Math 113, Solutions to the Final Exam

- (1) We have $[21] \cdot [11] = [-2] \cdot [11] = -[22] = -[-1] = 1$. Hence u^{-1} is the class of 21, and $u + u^{-1}$ is the class of 9.
- (2) The smallest non-abelian group is the symmetric group S_3 which has order 6. Every group of prime order 2, 3, 5 is cyclic and hence abelian. There are two groups of order 4, namely, $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and they are both abelian. Note that every group of order p^2 , for p a prime number, is an abelian group. This was shown in Corollary 2.10.15.
- (3) The number of units in $\mathbb{Z}/60\mathbb{Z}$ is the value of Euler's phi-function at 60. Using the formula in §1.8.3, we find

$$\psi(60) = 60 \cdot (1 - 1/2)(1 - 1/3)(1 - 1/5) = 16.$$

- (4) We have $\Phi_{11}(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$, by Exercise 4.10, since p = 11 is a prime number.
- (5) We want $f(x) = x^3 + 2x^2 + a$ to be an irreducible polynomial, which is equivalent, by Proposition 4.6.3 (v), to f(x) having no root in \mathbf{F}_5 . Direct computation shows that

$$f(0) = f(3) = a, \ f(2) = f(4) = 1 + a, \ f(1) = 3 + a$$

Therefore a=-2=3 and a=-4=1 are the two choices for which f(x) is irreducible, and precisely in these two cases is $\mathbf{F}_5[x]/\langle f(x)\rangle$ a field, by Proposition 4.6.3 (i).

(6) A computation shows that the reduced lexicographic Gröbner basis for the given ideal consist of the two polynomials

$$y - \frac{1}{2}x^3 + \frac{1}{2}x$$
 and $x^4 - x^2 + 4$.

Hence, by Theorem 5.9.1, the elimination ideal $I \cap \mathbf{Q}[x]$ is generated by $f(x) = x^4 - x^2 + 4$.

- (7) This statement is not true: Take G to be the symmetric group S_3 , and consider its two-element subgroups $H_1 = \{id, (12)\}$ and $H_2 = \{id, (13)\}$. Then the set $H_1 \cdot H_2$ consists of the four permutations id, (12), (13) and (132), and this is not a subgroup of S_3 . By Lemma 2.3.6, the statement would be true if either H_1 or H_2 were normal.
- (8) This statement is true (and appears in Exercise 3.25): Ideals in R/I are in one-to-one correspondence with ideals J in R that contain I. If f is an element in R that generates the principal ideal J then its image in R/I will generate the image of J in R/I. See also Exercise 3.20.
- (9) This statement is true: Let v = (3,5) and consider the weight term ordering \leq_v . Then y^2 is the leading term of the first polynomial $y^2 + x^3$, and x^2 is the leading term of the second polynomial $x^2 + y$. The Spolynomial $x^2(y^2 + x^3) y^2(x^2 + y) = x^5 y^3$ reduces to zero upon division by $\{y^2 + x^3, x^2 + y\}$ and hence (by Buchberger's Criterion) the two given polynomials are a Gröbner basis. See also Exercise 5.20.
- (10) This statement is false: The element y is irreducible in R but it is not prime because it divides xz but does not divide either of x or z. To prove this rigorously we use the fact that $\{xz-y^2\}$ is a Gröbner basis for the ideal it generates. Proof of irreducible: If y=pq in R for some non-units p and q then p and q have positive degree. This is impossible because y-pq cannot reduce to zero modulo the Gröbner basis. Proof of not prime: If yq=x in R for some polynomial q then qy-x is in the ideal. But it cannot reduce to zero modulo the Gröbner basis.