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Abstract. We estimate the asymptotic number of real roots of a system of
polynomial equations under a multiplicative deformation which preserves the
Newton polytope.

1 Introduction

We consider a system of d polynomial equations in d variables x = (Z1y... ,24):

ChH(xX) = enx™ +ex® 4.t opx®™ = 0
, ' (L)
fax) = caix™ + ca2x 4+ ..+ cx® = 0
where A = {a,,... yan} C N9, x% = iz ---z3® and the coeﬁicients'c,-j

are real numbers. The convex polytope Q = conv(A) in R? is called the Newton
polytope of the system (1.1). It has the normalized volume v(A) = vol(Q) - d.

Theorem 1.1 (Koushnirenko [1975]) For all coefficient matrices (cij) in a
dense subset Uq of R¥™, the system (1.1) has v(A) distinct zeros in the complex
torus (C*)4.

Bernstein [1975] gives an extension of Theorem 1.1 to mized systems, where
each polynomial f;(x) has a different set of exponent vectors A; C N%. Here we
restrict ourselves to the unmixed case, and we assume dim(Q) = d, or, equivalently,
v(A) > 0. All our results can be extended to mixed systems using the techniques
in Pedersen and Sturmfels [1993], Sect. 7. The dense subset &/ 4 C Réxn appearing
in Theorem 1.1 is Zariski-open, i.e., U4 is the set of non-zeros of a finite system of
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polynomials. This system consists of the face resultants appearing in Pedersen and
Sturmfels [1993], Theorem 3.1, plus a certain discriminant which rules out multiple
roots.

This note is concerned with following question: How many of the v(.A) complex
zeros are real zeros? Let p(A) denote the maximum number of real roots x € (R*)¢
of (1.1) as (¢;;) ranges over U 4. Similarly we write p, (A) for the maximum number
of real positive roots x in (R )¢. Counting the 2¢ orthants in R?, we get the obvious
inequality

p(4) < 2% pi(A). (1.2)
The theory of Fewnomials, due to Khovanskii [1991], shows that the number of real
roots is generally much smaller than the number of complex roots. There exists an
upper bound for p(A) which depends only on the dimension d and the number of
terms n = | A|.

Theorem 1.2 (Khovanskii [1980], [19.91]) The number of positive real Toots
of (1.1) satisfies
pr(A) < 22D (@4 1) (1.3)

This theorem raises the following natural question.

Problem 1.3 Find lower bounds and more precise upper bounds for p(A),
the mazimum number of real roots, in terms of the combinatorial structure of the
configuration A.

Very little is known at present, as is witnessed by a challenging little example.

Example 1.4 What is the maximum number of real roots of a bivariate system
with five terms? In other words, determine the maximum p(2,5) of the integers
p(A), where A runs over all five element subsets of N2.

Let A = {(0,0),(2,0),(4,0),(0,2),(0,4)}. This configuration is the support of

(22 -4)2+ (1?2 -3)"-13 = (22-4)2-(3*-3)% -5 = 0. (14)

The Newton polytope Q = conv(A) is a triangle with area 8, therefore v(A) =
2.8 = 16 > p(A). The specific system (1.4) has all 16 roots real, and therefore
p(A) = 16.

The resulting inequality p(2,5) > 16 is the best lower bound for p(2,5) known
to me at present. There is an embarrassingly wide gap to the upper bound from
Khovanskii’s Theorem 1.2. Combining (1.2) and (1.3), we have p(2,5) < 22.210.
35 =995,328. 0O

In this note we venture a first step in the attack on Problem 1.3. We fix

w = (wy,-..,w,) € N* and we consider the perturbed system
fi(t; zq,... ,20) = c1t1x® + €1pt“?2xX% + ...+ cpatnx® = 0
fa(t;z,... ,Zn) = cqt'x® + cgat“?x? + ... + cant“"x" = 0

(1.5)

as the real parameter t tends to zero.
Our main result (Theorem 2.2) gives precise bounds for the number of real
roots of (1.5) for sufficiently small ¢ > 0. As a corollary we get a lower bound for
p(A). These bounds are stated in terms of regular triangulations. This concept is
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reviewed in the beginning of Section 2. The proof of our result is given in Section
3.

2 Bounds in terms of regular triangulations

A subdivision of the pair (Q, A) is a collection A = {A1,..., A} of subsets of
A such that '
e each polytope Q; = conv(A;) has the full dimension d for i — 1,...,m,
*Q=0Q1UQU...UQ,,, and
e each intersection Q; N Q; is a common proper face of Q; and Qj,forl<ic
Jj<m.
The subsets .4; are the cells of the subdivision A. We say that A is a triangu-
lation of (Q,.A) if each cell A; has cardinality d + 1. An important subclass of
triangulations is the class of regular triangulations (see e.g. Billera, Filliman and
Sturmfels [1990], Gel'fand, Kapranov and Zelevinsky [1990], and Lee [1991]). In
what follows we give an algebraic definition of regular triangulation, based on the
results in Sturmfels [1991]. Let yy,... ,y,, z, z1,... ,Zq be variables, and consider
the Z-algebra homomorphism ' ‘

Zly1, Y2, oYl = Z[z1,... 70, 2], i o> z-z0gle gl (2.1)
with a; = (ai1,... ,ai4) as before. We define the toric ideal I A to be the kernel of
map (2.1). The toric ideal I 4 is generated by all homogeneous polynomials of the
form
_ VUL uRr — Yy, (2.2)

where wya; +... 4+ pna, = via; +... 4+ vpa, and Mttty = +.. 4,
The relations (2.2) correspond to affine dependencies of A.

We fix w € N™. For each polynomial f € Z[y,... ,yn] we consider
f(t*'y1,... ,t“ny,) as a univariate polynomial in the parameter t. Its leading
coefficient init,(f) is a polynomial in Z[z,,... »Zn], called the initial form of f
with respect to w. We define the initial ideal of I 4 as

init,(la) = (init,(f) : fely). (2.3)

For sufficiently generic w the initial ideal init,(I4) is generated by monomials.
We now suppose that this is the case. In the language of Gribner basis theory:
the vector w represents a term order for I4. A monomial Yt - -ykn is said to be
standard if y"* - - - y4~ does not lie in 14. Let A, denote the collection of all (d+1)-
subsets {a;y,a;,,...,a;,} of A for which all powers of the square-free monomial
Yio¥i, - - ¥i, are standard.

Theorem 2.1 (Sturmfels [1991]) The set A, is a triangulation of (Q,A).

A triangulation A of (Q4) is called regular if A = A, for some w € N™. For
examples of non-regular triangulations see Billera, Filliman and Sturmfels [1990],
Figure 1 and Lee [1991], Figures 2 and 6.

Fix a term order w € N™, and let A, be the corresponding regular triangula-
tion. Each cell A; € A,, generates an affine lattice Z{A4;} of rank d. The quotient of
lattices Z¢/Z{A;} is a finite abelian group of order v(A;). By standard results on
finite abelian groups (Hungerford [1974], Cor. 2.7), there exist unique positive inte-
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gers my,ma, ... ,my, called invariant factors, such that m;_, divides m; fori = 2,
..,n,and
Z4Z{A} =~ Z/mZ ® Z/mZ & ... ® Z/myZ. (2.4)
We have mimsy---mg = v(A;). Let even(A4;) denote the number of invariant
factors m; which are even. If the integer v(.A;) is odd, or equivalently, if even(A;) =
0, then we call A; an odd cell. We now state the new result of this note.

Theorem 2.2 Let (cij) € Ua, and let p be the number of real roots x € (R*)4
of the system (1.5) for sufficiently smallt > 0. This number satisfies the inequalities

#oddcellsin A, < p < Y, 2ven() (2.5)
Ai€A,

This theorem has the following two corollaries.

Corollary 2.3 For any configuration A C N¢, the number p(A) is bounded
below by the number of odd cells in any regular triangulation of (Q,A).

Corollary 2.4 Fiz (cij) € Ua and let A, and p as in Theorem 2.2.

(a) If each cell in A, is odd, then the lower and upper bounds in (2.5) agree and p
coincides with the total number of cells in A,,.

(b) If each cell A; € A, has unit volume v(A;) = 1, then all complez roots of (1.5)
are real for t — 0, and we have p = p(A) = 'u(.A)

We illustrate these results for three classes of examples.

Example 2.5 (Dense univariate polynomials) Let co,c1,... ,cn be fixed real
numbers, let w = (wo,-..,wn) € N™*! such that wi_; + wiy1 # 2w; for ¢ =
1,...,n—1,and let t >0 be sufficiently small We are interested in the number p
of real roots of the polynomial

fi(z) = cot*° + at“*z + cot?z? + ... + cptnz™. (2.6)

Let (iy,w;, ), (i2,wiy ), - - - (ik,ws, ) be the vertices of the polygon conv{ (i,w;), (2,0) :
i=0,1,...,n}. We may suppose 0 =14; <42 <...<ix =n. Let foda denote the
number of differences ;41 —i, which are odd. Then fogq < p < 2(k—1) — fodd-

If all differences i;4, — i; are odd, then fo4q = p for all choices of coefficients

¢; € R*. For instance, choose arbitrary non-zero real numbers cg, ¢y, ... ,¢7, and

consider

filz) = cof® + at'z + etz + cat'z® + cut'a? + cst’2® + ct?z® + ert’z’.
(2. 7)

For small parameter values ¢ > 0, the polynomial f;(z) has precisely fosa = 3 real
roots.

Example 2.6 (The cross-polytope) Consider the system of polynomial equa-
tions

J
Zc,, 1’[ xk+zd,_,xox1 :anxk = 0 (i=1,2,...,n+1) (2.8)

k=j+1

where the c;;,d;; are real coefficients, and the product over the empty set is defined
to be 1. The corresponding set A C N™*+1 is unimodularly equivalent to the vertices
of the regular (n + 1)-dimensional cross-polytope. For n = 2 the cross-polytope
Q = conv(A) is the octahedron. There is a canonical regular triangulation of A
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into 2" simplices of unit volume. The number of complex roots of (2.8) equals 27,
and, by Corollary 2.8, this number coincides with the maximum number p(A) of
real roots. '

Example 2.7 (Bivariate systems) Fix d = 2. We write f (A,) for the number
of triangles (= cells) in the regular triangulation A, of A = {as,...,a,} c N2.
An easy count of triangles in planar graphs shows that f(A,) < 2n — 5. Theorem
2.2 implies

p < 22.f(A,) < 8n-— 2.
Thus for d = 2 fixed, the number of real roots of (1.5) for ¢ — 0 is bounded
above by a linear polynomial in n. Note that the Khovanskii upper bound (1.3) is
exponential in n. :

It is easy to see that the number p(A) is bounded below by a quadratic poly-
nomial in n. Generalizing Example 1.4, we let f(z) and g(y) be univariate polyno-
mials of degree n, each having n distinct positive roots. Then the bivariate system
f(z)+9(y) = f(z) — g(y) = 0 has n? real roots, but its support set .4 has only
cardinality 2n + 1. This shows that in general the number p in Theorem 2.2 grows
much slower than p(A). But how much?

We formulate this as a problem of asymptotic complexity. Let p(d,n) denote
the maximum of the numbers p(A) where .4 runs over all n-element subsets of N¢.

Problem 2.8 For fized d > 2, does p(d, n) grow polynomially or ezponentially
inn ?

3 The proof

Our proof of Theorem 2.2 is algorithmic. We describe an explicit, procedure for
computing the p real roots of (1.5) for ¢ — 0. We start with a “subroutine” for the
base case n = d + 1.

Proof of Theorem 2.2 (Part I: n = d + 1). We show that (2.5) holds for the
number of roots of (1.1), for all (c;;) € U4. Using elementary row operations, we
transform the d x (d + 1)-coefficient matrix (c;;) into a unit matrix plus one extra
column. We thus rewrite the system (1.1) in the form

NXM = XM = ypx®2 x4 = | = yyx% x84 _ 0, (3.1)

where the ; are Q-linear combinations of the old coefficients ¢ij. Equivalently, we
have

o x%17%d+1 — Yo x%32=0d+1 e =Yg x%d~Ad+1 1. (32)
We now compute the Smith normal form of the d x d-exponent matrix (a; —
Qgy1y-.. ,09 — adH). This means we construct invertible integer d x d-matrices
U and V such that

V. (a1 — Q441,02 — Qd41,y... yQq — ad+l) U = diag(mbm'-’s-' . amd), (33)

where m;_; divides m; for all i. As in (2.4), we have ZYZ{A} ~ Z/miZ @
oo ® Z/myZ, and mym,---my = v(A), the normalized volume of the simplex

Q = conv(A).

The invertible matrix U = (uy,... ,Ur) defines a monoidal transformation of
coordinates z; +— z. In the new coordinates z = (z,... 124) our system (3.3)
equals

Nt = fmt o= o= g2 = (3.4)



142 Bernd Sturmfels

where the 4; are obtained from the +y; via the monoidal transformation defined by
V. :

By construction, the number of real roots of (1.1) equals the number of
real roots of (3.4). This number is bounded above by 2#{m::mieven}  Jf
v = mymsy---my is odd, then at least one of the roots is real. This completes our
proof for thecase n=d+1.

For the general case we need the following description of the regular triangula-
tion A,.

Lemma 3.1 A subset B C A is a cell of A, if and only if there exist
AD)Al?"' 7Ad € Q

= wj ifaiEB,

> w; ifa; ¢B. (3:5)

d
such that _ ZAjaij + Ao {

Proof This follows from the equivalent definitions in Billera, Filliman and
Sturmfels [1990], (4.4) and Lee [1991], Section 4. O

Proof of Theorem 2.2 (Part II: n > d+1). We view the complex roots of (1.5)
as the branches of a vector-valued algebraic function of ¢ as ¢ — 0. The number of
branches equals v(A) = > zca_ v(B). For each cell B of A, we get v(B) branches.
These are computed using the following transformation.

We choose Ag, A1, .. ,Aq € Q as in Lemma 3.1. We substitute z; -t~ for z;
and multiply each equation in (1.5) by t=*° to get the equivalent system

ot . .

ge BT pe) = DX Y aet™x™, ((=1,2,...,d).
: a;€B argB

(3.6)

The exponents 7, are positive rational numbers.

For t = 0 the system (3.6) has v(B8) complex roots. We may assume that there
are no multiple roots, if necessary, by shrinking the Zariski open set 4. Let pg
denote the number of real roots at t = 0. By the Implicit Function Theorem, the
system (3.6) has pp real roots for all parameters ¢ in a small neighborhood of the
origin 0.

We have shown that for ¢ — 0 the number of real roots of (1.5) equals

p = Z pB-
BeA,

By part I each pg satisfies the desired upper and lower bound. Since these bounds
are additive with respect to the cells of A,, the proof of Theorem 2.2 is com-
plete. O
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