
DISCRETIZING GAUSSIAN MODELS

DUSTIN CARTWRIGHT

Let Σ be a positive semidefinite matrix with non-zero diagonal entries, and GΣ

the corresponding (possibly singular) Gaussian distribution on n random variables
with mean 0. In this report, we study the discretization formed by taking just
the sign of each of the variables, i.e. the model on sign patterns s ∈ {±1}n whose
distribution is

ps = PΣ(s1x1 > 0, . . . , snxn > 0)
The goal is to describe as explicitly as possible the possible probability distributions
on sign patterns which can arise in this way. This is done completely for n at most 3,
but for n = 4, these possible probability distributions are defined by a non-algebraic
equation.

First note that we can rescale each of the random variables by its variance to
get a correlation matrix whose (i, j) entry is Σij/

√
ΣiiΣjj . The set of all positive

semidefinite matrices with ones on the diagonal is called an elliptope and we will
denote it En. From now on Σ will always denote a point in the elliptope En.

By the symmetry of the Gaussian distribution, the discretization will always
satisfy ps = p−s. Thus, we will regard such a distribution as lying within the
(2n−1 − 1)-dimensional simplex ∆2n−1−1.

The Cholesky decomposition of a postive semidefinite allows us to reinterpret
the discretization in terms of the spherical volume of the cones cut out by a con-
figuration of oriented hyperplanes. Factoring Σ as AAT for a real matrix A tells
us that the distribution on x is the same as that coming from the transformation
x = Ax′ where the entries of x′ are independently distributed samples from the
standard Gaussian distribution. Thus xi = 0 corresponds to the hyperplane de-
fined by the ith column of A (which is non-zero by our assumption on Σ), and so
the sign pattern of a vector x is determined by where it lies in the complement of
these hyperplanes. Since the probability distribution on x′ is rotationally symmet-
ric, it suffices to compute the relative volume of the intersection of any of these
components with an (n− 1)-dimensional sphere centered at the origin.

For n = 2, this allows us to understand the discretization map explicitly. Let
r = Σ12 be the off-diagonal entry of the matrix. Then the Cholesky decomposition
gives us two hyperplanes which lie at an angle of π/2 + arcsin r. Rescaling, we get:

p++ = p−− = 1
4 + 1

2π arcsin r

p+− = p−+ = 1
4 −

1
2π arcsin r

In particular, the probabilities are not algebraic functions of the entries of Σ.
Nonetheless, this parametrization tells us that the resulting probability distribu-
tions are exactly all such distributions which satisfy the above noted symmetry
ps = p−s.
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From this case we get the following:

Proposition 1. Discretization induces a homeomorphism of En onto its image.

Proof. We can write down a continuous inverse:

rij = sin

2π

 ∑
s∈{±1}n:si=sj=+1

ps − 1
4


The summation amounts to marginalizing all the variables except i and j. Then
the formula follows from the 2-variable situation analyzed above. �

Now we turn to the situation with 3 variables. Here, we have

(1) ps1s2s3 =
1
8

+
s1s2

4π
arcsin r12 +

s1s3

4π
arcsin r13 +

s2s3

4π
arcsin r23

for any si = ±1. This formula can be proved from the Gauss-Bonnet theorem, but
it can also be derived from the 2-variable case. Marginalizing any of the 3 variables
gives us the three equations

p+++ + p++− =
1
4

+
1

2π
arcsin r12

p+++ + p+−+ =
1
4

+
1

2π
arcsin r13

p+++ + p−++ =
1
4

+
1

2π
arcsin r23

Taking these three equations together with the constraint that the sum of the
probabilities equals 1, we can solve and get (1). As in the 2-variable case, the
image is surjective:

Proposition 2. Discretization is a homeomorphism from E3 to ∆3.

Proof. By Proposition 1, it suffices to show that the map is surjective.
First, we claim that the boundary of E3 surjects onto the boundary of ∆3,

i.e. probability distributions with at least one 0. Such probability distributions
are obtained from configurations of hyperplanes which intersect in a line and thus
divide R3 into at most 6 cones, i.e. at most 3 pairs of opposite cones. However, by
rotating the hyperplanes around their common line of intersection, we can obtain
all possible probability distributions on these 3 cones, thus proving the claim.

Now, we use algebraic topology to show that the map is surjective. If there were
a point of ∆3 not in the image, then regarding ∆3 topologically as a 3-dimensional
disk, we can project away from that point to get a map to the boundary. Composing
with the discretization map gives us a map from E3, which, again, is topologically
a disk to the boundary of ∆3, which is homeomorphic to the boundary of E3 by
the claim and Proposition 1. However, this is impossible because there is no retract
from a disk to its boundary. �

We can say a little bit more about this map. The preimages of the vertices of
∆3 are the four rank 1 matrices on the boundary of the elliptope. The preimages
of the edges are the six families of matrices: 1 ±1 a

±1 1 ±a
a ±a 1

  1 a ±1
a 1 ±a
±1 ±a 1

  1 a ±a
a 1 ±1
±a ±1 1


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where −1 ≤ a ≤ 1 and ± denotes the same sign within each matrix. These are
exactly the matrices in the elliptope where one of the 2×2 principal minors vanishes.
In this case, the non-negativity of the determinant forces the relationship between
the other two off-diagonal entries.

Finally, we come to the case of n = 4, in which case the image is no longer
semialgebraic:

Theorem 3. The image of E4 in ∆7 is an analytic hypersurface, but there is no
non-trivial polynomial which vanishes on it.

Proof. We restrict our attention to matrices in the elliptope of the form
1 r12

r12 1 r23

r23 1 r34

r34 1


The corresponding distributions are known as orthoschemes in the statistics lit-
erature. The three zero entries tell us that the image of these matrices lies in a
codimension 3 linear space. From Equation (2.2) in [Ab], we have the following,
attributed to van der Vaart:

ps1s2s3s4 =
1
16

+
1

8π
(s1s2a12 + s2s3a23 + s3s4a34)+

1
4π2

s1s2s3s4

∫ a12

0

∫ a34

0

dα dβ√
1− sin2 a23

cos2 α cos2 β


An affine linear change of coordinates gives us the variables a12, a23, a34, together
with the final double integral, which we will denote f . It will suffice to show that
there is no polynomial relation between these coordinates.

If g were such a relation, then differentiating g with respect to a12 gives us
another relation involving ∂f

∂a12
:

∂g

∂f

∂f

∂a12
+

∂g

∂a12
= 0

Eliminating f from these two relations gives us a non-trivial relation between the
aij and ∂f

∂a12
. Repeating variations of this argument, we get a relation among the

aij and

1−
(

∂2f

∂a12∂a34

)−2

=
sin2 a23

cos2 a12 cos2 a34

which is impossible since sin and cos are not algebraic functions. �
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