It is known that every hypersur-
- face in the Grassmannian is defined by a single polynomial equation. The
defining irreducible polynomial of Y is denoted Rx and called the Chow
form of X. We can express Rx as a polynomial in brackets [ig, 1;, . . oy id]

While ‘this representation is not unique, due to the syzygies among
the brackets (see e.g. §3.1 in [24]), the Chow form itself is unique up to
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multiplication by a nonzero constant, We shall see in Section 3.3 that Ry
determines X uniquely. The coefﬁgients of the Chow form are called the
Chow coordinates of the projective variety X.

1.2. EXAMPLES

We first show that the Chow form is indeed a generalization of Pliicker
coordinates. Let X denote a fixed line in P3 passing through the points
{ap : a1t az : ag) and (bo : by : bz : b3). If L is a variable line, given by
its primal Pliicker coordinates ([01] : [02] : [03] : [12] : [13] : [23}), then
X n L #@if and only if the following linear bracket polynomial vanishes:

Rxy = (aubl - albo)[(]l] + (agbz — azbo)[OQ] + - 4+ (a2b3 - a3b2)[23].

This is the Chow form of the line X. We note that the coefficient of a primal
bracket of L in Ry is the dual bracket of X with the same indices. This
observation generalizes to arbitrary dimensions.

Proposition 1.1 The Chow coordinates of a linear subspace X of P" are
the dual Pliicker coordinates of X with the same indices.

Our first non-linear example is the twisted cubic curve
X = {(£:6%:a2:3)eP?: (s:t)e P}
This curve is the intersection of three quadratic surfaces:
X = {(zo:71:22:23) € PP : zozy—~2? = 2oz3—3129 = ;47325 = 0}

Consider a variable line I in P3, presented as the intersection of two planes:

L = kernel(uo th Uz u3).

vy vy vy 3
The line L meets the curve X if and only if
A(s:t) € P! ¢ wps®+uysit+ugst?+ust® = vosP+v sttt vpst®+uat® = 0.
This condition is equivalent to the vanishing of the Sylvester resultant:

up wy g9 uz 0 0
R S B I
Rx = det o ™ 02 03 =det([02] (03] + [12] [13]).
oo (03] 18]  [29]
vp vy vy v3 O
0 0 v vy v2 w3
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The 3 x 3-determinant in terms of brackets [¢j] = u;v; — u;v; is called the
Bezout resultant. Its expansion equals

Ry = —[03]® -[03]}12] + 2[02][03][13] — [01][13]?
— [02]%[23] + [01][03]{23] + [01][12][23).

Proposition 1.2 The Chow form of the twisted cubic curve is the Berout
resultant of two cubic dinary forms.

In Section 3.2 we shall generalize this example by demonstrating a
method for computing the Chow forins of parametrized varieties. These
Chow forms can be viewed as “generalized resultants” (cf. [18]).

In the definition of the Chow form Rx it had been assumed that X is
an irreducible variety. If X = X, U X, U..-U X,, where X; is irreducible
and appears with multlphuty m; in X, then we define the Chow form of
X as ‘
Rx = RYRE - -RET.
In this situation Rx has coefficients in &, the field of definition of X, while
the factors Ry, have coeflicients in some algebraic field extension & of k.
In particular, it is possible that the Chow form Ry is irreducible over k.

Here is an example with & = Q and ¥ = Q{w), where w is a primitive
cube root of unity, Consider the point set {{1 1w : w?),(1:w? :w)} in the
projective plane. It is irreducible over k. Its Chow form is [0]2 — [0][1] +
[ 12 — [01[2] — [1]{2] + [2]2, which is irreducible over k but factors over k' as

([0] + w[1] + w?[2]) - (10] + w?[1] + w(2)).

The Chow form of any point set X = {p1,p2, <eeyPr} C P™ s given by
Rx =TIi=, (U,p:), where U = (ug : uy :--+ : un) is a variable hyperplane.
This mstance of the Chow form is a.lso l\nown as the U-resultant. It is
generally harder to compute the Chow form (or U-resultant) of a point set
from its defining ideal than to compute it from the coordinates of the points.
In the above example, the defining ideal is (zo + 21 + 22, 2% + z172 + £3).

One other extreme case deserves attention. A hypersurface X in P*

is the zero set of a single homogeneous polynomial F(zg,2y,...,%,). The
Chow form of X is the same as F but rewritten in primal brackets:
Rx = F([12...0),~[023...a], -+, (=101 (n = 1)]).

For example, the Chow form of the Fermat cubic surfa,ce :1:0+:c3-|-:n:2 +23=0
in P2 is [123]3 - [023]3 +[{013]® - [012]. There are exactly twenty-seven lines
lying on the Fermat cubic in P3. The Chow form of their union is a bracket
polynomial of degree 27 with rational coefficients. It factors over Q(w) as

H2 oH;-o (113) = wi[14] — 7[23] + w*H7[24]) %
x ({12} = w'[14] + 09[23] + wi+7[34]) x
x ([12) - wi(13] + wi[24] - wi+3[34]).
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Each linear factor is the Chow form of one of the 27 lines.

We close our list of examples with two otlier important classes of Chow
forms. If the variety X is defined by monomial equations, then its Chow
form Ry is a bracket monomial. Conversely, every bracket monomial
arises from a monomial scheme in this way; see [18] and [23] for details.
Given integers n > m 2 2, consider the variety of all n X m-matrices of
rank at most m — 1. The Chow form of this determinantal variety is the
hyperdeterminant of format m X » x (n —m + 1); see [12] and [25].

2. Geometric Operations

In this section we show how certain basic geometric operations with pro-
jective varieties can be carried out using Chow forms. An important such
operation is the intersection of varieties. The intersection operation is very
difficult in general, and we treat liere only some easy cases. The general
case will be addressed later in Section 4 in the context of joins.

2.1. INTERSECTIONS

Let X be an irreducible projective variety and L, a general linear subspace.
The following formula expresses the Chow form of their intersection in terms
of the Chow form of X and the Pliicker coordinates of ;.

Proposition 2.1 Let s = codim(L;) + codim(X) — 1. Then
Rxnr(L) = Rx(ILinly) (2.1)

Jor all linear subspaces Ly of dimension s which are transverse to L.

Proof: Both Rynp,()and Rx(L, - )are squarefree polynomial functions.
on G(s,n) having the same degree. To show that they are equal it suffices
to note that they have the same zero set:-

RXQL](I/z):O — .XﬂL] NnLg ?/:@ — RX(Llan)zo. ]

When applying this formula, one uses the fact that the (primal) Pliicker
coordinates of L; N L, are the exterior product of the Pliicker coordinates
of L, with those of L;. For instance, consider the intersection of the twisted
cubic with the hyperplane zo +z; + 22 + z3 = 0. By substituting its coeffi-
cient vector (1,1,1,1) into the last row of the matrix M, we see that each
rank 2 bracket [ij] is to be réplaced by the difference of rank 1 brackets
[#] = [j]. Hence the Chow form of this intersection is the determinant of the

e ( o -1 0-f2 (03 )

(0] - 2] [0]+[1]=[2] - (3] [1]-1[3]
[0] - [3] (1] - [3] (2] - (3]
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This determinant factors over the complex numbers as
~([0)~ [1]+ [21 = [81) - (10] + i[1] ~ [2) - 413 - ([0] ~ é[1] — [2] + 3]).
We conclude that the intersection is the point set
{(1:=1:1:-1),(1:d:=1:=4),(1:=i:-1:4)} ¢C P>

Consider the special case s = n — 1, where L := L, is a complementary
linear subspace to X and U := L, is a hyperplane. Then the intersection is
a finite point set, say, X N L = {p:(L),p2(L),....p,(L)}. The coordinates
of the p; are algebraic (but not rational) functions in the brackets of L.
Proposition 2:1 implies the following factorization of the Chow form over a
suitable field extension: '

r .

Rx(LaU)y = J[WpL). (2.2)

=1

This formula plays an important role in the criginal work of Chow and
van der Waerden {6]; a refinement appears in [21}. Caveat: It i1s generally
impossible to carry out the factorization (2.2) using a computer algebra
system because R x is irreducible as a polynomial over k in the coordinates
of U and the brackets of L. '

Thé number r of intersection points with a generic complementary linear
subspace is called the degree of the projective varjety X.

Corollary 2.1 The degree of Rx in brackets equals the degree of X.

Proof: The bracket degree of e x and"R,)mL, coincide by Proposition 2.1.
For s = n — 1 this degree equals » = deg(X). O

We next consider the intersection of X with a hypersurface Y.

Proposition 2.2 If Y is a hypersurface in P™ defined by Q(x) = 0, then

Rxny(L) = ﬁQ(p,(L)) Jor all LEG(codim(X),n).

=1

Proof: Both the right hand polynomial and the left hand polynomial vanish
fandonly { YNXNL#P. O '

In order to evaluate this formula for the Chow form of X NY, we need
the theory of multisymmetric functions; see e.g. [17] or [20]. This theory
allows us to compute with the point set {p(L);...,p;(L)} without having
to deal with the individual points. Every multisymmetric function can be
represented (up to an extraneous monomial factor) as a polynomial in the.
elementary multisymmetric functions, which are the coefficients of (2.2) as 2
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polynomial in U. In particular, the multisymmetric function []7_; @(p:(L))
has such a representation in terms of the U-coefficients of.(2.2). That gives
the Chow form Rxny as a polynomial in the brackets of L.

The intersection of the twisted cubic X and the Fermat cubic surface
Y consists of nine points. Its Chow form may be evaluated by this method.
First one finds the elementary multisymmetric functions of the three inter-
gection points (Pip : Pi1 : Piz © Pia) of the twisted cubic and a hyperplane.
This amount to writing the Sylvester resultant as a polynomial in vy, ..., vs:

3 3
f0.01,02,08 gy
Rx = E : €igiyigiz (Lo U1, U2, U3) - D VP07V = | I(E :Pu”.r)-
i+ +ig+i3=3 ‘ i=1 j=0

We then form the following multisymmetric function of degree 9,

3 .3
[Hewry = [Irdh+sh4+pLh+0h),
=1 i=1
and we rewrite it as a polynomial in the elementary multisymmetric func-
_tions €444, (Yo, #1, 2, u3). This can be done using the MAPLE package
“ms”, which was written by the first author and is available upon request.
Replacing each variable u; by a bracket [i], the final result factors over Q
as

~({0] = [1] + [2] - [3])([0}2 — 2[0][2} + [1]? + [2]* - 2[1](3] + [3]?) -

x (0] + {o][1] — {0]{2] + [1]* + [1]{2] + [2]? — 2[0](3] -- [1][8] + [2][3] + [3]*)

x ({01 + 2[0%(2) — [0]*{1]? + 3{0]*[2]* - 4[0][1]*(2] + 2[0][2]* + [1]* ~
—[12[2] + [2]* + 2[0}2[1][3] ~ 4[0][1][2][3] + 2(1]*[3] ~ 4[1][2}%[3] +
+2[0*[3]* + 2{0](2](3]* + 3{1]*(3]7 — [2]*(3]* + 2(1][3]* + [3]%)

2.2. PROJECTIONS

Given a point p ¢ X, consider the cone of X over p, which is the union of
all lines through p which meet X. Its Chow form satisfies the equation

Reonewx)(L) = Rx(span(p,L)) (2.3)

for linear subspaces L with dim(L) + dim(X) = n — 2. To prove (2.3) it
suffices to observe that coue(p, X )NL # @ if and only if X Nspan(p, L) # 0.
Indeed, both conditions are equivalent to the existence of points z € X and
[ € L such that z, p, and [ lie on a line. ‘

We can compute the Pliicker coordinates of span(p, L) using the formula

[ij.. K = En:pz-[lij---ﬂ,

=0 .
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where the bracket on the left-hand side belongs to span(p, L) and the
bracket on the right-hand side belongs to L. The proof is left as an ex-
ercise for the reader. (Expand the dual bracket with respect to p, then
dualize to get the formula for primal brackets.) For instance, the Chow
form of the cone of the twisted cubic over (0:1:1:0) is the determinant
of the matrix ‘

[p12] . —[012] —[013] — [023]
( —[012] —[013] - (023)] —[123] ) (2.4)
~[013] - [023] ~[123] [123]

which is ([013]4{023])3—[012]{123](j012] + 3[013]+ 3[023] +[123]), the Chow
form of the surface (z; - z9)® — zoz3(zp — 32; + 322 — 23) = 0

Given a point p ¢ X and a hyperplane H not containing p, then the
projection of X onto A with center p is the variety ¥ := H N cone(p, X).
Thus the Chow form Ry of such a projection can be computed from Ry
by combining formulas (2.3) and (2.1).

For instance, let ¥ be the projection of the twisted cublc curve X onto
the plane H = {zo+ z; + z2 + 23 = 0} with centerat p=(0:1:1:0).
Thus Y is a planar cubic curve. Viewed as a curve in P3, its Chow form is
gotten from the determinant of (2.4) by the substitutions

[ijk] = [ig] = [ik] + [FK),  (0<i<j<k<3).

This corresponds to substituting the vector(1,1,1,1) into the last row of .
the matrix M, whose kernel is span(p, L).

Consider the isomorphism from the plane H C P? onto P? given by
the map (zg — 23 : 2, — 22 : 2, — x3). We can calculate the brackets in P3
directly in terms of the brackets in P2 by examining the matrix

1 1 1 1
M= mp -mpe+mn —-mn+mpez ~myz |.
Mop —Mao+ My —mMma + Ma2 —Maa

The 2 x 2 minors of the bottom rows are [01], —[01] + [02], -[02], [01] -
[02] + [12], [02] — [12], azd [12], so the 3 x 3 minors are [012] = 3[01] —
2[02) + [12], [013] = [01] + 2(02] — [12], [023] = —[01] + 2[02] + [12], and
[123] = [01] — 2[02] + 3[12]. We substitute these into the Chow form of the
cone over the twisted cubic to obtain the Chow form of Y as a cubic curve
in P2:

~4(3[01° — 2[01]2[02] + 13{01]2[12) — 12{01){02]2 + 4[01][02][12]
+ 13[01][12]? - 8[02]3 — 12[02)*[12] — 2[02]{12]* + 3[12]*)
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This is the Chow form of the planar cubic curve defined by

3;,;3.;.2:.:33:1 +133§z2—12:ng:vf —dzgT :c2+13:cga:§+83:?— 12z¥1'2 +2$lz§+3zg.

9.3, LINEAR TRANSFORMATIONS AND TORIC DEFORMATIONS

The group GL(n + 1,k) acts naturally on the vector space k**! and its
projectivization P*. In particular, for each variety X C P" and each lin-
ear transformation ¢ € GL{(n + 1,k), the image ¢(X) is a projective va-
riety isomorphic to X. There is an induced action on the vector space
(AVH(knt1)*) = A" kn+1, which has as its basis the set of functions
that take an {n — d)-dimensional linear subspace to one of its brackets.
This action extends to the projectivization as well. Clearly, the Grassman-
nian of (n -~ d — 1)-dimensional subspaces of P" is invariant under this
action. Similarly, GL(n + 1,k) acts naturally on §de8X An=d(kn+1) the
space of bracket polynomials of degree the degree of X. The Chow form
Ry is a point in this vector space, and we write g o Ry for the image
of this point under g. It turns out that passing to the Clhow form is an
equivariant operation:

Proposition 2.3 If X is any projective variety in P and g any linear
transformation in GL(n + 1,k), then Ryx) = go Rx.

Proof: We have the following identity of subsets in the Grassmannian:
{L:gXnL#0} = {L:XNg'L#0} = go{Ll': XL'#£0}. ©T

To compute the action of an (n+1) x (n + 1)-matrix g on the brackets,
one takes the transpose of the matrix of its (n—d) x (n—d) minors. Its action
on the Chow form of X can be computed by acting on the brackets and
distributing the products. For instance, consider the action of the matrix

1100
0110
g = 0011
0001
on the Chow form of the twisted cubic. Its matrix of minors is

10100

Ng =

O oo O -
[ I e B e e B
[Pl i B
len B BN i
[ J T G Sy WV RS
[l =]
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Therefore, the image of the Chow form of the twisted cubic curve is

[01] [01] + [02) [02] + [03]
det ( [01}+ [02] [01]+ 2[02] + [03] + [12] [02] + 03] + [12] + [13] ) .
[02] + [03] [02] + [03] + [12] + [13] [12]) + [13] + [23]

The matrix g acts on P? by sending the point (zg : ; : 72 * 23) to the point
(zo+zy 121+ 22 : 22+ 23 : Z3), so the determinant above is the Chow form
of the curve parametrized by (23 + z3x; : 2321 + zo2? : 2oz + 23 : ).

An important subgroup of GL(n+ 1, k) is the group (k*)"*! of invertible
diagonal matrices. This abelian group is called the (n + 1)-dimensional
(algebraic) torus. Given a lattice vector v = (wp,wy,...,wy) € Z"1!
and a scalar ¢ € &*, we define the diagonal matrix

w(t) = diag(eve,i™,..., "),

The map k* — (k*)"*!, ¢t — w(t) is a one-parameter subgroup of the
torus. :

The image w(t) o Rx = Ryyx of the Chow form of X under the
diagonal matrix w(%) is computed by scaling each bracket as follows:

ligi1 .. .q) > tWatwistebwis fia ). (2.5)
In terms of the vanishing ideals of X and w(t) o X, this action looks like
T(w(t)e X) = (flzet™™,zit™,...,2,t7") : fEI(X)). (2.6)

We can now pass to the limit as ¢ goes to infinity to get the toric deforma-
tion lim;oow(t)X. This means that in (2.6} we pass to the initial ideal
in_(I{X)) with respect to the weights —w. Algebraically, this amounts to
a Grobner basis computation. On the level of Chow forms, the toric defor-
mation is simply given as the leading form of R, )x with respect to the
weights (2.5). For details and applications of toric deformations of Chow
forms see [13],(18],[23]. A related object introduced in [18] is the Chow
polytope associated with variety X . This is a convex polytope whose faces
are in bijection with all possible toric deformations of the Chow form Rx.

For example, the initial ideal of the twisted cubic curve X with respect
to the —w = (3,1,0,0) equals (zoz3,zoz3,z1%3) = (zo,z1) N (2g,23) N
(x3,%3). The leading form of the Chow form Rx with respect to w =
(—3,-1,0,0)is the bracket monomial [01][12][23]. This is the Chow form of
three coordinate lines in P2. We conclude that the one-parameter subgroup
w(t) effects a toric deformation of the twisted cubic into a union of three
distinct lines.
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3. Computational Aspects

Projective varieties appearing in computational problems are usually rep-
resented “implicitly” as the solution set of a system of polynomial equa-
tions, or “parametrically” as the image of a polynomial mapping. While
the implicit representation exists for all varieties, only few varieties admit
a rational parametrization. It is a standard problem in computer algebra
to pass back and forth between both representations.

In this section we present algorithms for the transition between the
‘Chow form of a projective variety X and its implicit and parametric rep-
resentations. We assume that the reader is familiar with computational
algebraic geometry at the level of the text book by Cox-Little-O’Shea [7].

3.1. FROM EQUATIONS TO THE CHOW FORM

We suppose that X is an irreducible projective variety, which is presented
by a finite set of generators for the corresponding homogeneous prime ideal
I=7Z(X)in k[zo,21,...,2s). The following algorithm computes the Chow
form Ry in primary Plicker coordinates.

Step 0: Compute d = dim(X), e.g., by computing a Grdbner basis for 1.
Step 1: Add d + 1 linear forms £; = uprg + ity + -+ + wnz, with
indeterminate coefficients, and consider the ideal

J = I+ (lo,by,. .. Lg) C k[zug:i=0,...,d,j=0,...,n] == &
Step 2: Replace J by the ideal
J o= (Ji(®oy..aan)®) = {feS|Viddi:abfed}.

This is the saturation of J with respect to the irrelevant maximal ideal in
k[zo,...,2,]. It can be computed using Grobner bases; see pp. 195-6 in [7].
Step 3: Compute the elimination ideal J' N k[ugo, up1, .- ., uds]. This ideal
is principal; let R(ugg,...,uqs) be its principal generator.

Step 4: Rewrite the polynomial R in terms of brackets [jg}l ...Jd], e.g. by
using the straightening algorithm or the subduction technique presented in
Algorithm 3.2.8 of [24]. The result is the Chow form R .

Here is the geometric interpretation of this algorithm: In step 1 we form
the natural incidence correspondence {(x,L) : x € X N L} between (the
cone over) X and (the cone over) the Grassmannian. In step 2 we remove
trivial solutions with all z-coordinates zero, for which there is no point
in P™. In steps 3 and 4 we project the incidence correspondence onto the
Grassmannian.
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The same algorithm works not only for prime ideals but for all unmixed
homogeneous ideals. As an example consider the ideal I = (z? — zgz2,2% -
z1x3). Its variety consists of the twisted cubic and the line z; = z3 = 0.

To this ideal we add the generic linear forms wugpzo + g1z + g2z +
upazs and ugpro + up xy + uye%s + ujs3rs. We saturate with respect to the
maximal ideal (zg,Z;,z2,z3) and eliminate the z-variables. The result is
the resultant of the two given quadrics and the two general linear forms,
which is a homogeneous polynomial R of bidegree (4,4) in the u;;. To
obtain a polynomial in brackets, we may take the ideal generated by the
previous result R together with the polynomials wugiui; — ugjuy: — [ij] for
0 < i< j <3, and eliminate the u-variables. The output is the Bezout
resultant (see §1.2) times the Chow form of the line z; = z; = 0, which
is [03]. Naturally, this factorization may not be apparent in the output,
because all bracket polynomials are to be understood modulo the syzygy
[01][23] — [02][13] + [03][12].

A complexity analysis of our problem has been undertaken by Caniglia
in [3]. Using a somewhat different method, he shows “how to compute the
Chow form of an unmixed polynomial ideal in single exponential time”.

3.2. FROM A PARAMETRIZATION TO THE CHOW FORM

Suppose we are given a parametrically presented projective variety:

X = {(fo(t): fi(t) s+ ft)) €P" : 1 € PY)

The input data fg, fi,..., fn are homogeneous polynomials of the same
degree in the variables t = ({p,1,...,%s). The following algorithm computes
the Chow form R x. For simplicity we assume dim(X) = d.

Step 1: Consider the ideal
J = (uiﬂfﬂ(t)+ui1fl(t)+"'+uin.fn(t) ! i=0:1,"'1d)

in k[t;,u;; :i=0,...,d,5=0,...,n].

Step 2: Replace J by J' = (J: (fo,..., fa)®), its saturation with respect
to the base point locus of the parametrization.

Step 3,4: Same as in Section 3.1.

As an example we consider the parametrization (f: fi : f2 @ f3) of the
Fermat cubic surface, where

fo®) = wilty — wipt? — 1) + 1%1,,
AR) = wilty —wiph + 215 - 1p82,
f(t) = wipt? —whitd+ to1? — tit,,
f3(t) = wipt? —wiyid + 1dty — 1113,

Il
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We take the ideal generated by the three polynomials ugp fo+uo1 f1+uo2fo+
wosf3, w0fo + v11f1 + wi2fo + wiafs, and vaofo + ua fi + u f2 +us fz, we
saturate it with respect to the ideal (fo, f1, f2, f3), and then we eliminate
the t-variables. As the result we get the expansion of the Chow form Ry =
[123]° - [023] + [013])3 — [012]® into coordinates u;;.

An important special case occurs when fo, ..., f, are monomials of the
same degree, say, fi(t) = t*, where A = {ap,a1,...,an} C Ne+1. The
variety X4 = {(t®®:---:t) € P* : t € P¢} is called the toric
variety defined by the set .A. Its Chow form Rx, is the A-resultant,
which plays a central role in sparse elimination theory; see [23],[13]. For
example, if A = {(3,0),(2,1),(1,2),(0,3)} then the toric variety X 4 is the
twisted cubic curve and the 4-resultant is the resultant of two binary cubic
forms.

3.3. FROM THE CHOW FORM TO EQUATIONS

Given the Chow form of a projective variety X, we can recover a set of
equations that define X set-theoretically, by virtue of the following result.

Proposition 3.1 A pointp € P" lies in X if and only if X Nspan(p, L) #
B for all (n — d — 2)-dimensional linear subspaces L.

Proof: We must prove the “if”-direction. Suppose X Nspan(p,L)# @ fora
generic subspace L € G{(n — d—2,n). Project from p onto a hyperplane H.
Then the image of X N span(p,L) under the projection is the intersection
of the images of X and L. But this intersection is empty because the image
of L is generic and has codimension d + 1 in H. Since X Nspan(p, L) is
nonempty, it must be {p}. O

For each fixed L € G(n — d — 2,n), the expression Rx(span(p, L)) is
a polynomial in p = (po,p1,--.,Pn) of degree deg(X ). These polynomials
are called the Chow equations. By Proposition 3.1, they define X set-
theoretically. We may also replace the Chow equations by the following
finite set of equivalent equations: Expand R x(span(p, L)) as a polynomial
in Pliicker coordinates of L. The coefficients are polynomials-in p of degree
deg(X). They span the same k-vector space as the Chow equations, and
hence they define the sanie variety, namely X .

In practice this computation is best carried out by first rewriting R x in
terms of dual Pliicker coordinates. For instance, if Ry is the Chow form of
a curve in P?, given in (primal) brackets as before, then we convert them to
dual brackets by replacing ([01],[02],{03],[12],[13],[23]) by ([{23]], -[[13]],
[(12]1, [[03]], —[[02]], [[01]]). Thereafter we substitute z;y; —z;y; for each dual
bracket, [[17]] and expand the result as a polynomial in the y-variables. The
coefficient polynomials in the z-variables are the Chow equations for X .
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The Chow form of the twisted cubic curve in dual brackets equals

(23]  -[[13]] (12}
d (—[[13]] [(12]j + [[o3]) —{[02]] )
(12} —(o2]] {(01]]

After the substitutions [[ij]} — ziy; — z;3: this equals

(z32% - z3z1)9dy2 + (T22321 — 23)ydys + (2321 — z3zd)woy?
+ (z3z0 - z2zaz1)Yon ¥2 + (3z3zy — 22327 — 222320) VoW1 Y3
+ (z3z170 + 273x0 — 32223 )yoy2y3 + (23 — z22120)y0y3
+ (23 — 2370)33 + (327320 — 32dz1)yfys + (2232120 — 223204 ys
+ (3z92? — 3Z3z120)11 Y2 + (T23170 ~ T323)102ys + (2223 — 2iz0)11 3
+ (2z3zf - 2z37320)y0y3 + (2338 — 23)y3 + (2iz0 — 2223)vdys

The coeflicients are defining polynomials for the twisted cubic curve.

A natural question for an algebraic geometer is whether the Chow equa-
tions actually define their variety X scheme-theoretically. The following
beautiful answer has been given by Fabrizio- Catanese in {4]:

Theorem 3.1 The Chow equations of an irreducible projective variety X
define X scheme-theoretically if and only if X is smooth or a hypersurface.

We invite the reader to verify that the ideal of the twisted cubic is the
saturation of the Chow equations with respect to the ideal (zq, 21, z2, 23).

4. The Join of Two Varieties

In this section we address the problem of computing the ruled join of two
projective varieties in terms of Chow forms. This material is drawn from
the forthcoming Ph. D. thesis of the first author.

4.1. DEFINITION OF THE JOIN MAP

Let two varieties X ¢ P™ and ¥ C P™ be given.. We embed P™ and
P" into P™*+7*! by sending the point (zo : -+ : z,,) in P™ to the point
(zo:--+:2m:0:---:0)in PP+ and sending the point (zg: -+ : Z5)
in P™ to the point (0:---:0:zg:---: z,). The ruled join X #Y is the
union of all lines in P™*7+! joining a point of X to a point of Y. The ideal
of equations defining X #Y is simply the union of the equations for X and
the equations for Y, taken in disjoint sets of variables.

This construction appears in intersection theory as follows. The ruled
join of a projective space P™ with itself has a diagonal subspace, defined
by 20 = Zn41,Z1 = Tn42,.+-,Tn = Tan+1. [Ntersecting the ruled join of two
subvarieties X and Y of P™ with this subspace gives the intersection X nYy
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of the two varieties. This method of computing intersections is classical,
but it appears frequently in the current literature (see e.g. [8],[10]). It is
jmportant for us because, once we have computed the Chow form Rxgy
of the join, then we can find the Chow form Ryn~y of X N'Y by simply
intersecting with the diagonal subspace as in Proposition 2.1,

The Chow forms of all unions (with “multiplicity”} of subvarieties of P™
of dimension d and degree r form a subvariety of P(§7 A"~ k7+1), called
the Chow variety C(n,d,r). In general, the Chow variety is singular,
reducible, and of mixed dimension (see [22] for a first introduction to Chow
varieties). We can define a map

#:C(m,d,r)x C(n,e,8) = C(m+n+1,d+e+1,rs)

that takes a pair of Chow forms (Rx,Ry) to the Chow form Rygy of
the join of the corresponding varieties. Is this map regular? This question
was posed by Friedlander and Mazur in [9] (they show that the map is
continuous and that its graph is an algebraic variety) and answered in the
affirmative by Barlet in [1]. Barlet’s proof is complex-analytic, and the first
author has been trying to discover an algebraic proof. We will describe
an algorithm to compute the Chow formn of the ruled join that uses only
algebraic functions. Using this algorithm, it can be shown that the join map
is rational in characteristic p > rs. We hope that this method can be used
to extend Barlet’s result to large prime characteristic also.

4.2. COMPUTING THE CHOW FORM OF THE JOIN

We first give a geometric description of the algorithm:
Algorithm 4.1 JoinChow{Rx,Ry,m,n,d,e,r,s)
Input: :
Rx is the Chow form of X C P™; d = dim X; r = deg X.
Ry is the Chow formof ¥ C P e =dimY; s = deg Y.
Output:
JoinChow(R x, Ry, m,n,d,e,7,8) = Rxgy, the Chow form of the join.
Step 0: If d = 0 then X = {p1,...,p-}. In this case, lat H be a generic
hyperplane in P™, compute ps,...,7, by factoring

Rx(H) = [[{H,m)

i=1

over an algebraic extension of k, and output 7=} Reone(p;,v)- We are done,
Step 1: We may now assume that d > 0. Let H be a generic hyperplane
in P™ and compute

R(XnH)#Y = JOiI’lChOW(RXnH,Ry, m,n,d - 1,6’, ?‘,S).
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Step 2: Let L be a generic (m + n — d — e)-dimensional linear subspace of
Prtntl Then (X#Y)N L= {p(L),...,prs(L)}, and

Rxpy(H'NL) = Rixpy)nr(H) = H(H'ypz(L))

=1

~ where H' is a hyperplane in P47+l
Step 3: For 1 < ¢ < rs let ¢;(L) be the projection of p;(L) onto its first
m + 1 coordinates. Compute g;(L),...,¢s(L) by factoring

TS

Rxnmay (L) = [] (H,q:(L))

~ 3
1=1

over an algebraic extension field &' of &(L). Here H is a hyperplane in P™.

Proposition 4.1 Using notation as above, we have
(L)} = cone(g(I),YINL  for 1<i<rs.
Proof: We know that
pi(L) € (G(L)#P™)N(X#Y)N L = cone(q(L),Y)N L.

Conversely let p € cone(g;(L),Y )N L. Since p € (X#Y)N L, there exists an
index j such that p = p;(L). Since L is generic, the points q,(L},. .., ¢rs(L)
are distinct. Therefore, since p € g;{L)#P", we must have j =¢. O

Fori=1to rs do

Step 4: Unfortunately, the dimension of L is too small te allow us
to calculate the Chow form of {p;(L)} by using formulas (2.1) and
(2.3). Therefore, let L' be an (m+ n — e)-dimensional linear subspace of
Pmtn+l | generic modulo the condition L C L'. Then cone(q;(L),Y)N

= {ta(L,L",...,t;s(L, L")}, and we can compute Recone(gi(L),Y )L
using formulas (2.1) and (2.3).

Step 5: Compute the points i;,... i by factoring

E 5
Rcone(q.—(L),Y)ﬂL’(H’) = H (Htvtij(LaL’))

J=1

over an algebraic extension k" of k(L, L'), where H' is a generic hyper-
plane in P™*t7+1 Gince L' is generic, the points t;1,...,1;s are distinct.
By Proposition 4.1, p; is the unique ‘point t._, that hes on L. Thus we
have computed p;.
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step 6: Now that we know the points py(L),...,prs{L), we can compute

Rxav( H’nL : H(H’,p‘(L

=1

where H' is a generic hypgrplane in P”‘+”+1. Express Rygy in terms of
the Pliicker coordinates of H’ N L. Output the result. O

Since the factorizations in steps 3 and 5 must be performed over the al-
gebraic extensions &’ and &” of function fields over the ground field £, most
computer algebra programs will be unable to produce a factorization. In
this case, it is necessary to perform computations over the ground field in-
stead. We will give another description of the join algorithm which explains
how to simulate the factorizations and calculations in the first version by
performing calculations in polynomial rings over the groiund field only.

Algorithm 4.2 JoinChow(Rx, Ry, m,n,d, e, r,s)

Input and output are unchanged.

Step 0: If d = 0 then let py,...,p, be points in P™ with indeterminate
coordinates, rewrite [, Reone(p,,y) In terms of the elementary multisym-
netric functions of the points py,...,p,, and substitute the coeflicients of
Rx for the elementary multisymmetric functions of the points py,...,p-.
Output the result. We are done.

Step 1: We may now assume that d > 0. Let H be a generic hyperplane
in P™, compute R yng using Proposition 2.1, and compute recursively

Rixnmysy = JoinChow(Rxny, Ry, m,n,d - 1,e,7,8).

Step 2: Let L be an (m+n—d—e)-dimensional linear subspace of P™++1
with indeterminate Pliicker coordinates.

Step 3: Let ¢ be a point in P™ with indeterminate coordinates.

Step 4: Let L' be an (m + n — e)-dimensional linear subspace of Pm#n+1
with indeterminate Pliicker coordinates, subject to condition L C L’. This
inclusion translates into a set of bilinear polynomial equations in the Pliik-
ker coordinates of L and L’. These equations can be precomputed from the
values of m, n, d, and e. Compute Recone(q,¥)nL by the methods of §2.
Step 5: Let H' be a generic-hyperplane in Pm+*+! and let p be a point in
Pm4ntl with coordinates subject to the conditions that p € L, which gives
bilinear equations in the coordinates of p and L, and p € cone(q,¥) N L,
which we represent by a system of equations constructed as follows: Let f
be a polynomial with indeterminate coefficients that has degree s — 1 in the
coeflicients of H': set

| Reonetaryne(H') = (H',p) + f(H'); (4.1)
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take coefficients of both sides as polynomials in H'; and eliminate the co-
efficients of f from the ideal generated by the coefficient polynomials. To-
gether the two conditions imply that p € cone(q,Y)N L, which means that,
if ¢ = ¢;, then p = p;. By rescaling p, we may assume that its first m + 1
coordinates are the same as the m + 1 coordinates of g. This is appropriate
because ¢ is the projection of p onto P™. )

We can partially precompute the relations coming from equation 1 from
the values of m, n, and s by replacing the left hand side of equation 1 by
the Chow form of a generic point set of degree s, which is a degree s
polynomial in H’ with indeterminate coefficients. Then we can substitute
the coefficients of Reone(q,y)nrs in place of the indeterminate coefficients.
The coordinates of p can now be expressed as rational functions of ¢ and
L. (This requires a Galois theory argument using the fact that p does not
depend on the choice of L'.) We write p = p(q, L).

Step 6: Let q;,...,¢-5; be points in P™ with indeterminate coordinates.

Rewrite
TS

[T¢(H " pla:, L))

=1
in terms of the elementary multisymmetric functions of these points.
Step 3’: Substitute the coefficients of R(xnzuy(L) as a polynomial in
H for the elementary multisymmetric functions of the points ¢1,...,¢.s in
the previous result.
Step 6°: Express the result in terms of the Pliicker coordinates of H'n L.
Qutput the resulting bracket polynomial. O

The algebraic description of the algorithm, while shorter, tends to bury
its geometric content. However, this description is much more useful for
the purpose of actually computing the join in this manner. In principle, the
algorithm can be used to compute the join map for any m, n, d, e, r, and
s. As it stands, this algorithm is not very practical for actually computing
the join maps, but, hopefully, it will shed some light on their properties.

4.3. APPLYING THE ALGORITHM TO AN EXAMPLE

We can compute the Chow form of the join of two special plane conics
(imaginary circles) by this method. The input data are:

Rx = Ry = [O17+[02]2 + [12]2,
m = n = 2, .

d = € = 1, and -

T = § = 2. ’

Since d > 0, we skip step 0 and proceed to step 1.
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step 1: Letting H = V(hoxo + hiz1 + hayzy), we have

Ry = (holl] — m1[0])* + (ho[2] — h2[0])® + (Ra[2] - h2[1])?
(h2 + R3)[0)° — 2hoha[0][1) + (R + hE)[1]* — 2hoha[0](2] -
— 2hha[1][2] + (hd + AD)[2]%

We now call the algorithm recursively to compute R(XHH)'#Y-
step 0: Rewrite the Chow form of Y using new indices: Ry = [34]2 +
[35]% + [45]. Given a point z = (2g : 21 : T2) in P2, we have

R cone(a,¥) = (20034] + 2,[134] + 25[234])% +
+  (20[035] + z[135] + z2[235))° +
+  (x0[045] + z1[145] + z2[245])%.

We now consider two indeterminate points p; and py in P?, and we
rewrite the expression Rcone(p; ¥)Rcone(py,Y) 1N terms of the elementary mul-
tisymmetric functions of p; and py. We then substitute the coefficients of
Rxny for the elementary multisymmetric functions of p; and pq. This gives
us

Rxnmsy = Rg[134]* + 2h3[134]2[135]% + hg[135)* + (420 more terms).

Steps 2, 3, 4: Let I be a 2-dimensional linear subspace of P® with inde-
terminate Pliicker coordinates (Ig1 : lo13 @ - - - : lass)- Let g be a point in P?
with indeterminate coefficients (¢ : ¢1 : ¢2). Let L be a 3-dimensional linear
subspace of P® with indeterminate Pliicker coordinates (I, : #, 1 -~ - : l}s)
subject to the guadratic relations induced by I C IL'. We have already
computed R ope(z,y), 50 t0 compute Regnety vynrs» We simply perform the
substitutions z; — ¢; and [i5k] — U [1] — U [d] + 15 [k].

Step 5: Let H' = (h} : ---: k%) be an indeterminate hyperplane in P°.
Let v;,e;5,0< i< j <5, be indeterminates. Let p = (po :_- -+ : ps) be an
indeterminate point in P5 subject to the 15 bilinear relations 2,5::0 Liik ks
where 0 < 7 < j < 5, and to the relations obtained by taking coefficients of

=0 j=1

as 2 polynomial in H’ and eliminating the variables vo,...,vs. There are
490 irredundent relations belonging to 12 symmetry classes with respect to
the action of Sg on the indices. Representatives of these classes are:
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pleco — poprear + plen
e2.e11 — epregze1s + enped, + €3 €20 — depperresn
Pleor — P1p2eor — Popaerz + 2popieas
p2edy — Preo1€nz — 4p2€nnenr + 2Poenrer + 2p1encerz — Pocoi€1z
€o2€03€12 — €59€13 — 2eo1€03€q: + 4€gne13€22 + €01€02623 — 2€00€12€23
P2€01€03 — P1€02€03 — 2P2€00€13 + Poco2€13 + 2P1€0p€23 — Po€o1€23
P2P3€o1 — P1P2€os — PoPse1z + Poprezs '
€03€04€12 — €02€03€14 — €01€04€23 + 2€00€14€23 + €01€02€34 — 2€00€12€34
P3€oge12 — P2€0o3€iq — Preoq€2s + Po€r4€z3 —
> — paepiezs + Prepzend + Paeo1€3s — Pocr2esd
P4€03€17 — P2e03€14 — P4c01€23 + Po€ia€z3 + P2€01€34 — Po€12€34
€04€15€23 — €03€14€25 — €02€15€34 T €01€25€34 —
— €04€12€35 1 €p2€14€35 1 €03€12€45 — €01€23€45
€05€14€23 — €03€14€25 — €05€12€34 + €01€25€34 + €03€12€45 — €01€23€45
Then we substitute the coeflicients of

5

5
Rcone(q,Y)ﬁL" = Z Z € [Z][J]

=0 j=¢

into the precomputed relations, and set p; = ¢ for ¢ = 0,1,2. We now
consider the ideal of all relations constructed in Step 5. In this ideal we
find polynomials which express the coordinates of p as rational functions
of the coordinates of g and the Pliicker coordinates of L.

In our example we have the relations

p3 = —(goloas + qilias + qalaas)/lass
ps = {(qoloss + qhias + galaas)/lass
ps = —(goloss + @1li3a + q2l234)/ 1345

Step 6: Now let ¢, ¢2,.93, and g4 be points in P? with indeterminate
coordinates. We rewrite

4
H (H’a p(Qi; L))

=1 s

in terms of the elementary multisymmetric functions of g, ¢2, q3, and ¢4
to obtain

1 n

Fl— (80000’1;2334 - 30000h4h218341035 + 60000h2h§1334[g35 + (1362 terms))
345
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re ekl is the symmetrized sum

D (g1)ia2)(ga)elga)r-

Step 37: We substitute the coefficients of R(xnmzy(L} as a polynomial
in H for the elementary symmetric functions of ¢, ¢z, g3, and ¢4. This gives
a polynomial of degree 4 in H' and degree 4 in the Pliicker coordinates of L:

whe

RAIA o + 2h2N21G 3 + Rild, s — 4hshld slo1s + (5280 more terms)

Step 67: We express this polynomial as a function of the Pliicker coordi-
nates of ' N L, and we obtain R x4y, a polynomial of degree 4 in rank 4
primal brackets.

We summarize the result of this computation. The join X#Y is the
threefold in P® defined by the two equations

2,2 2 .2
22+ 22422 = 2242242 = 0.

Its Chow form Ry gy is the resultant of these equations and four general
lincar forms £; = wioTo+unz1+- -+ uises, i = 1,2,3,4. Here is a formula
for R x4y in terms of the maximal minors of the 4 X 6-matrix (u;;):

[0134]1 4 2[0134]2[0135)% + {0135]* + 2[0134)%[0145]% + 2[0135]%[0145]?
+ [0145]* + 2[0134]?[0234]% + (0234]* + 4[0134)%[0235)? + 2[0135]%{0235)?
+ 2[0234]2[0235)? 4 [0235)* + 4[0134)([0245]% + 4[0135]%[0245)2
+ 2[0145]2[0245)? + 2[0234]2[0245]2 + 2{0235]%[0245]2 + [0245]*

— 4]0123)[0134][0235][0345] — 4[0124)[0134][0245][0345)

— 4[0125}{0135)[0245][0345) — 2[0123]2[0345]% — 2[0124]?[0345)*

— 2[0125]2[0345)2 + 2[0134]2[1234)% + 2[0234]?[1234]? +[1234]*

+ 4[0134]2[1235]2 + 2[0135]%[1235]% + 4[0234][1235]2 + 2[0235]%[1235]?
+ 2[1234)%(1235)% + [1235]* + 4[0134]2[1245])2 + 4[0135]%{1245]?

+ 2[0145]%[1245)2 + 4[0234)%[1245)% + 4[0235)%[1245]2 + 2[0245]?[1245)?
+ 2[1234)%[1245)2 + 2[1235]2[1245]2 4 [1245])

— 4]0123][0134][1235][1345] — 4[0124){0134][1245][1345)

— 4[0125)[0135)[1245][1345] — 2[0123]2[1345]2 — 2[0124]2[1345]?

— 2{0125]2[1345]% — 4[0123][0234][1235][2345]

— 4[0124][0234)[1245][2345] — 4[0125][0235][1245][2345]

— 2[0123}7[2345)% — 2[0124]%[2345]% — 2[0125)%[2345]*
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