DISCRETIZING GAUSSIAN MODELS

DUSTIN CARTWRIGHT

Let X be a positive semidefinite matrix with non-zero diagonal entries, and Gy
the corresponding (possibly singular) Gaussian distribution on n random variables
with mean 0. In this report, we study the discretization formed by taking just
the sign of each of the variables, i.e. the model on sign patterns s € {+1}" whose
distribution is

ps = Pa(s121 > 0,..., 8,2, > 0)

The goal is to describe as explicitly as possible the possible probability distributions
on sign patterns which can arise in this way. This is done completely for n at most 3,
but for n = 4, these possible probability distributions are defined by a non-algebraic
equation.

First note that we can rescale each of the random variables by its variance to
get a correlation matrix whose (4, j) entry is X,;/1/2::%;;. The set of all positive
semidefinite matrices with ones on the diagonal is called an elliptope and we will
denote it F,. From now on ¥ will always denote a point in the elliptope E,,.

By the symmetry of the Gaussian distribution, the discretization will always
satisfy ps = p_s. Thus, we will regard such a distribution as lying within the
(27~ — 1)-dimensional simplex AT

The Cholesky decomposition of a postive semidefinite allows us to reinterpret
the discretization in terms of the spherical volume of the cones cut out by a con-
figuration of oriented hyperplanes. Factoring ¥ as AA”T for a real matrix A tells
us that the distribution on x is the same as that coming from the transformation
z = Ax’ where the entries of 2’ are independently distributed samples from the
standard Gaussian distribution. Thus x; = 0 corresponds to the hyperplane de-
fined by the ith column of A (which is non-zero by our assumption on X), and so
the sign pattern of a vector x is determined by where it lies in the complement of
these hyperplanes. Since the probability distribution on 2’ is rotationally symmet-
ric, it suffices to compute the relative volume of the intersection of any of these
components with an (n — 1)-dimensional sphere centered at the origin.

For n = 2, this allows us to understand the discretization map explicitly. Let
r = X2 be the off-diagonal entry of the matrix. Then the Cholesky decomposition
gives us two hyperplanes which lie at an angle of /2 4 arcsinr. Rescaling, we get:

1, 1 :
D++ =D—— = 7 + 5o arcsinr
Py =p_g = % — % arcsinr

In particular, the probabilities are not algebraic functions of the entries of X.
Nonetheless, this parametrization tells us that the resulting probability distribu-
tions are exactly all such distributions which satisfy the above noted symmetry

Ps = D—s-

Date: December 10, 2008.



2 DUSTIN CARTWRIGHT

From this case we get the following:
Proposition 1. Discretization induces a homeomorphism of E, onto its image.

Proof. We can write down a continuous inverse:

T;j =sin | 27 Z Ps — i
se{£l}m:s;=s;=+1
The summation amounts to marginalizing all the variables except ¢ and j. Then
the formula follows from the 2-variable situation analyzed above. (Il

Now we turn to the situation with 3 variables. Here, we have
1 + S152
8 4T
for any s; = +1. This formula can be proved from the Gauss-Bonnet theorem, but
it can also be derived from the 2-variable case. Marginalizing any of the 3 variables
gives us the three equations

. 5183 . 5283
arcsinrio + arcsinris +
47 47

(1) Psisass = arcsin rog

1 1 .
D+++ +p++_ = 1 + % arcsinrig
1 1 .
Piatr +Py_y = 1 + o arcsinris
1 1 .
Pisyr P41y = - + -—arcsinrogg
4 27

Taking these three equations together with the constraint that the sum of the
probabilities equals 1, we can solve and get (1). As in the 2-variable case, the
image is surjective:

Proposition 2. Discretization is a homeomorphism from E3 to Asz.

Proof. By Proposition 1, it suffices to show that the map is surjective.

First, we claim that the boundary of E3 surjects onto the boundary of Ag,
i.e. probability distributions with at least one 0. Such probability distributions
are obtained from configurations of hyperplanes which intersect in a line and thus
divide R? into at most 6 cones, i.e. at most 3 pairs of opposite cones. However, by
rotating the hyperplanes around their common line of intersection, we can obtain
all possible probability distributions on these 3 cones, thus proving the claim.

Now, we use algebraic topology to show that the map is surjective. If there were
a point of Ag not in the image, then regarding As topologically as a 3-dimensional
disk, we can project away from that point to get a map to the boundary. Composing
with the discretization map gives us a map from FE3, which, again, is topologically
a disk to the boundary of A3, which is homeomorphic to the boundary of E3 by
the claim and Proposition 1. However, this is impossible because there is no retract
from a disk to its boundary. O

We can say a little bit more about this map. The preimages of the vertices of
A3 are the four rank 1 matrices on the boundary of the elliptope. The preimages
of the edges are the six families of matrices:

1 +£1 a 1 a +1 1 a *a
+1 1 +a a 1 +a a 1 +1
a Zfa 1 +1 +a 1 t+a +1 1
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where —1 < a¢ < 1 and + denotes the same sign within each matrix. These are
exactly the matrices in the elliptope where one of the 2 x 2 principal minors vanishes.
In this case, the non-negativity of the determinant forces the relationship between
the other two off-diagonal entries.

Finally, we come to the case of n = 4, in which case the image is no longer
semialgebraic:

Theorem 3. The image of E* in A7 is an analytic hypersurface, but there is no
non-trivial polynomial which vanishes on it.

Proof. We restrict our attention to matrices in the elliptope of the form

1 T12
riz2 1 7o
res 1 T3
T34 1
The corresponding distributions are known as orthoschemes in the statistics lit-
erature. The three zero entries tell us that the image of these matrices lies in a
codimension 3 linear space. From Equation (2.2) in [Ab], we have the following,
attributed to van der Vaart:

1
Dsyspssss = 7= + =— (8182012 + S253a23 + S354a34)+

16 8w
1 a1z rasd dadp
—s 51828354
472 / / in?
0 0 V 1 - coss2 ozcaozs32 B

An affine linear change of coordinates gives us the variables a12, as3, ass, together
with the final double integral, which we will denote f. It will suffice to show that
there is no polynomial relation between these coordinates.

If g were such a relation, then differentiating g with respect to aio gives us

another relation involving 8?1{ —:

99 of | 9y
67“ 8a12 + 8@12
Eliminating f from these two relations gives us a non-trivial relation between the
a;; and 8?1{ S Repeating variations of this argument, we get a relation among the

=0

Aij and
1 82f -2 o Sil’l2 a23
- <5a128a34) o cos? ai2 cos? as4
which is impossible since sin and cos are not algebraic functions. (I

REFERENCES

[Ab] Abrahmson, I. G. Orthant probabilities for the quadrivariate normal distribution. Ann. Math.
Statistic. 35: 4 (1964). 1685-1703.



