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Abstract. This project concerns the convex algebraic geometry of the central path of a
linear programming problem. This path is an algebraic curve, described by linear and qua-
dratic constraints arising from complementary slackness. We are interested in the defining
polynomial equations and geometric invariants of this curve, such as degree, genus and sin-
gularities. These parameters are related to the curvature and thus to the performance of
interior point methods. We also explore the natural extension to semidefinite programming.

1. Introduction

We consider the following linear programming problem in standard form:

(1) Maximize cTx subject to Ax = b and x ≥ 0.

The matrix A has n columns and rank d, and we shall assume that the feasible polyhedron
P of (1) is bounded, so it is a polytope. The logarithmic barrier function is defined as

fµ(x) := cTx + µ
n∑
i=1

log xi,

where µ > 0 is a real parameter. This defines a family of related optimization problems:

(2) Maximize fµ(x) subject to Ax = b and x ≥ 0.

Since the logarithm is a strictly concave function on the positive real axis, the function fµ
is strictly concave, and it attains a unique maximum x∗(µ) in the interior of the feasible
polytope P of (1). Note that fµ(x) tends to −∞ when x approaches the boundary of P .
The central path of the linear program (1) is the curve {x∗(µ) |µ > 0} inside the polytope P .

To gain an understanding of the geometry of the central path, we consider the dual problem

(3) Minimize bTy subject to ATy ≥ c.

•

x∗(µ)

Figure 1. The central path: a curve through the feasible polytope.
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The pair of optimal solutions, to the primal linear program (1) and the dual linear program
(3), are characterized by the following complementary slackness condition:

(4) Ax = b , ATy − s = c , x ≥ 0 , s ≥ 0 and xisi = 0 for i = 1, 2, . . . , n.

The central path is obtained from this formulation by replacing 0 with µ:

(5) Ax = b , ATy − s = c and xisi = µ for i = 1, 2, . . . , n.

If we eliminate the coordinates of the vectors y and s from (5) then we get precisely the central
path x = x∗(µ). This result follows from well-known properties of Lagrange multipliers. The
central path x∗(µ) converges for µ→ 0 to the optimal solution of the initial problem (1).

Theorem 1 (The Fundamental Lemma of Interior Point Methods for LP). For all µ > 0,
the system of algebraic equations (5) has a unique real solution (x∗(µ),y∗(µ), s∗(µ)) with the
properties x∗(µ) > 0 and s∗(µ) > 0. The vector x∗(µ) is the optimal solution of (2). The
limit (x∗(0),y∗(0), s∗(0)) of that solution for µ→ 0 is the unique solution of the system (4).

For a derivation of this theorem and relevant background we refer to the monograph of
Renegar [5], and to the work of Bayer and Lagarias [1,2] on the geometry of the central path.

It is worth stressing that, in practical computations, the maximum in (1) is found by
following a piecewise-linear approximation to the central path. This is what is called an
interior point method. The number of steps needed to solve (1) has the order O(

√
NL),

where N is the number of constraints and L is the bit size of the input coefficients. However,
approximating the central path with segments requires care to ensure convergence, and a
judicious choice of step size and initial point. Deza, Terlaky and Zinchenko [3] constructed
instances of (1) in which the number of steps for a central path approximation is greater than

O(
√
N logN). This shows how little is understood of the geometry of the central path. For

example, adding redundant constraints dramatically changes the central path (even though
the polytope P remains unchanged) and consequently the running time of the algorithm.

In the next section we study one example which will illustrate the concepts and our
questions. In Section 3 we allow A to be an arbitrary matrix A and we examine the central
path under the hypothesis that b and c are generic. Under this hypothesis, the central path
specifies an irreducible curve in Rn, and we compute prime ideal of that curve. This resolves
the open problem stated in the last sentence of [2, §11]. We also express the degree of that
curve as a matroid invariant, and we prove the tight upper bound

(
n−1

rank(A)

)
for that degree.

2. Quintic Curves in Transportation Polygons

One of the best-studied family of linear programs are those arising from transportation
problems. Here the decision variables are the entries in a non-negative matrix, the linear
constraints specify the row sums and the column sums, and one seeks to maximize a linear
function in the matrix entries. The resulting polytopes P are the transportation polytopes.

In this section we shall examine the central path for the transportation problem for 2×3-
matrices. If we write this problem in the standard form (1), then the matrix A is the
node-edge incidence matrix of the complete bipartitite graph K2,3. This matrix has format
5 × 6, its entries are 0 or 1, and its rank is 4. The rows of A correspond to the vertices of
K2,3, as shown in the diagram below, and its columns correspond to the edges of K2,3.
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v1

v2

v3

v4

v5

v1 1 1 1 0 0 0
v2 0 0 0 1 1 1
v3 1 0 0 1 0 0
v4 0 1 0 0 1 0
v5 0 0 1 0 0 1

The feasible polytope P is empty unless b is in the column span of A, which means that

(6) b1 + b2 = b3 + b4 + b5.

We shall now assume that this holds and that bi > 0 for i = 1, 2, 3, 4, 5. Then P is two-
dimensional. It consists of all non-negative 2×3-matrices with given row and column sums:

( b3 b4 b5
b1 x1 x2 x3

b2 x4 x5 x6

)
To be pedantically explicit, the matrix equation Ax = b translates into the linear ideal

IA,b = 〈x1 + x2 + x3 − b1 , x4 + x5 + x6 − b2 , x1 + x4 − b3 , x2 + x5 − b4 〉.
The remaining equations in (5) translate into the ideal

J̃A,c =

〈 y1 + y3 − s1 − c1 , y1 + y4 − s2 − c2 , y1 + y5 − s3 − c3 ,
y2 + y3 − s4 − c4 , y2 + y4 − s5 − c5 , y2 + y5 − s6 − c6 ,
x1s1 − µ, x2s2 − µ, x3s3 − µ, x4s4 − µ, x5s5 − µ, x6s6 − µ

〉
.

The two ideals live in a polynomial ring in 18 variables,

K[x,y, s, µ] = K[x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, s1, s2, s3, s3, s4, s5, s6, µ],

over the rational function field K = Q(b, c) = Q(b1, b2, b3, b4, b5, c1, c2, c3, c4, c5). If we elim-
inate y, s and µ from JA,c then we get the principal ideal in K[x] = K[x1, x2, x3, x4, x5, x6],

JA,c = J̃A,c ∩ K[x] = 〈 fA,c(x) 〉,
whose generator is the following polynomial of degree five:

(7) fA,c(x) = det


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
c1 c2 c3 c4 c5 c6

x−1
1 x−1

2 x−1
3 x−1

4 x−1
5 x−1

6

 · x1x2x3x4x5x6.

The quintic hypersurface defined by this polynomial depends only on the matrix A and the
cost vector c. It intersects the two-dimensional space defined by the linear ideal LA,b in
an irreducible quintic curve. That curve is the universal central path over K, that is, if we
specialize c and b to any particular vectors in R6 and in R5, satisfying (6), then the result
will be a plane algebraic curve that contains the central path. For almost all real values of
the coordinates ci and bj, the resulting curve is irreducible and coincides with the Zariski
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Figure 2. A transportation polygon and its central path.

closure of the central path. However, for special values of ci and bj, the ideal IA,b + 〈fA,c〉
may decompose into multiple components, only one of which represents the central path.

For a concrete numerical example we set b1 = b2 = 3 and b3 = b4 = b5 = 2. Then the
transportation polygon P is a regular hexagon, indicated in red in Figure 2. Its vertices are

(8)

(
0 1 2
2 1 0

)
,

(
0 2 1
2 0 1

)
,

(
1 0 2
1 2 0

)
,

(
1 2 0
1 0 2

)
,

(
2 0 1
0 2 1

)
,

(
2 1 0
0 1 2

)
.

Consider the two transportation problems (1) given by c =

(
0 0 0
0 1 3

)
and c′ =

(
0 0 0
0 1 2

)
.

In both cases, the last matrix in (8) is the unique optimal solution. Modulo the linear ideal
IA,b we can write the quintics fA,c and fA,c′ as polynomials in only two variables x1 and x2.
The resulting bivariate polynomials are

fA,c −→ 3x4
1x2 + 5x3

1x
2
2 − 2x1x

4
2 − 3x4

1 − 22x3
1x2 − 15x2

1x
2
2 + 8x1x

3
2 + 2x4

2

+18x3
1 + 45x2

1x2 − 12x3
2 − 33x2

1 − 22x1x2 + 22x2
2 + 18x1 − 12x2.

fA,c′ −→ (x2 − 1) · (2x4
1 + 4x3

1x2 + x2
1x

2
2 − x1x

3
2 − 12x3

1 − 14x2
1x2 + x1x

2
2

+x3
2 + 22x2

1 + 10x1x2 − 5x2
2 − 12x1 + 6x2)

Both quintic curves pass through all intersection points of the six lines formed by the bound-
ary edges of P . However, the first curve is irreducible, while the second curve has two com-
ponents. The latter the curve shown in Figure 2. Here the Zariski closure of the central path
is the straight line x2 = 1 between the minimizing vertex and the maximizing vertex. For
general cost functions c, however, the central path is always an irreducible curve of degree 5.

3. The ideal of the central path

In this section we determine the vanishing ideal and the degree of the central path of the
linear program (1). This answers a question raised by Bayer and Lagarias [2, §11]. The
matrix A can be arbitrary subject to the standing assumption that the feasible polyhedron
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P is bounded. As before, n is the number of columns of A and d is the rank of A. We work
over the rational function field K = Q(b, c) generated by the coordinates bi and cj of the
right hand side b and the cost vector c. This means that our result on the degree and prime
ideal will remain be valid under almost all specializations K → R of these coordinates.

Let LA,c denote the (d+ 1)-dimensional vector subspace of Kn spanned by the rows of A
and the additional vector c. The central sheet is the coordinatewise reciprocal L−1

A,c of that

linear subspace. In precise terms, we define L−1
A,c to be the Zariski closure in Kn of the set{( 1

u1

,
1

u2

, . . . ,
1

un

)
∈ Kn : (u1, u2, . . . , un) ∈ LA,c and ui 6= 0 for i = 1, . . . , n

}
.

Lemma 2. The Zariski closure of the central path {x∗(µ) : µ ∈ R≥0} is equal to the
intersection of the central sheet L−1

A,c with the affine-linear subspace defined by A · x = b.

Proof. We eliminate s,y and µ from the equations ATy−s = c and xisi = µ as follows. We
first replace the coordinates of s by si = µ/xi. The linear system becomes ATy−µx−1 = c.
This condition means that x−1 = ( 1

x1
, . . . , 1

xn
) lies in the linear space LA,c spanned by c and

the rows of A. The result of the elimination is that x lies says the central sheet L−1
A,c. �

The linear space {A · x = b} has dimension n − d, and we write IA,b for its linear ideal.
The central sheet L−1

A,c is an irreducible variety of dimension d+ 1, and we write JA,c for its
prime ideal. This notation is consistent with that used in the example of Section 2.

The intersection of the linear space {A ·x = b} with the central sheet is the variety of the
ideal sum IA,b +JA,c. By slight abuse of notation, we refer to that intersection as the central
path, as it is Zariski closure of the central path x∗(µ). Since the right hand side vector b is
generic over Q, the resulting linear space is general enough, Bertini’s Theorem ensures that
the ideal generators and the degree of the central sheet are preserved under that intersection.

Lemma 3. The degree of the central path coincides with the degree of the central sheet L−1
A,c.

The prime ideal of polynomials that vanish on the central path is equal to IA,b + JA,c.

At this point we are left with the problem of computing the minimal generators and the
degree of the homogeneous ideal JA,c. Luckily, this has already been done for us in the
literature. The following theorem is due to Proudfoot and Speyer [4] and it refines an earlier
result of Terao [7]. We refer to [6, Theorem 2] for an exposition of this result in a statistical
context. The paper [6] deals primarily with positive definite matrices and it indicates how
Theorem 4 should be extended from linear programming to semidefinite programming.

Consider the matroid of rank n − d − 1 on the ground set {1, 2, . . . , n} defined by the
linear subspace LA,c of Kn. Let β(A) denote the β-invariant of that matroid. The β-
invariant is a non-negative integer that can be described geometrically as follows. Consider
the (d− 1)-dimensional affine-linear subspace of Kn obtained by intersecting {Ax = b} with
a general hyperplane c · x = c0. Consider that (n − d − 1)-dimensional subspace consider
the arrangement of n hyperplanes obtained by intersecting with {xi = 0} for i = 1, 2, . . . , n.
Then β(A) is the number of bounded regions in that hyperplane arrangement. Note that
β(A) does not depend on b and c, as these vectors are generic over Q. In the example of
Section 2 we have n − d − 1 = 1, the hyperplane arrangement consists of six points on a
general line c · x = c0 passing through Figure 2, and the number of its bounded regions is
β(A) = 5.
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Theorem 4. The degree of the central sheet L−1
A,c equals the beta-invariant β(A). Its prime

ideal JA,c is generated by a universal Gröbner basis consisting of all homogeneous polynomials

(9)
∑

i∈supp(v)

vi ·
∏
j 6=i

xj,

where
∑
vixi runs over non-zero linear forms of minimal support that vanish on LA,c.

Proof. This theorem is due to Proudfoot and Speyer [4]; see also [6, Theorem 2]. �

The polynomials in (9) correspond to the circuits of the matroid. There is at most one
circuit contained in each (d+2)-subset of {x1, . . . , xn}, so their number is bounded above by(
n
d+2

)
. If the matrix A is generic then that matroid is uniform and the beta-invariant equals

β(A) =

(
n− 1

d

)
.

For arbitrary matrices A, this binomial coefficient always furnishes an upper bound.

Corollary 5. The degree of the central path of (1) equals the beta-invariant β(A) and is hence
at most

(
n−1
d

)
. The prime ideal of polynomial that vanish on the central path is generated by

the circuit polynomials (9) and d linear polynomials which are coordinates of A · x− b.
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