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Mixed monomial bases 

p, Pedersen1 , B, Sturmfels2 

1 Introduction 

Given a system of n generic Laurent polynomials 

Ii (x) L ciqXq; 
qEAi 

Q=(ql, ... ,q11); 

with support sets Ai C 7L,n, we consider the ring 

where K is the field «Jl( {Ciq}). The K-dimension of A equals the number of 
toric roots {x E (C*)n : I;(x) = 0, 1 SiS n}. By Bernstein's theorem 
[Ber]' this number equals the mixed volume MV(P], ... , P,,) of the Newton 
polytopes Pi := conv(A;). The objective of this note is to construct explicit 
K-bases for A, using the combinatorial technique of mixed suhdivisions of the 
Minkowski sum P := p] + ... + Pn . 

The mixed volume estimate for the number of toric roots of a system of 
polynomials is frequently much better than the Bezout bound. because it takes 
into account finer information about the combinatorics of the supporting set of 
monomials. It is easy to construct examples of families of polynomials of fixed 
support for which the ratio of the Be7,Out bound to thE' mixed volume hound is 
exponentially large (in n). In many applications, e.g.) inverse kinematics. one 
would like sharp estimates for the number of solutions of a systPIll of polynomial 
equations, and one knows a priori that the solutions are toriC'. 

Following [GKZl],[PS],[CE],[HSj.[Stl],[St2], we consider toric deforma-
tions of (1.1), 

Ii(x, t) "'c xqtW,(q) o 'q , ·i=L .... II. ( 1.2) 
qEA, 

The weights Wi (q) determine polytopes Pi := {( q, Wi (q)) : lj E Pi} ill ]Rill 1. 

Let P = PI + ... -t Pn 1enote the Minkowski sum 01 the lifted polytopes. The 
lower convex hull of P is the collection of facets F of P whose inner normal 
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has positive last component. Each such facet has the form P = PI + ... + Pn , 

where Pi is a face of Pi. We say that P is a mixed facet if dim(Pi ) = 1 for 
i = 1, ... , n. Stppose : --t JR.n projects to the first n coordinates, 
then L\ := {7r(F) : F E L\} is a subdivision of P. Each cell C of L\ has 
the form 7r(P) = FI + ... + Fn where 7r(Pi ) = Fi is a subpolytope of Pi. We 
assume that the weights ware sufficiently generic, meaning that dim( C) = 
dim(FI) + ... + dim(Fn), for every C E L\. In this case L\ is called a mixed 
subdivision of P. The projection of a mixed facet of L5. is a mixed cell of L\. The 
sum of the volumes of the mixed cells of any mixed subdivision L\ equals the 
mixed volume MV(PI , ... , Pn). This is an integer which does not depend on 
the choice of subdivision. For details on mixed subdivisions, mixed volumes, 
and sparse polynomial systems, see [Bet], [HS],[St2] and the references given 
there. 

Mixed cells are parallelotopes. If one considers them "half-open", then 
their volume equals their number of lattice points. In order to view the mixed 
cells half-open in a consistent manner, we follow the method of Canny and 
Emiris [CE] by displacing L\ to L\ + 6, with 6 E JR.n generic, and then counting 
all (now strictly interior) lattice points. 

Theorem 1.1. Let iI, ... , fn be generic Laurent polynomials with Newton 
polytopes PI, ... , Pn, respectively. The monomials corresponding to the lattice 
points lying in the mixed cells of any generically displaced mixed subdivision 
L\ + 6 of P = PI + ... + Pn form a vector space basis for the quotient ring 
A = K[xI,x1\ ... ,xn,x;;-I]/(iI, ... ,fn). 

We remark that an alternative proof of theorem 1.1 has been provided by 
Emiris and Rege [ER]. 

Consider a mixed cell C = EI + ... + En, where E j is the one-dimensional 
subpolytope [qjl, qj2] with qjk E Aj . Then C supports the binomial system 

o. (1.3) 

We use the following notations consistently from here on: 

be .- ( -CI2/Cll, ... , -CndCnl), (1.4) 

Ue .- the (n x n)-matrix with column vectors qjl - qj2, (1.5) 

ae .- L {q : q E (C + 6) n zn}. (1.6) 

We shall refer to the case when be = 1 := (1,1, ... ,1) as the unit case. 
There is a natural representation of the coordinate algebra A in HomK(A, 

A) which maps f f---t (multiplication by j). This defines a trace Tr( . ) on A, and 
a bilinear form B : A x A --t K, (g, h) f---t Tr(g . h). We call B the trace form 
and represent it by a symmetric matrix. The rank of B equals the number of 
distinct roots of (1.1). If the field K contains the reals JR., then the signature of 
B equals the number of distinct real roots (see [BW],[PRS]). Our second result 
concerns the asymptotic behavior of the trace form. 
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Theorem 1.2. With respect to the basis arising from a displaced mixed sub-
division as in theorem 1.1. the trace form of the deformed system (1.2) is a 
matrix polynomial in t, 

B(t) flo td (1 + 0(1)), 

where d = '\' d (B) II 1T l(C)vol(C) b2uz:\}( 1 ( 1)' - le·ac. et 0 = vO . C . aIle 18 

C 
the vector supporting the mixed facet above C. (The sum and product are over 
all mixed cells of .0..) 

The expression Vol( C) Vol(Cl plays a prominent role in the fundamen-
tal work of Gel'fand-Kapranov-Zelevinsky on A-discriminants [GKZl ],[GKZ2]. 
(See Section 5 for further information regarding the relationship to their work.) 

Throughout this paper we employ the following generalized multi-index 
notation: For a row vector x = (Xj) and a matrix U = (II j i). we let ;yL" 

denote the row vector whose i-th entry equals the monomial J' il} 1, . . . i. This 
definition reduces to the usual multi-index notation when U is it column vector, 
and it reduces to a vector of powers of t when x = t is a scalar and U is a row 
vector. One has the relation (:ru ) v = :r( UV) . 

2 Binomial systems 
Suppose A = K[xt1, ... , X;I] I I is a finite-dimensional reduced K-algebra 
of dimension d, and X the variety in (C*)71 defined by an ideal I of generic 
polynomials as above. (We are using the fact that X is reduced.) Then a set 
of d monomials {xq : q EM} is a basis of A if and only if the d x d-matrix 
S := qEM is non-singular. To establish our results we lIlay also use 
the matrix ST S. whose entries lie in the ground field K. 

In this section we prove theorem 1.1 in the "local case" whl're I is gener-
ated by the binomial system (l.3). This system can be rewritten in the form 

-(c Ic ). x ql1 -'112 11 ·12 ., - (c: Ic' ). x q" j -'1,,2 711712 1. (2.1) 

or more compactly x Ue = bc according to the notations (lA). (l.5). Here .0. 
consists of a single mixed cell C, and our basis-to-be is AI := (C + b) n zn. 
Lemma 2.1. Let A denote the subgTOup of zn generated by the edges VI . ... , 

Vn of C. Then the points in /vI are coset representatives for the finite abelian 
group G := zn I A. 

Proof: Let C = {vo + L AiVi 0 S. A, S. I}, wherel'u E zn. By the 
genericity of b C + b has no lattice points on its boundary. Given q, q' E AI, 
we have q - q' = L J.LiV£, where 0 < J.Li < 1 are unique rational numbers. 
Therefore q ¢ q' (mod A). On the other hand, any.r E zn may be expressed 
as Vo + 6 + L J.LiVi, and this expression is normalized by extracting the integer 
parts of the IIi to put it in the form v' + v, where v' E A. and I' EM. 0 
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Lemma 2.2. With the notations of lemma 2.1, the group algebra qG] is iso-
morphic to the Laurent polynomial ringqxtl, ... , x;=l] / (xV1 -1, ... , xVn -1). 

Proof: Define a homomorphism 

¢ : zn ---+ qxtl, ... ,X;=I]/(xV1-1, ... ,xVn-l) 
(al, ... ,an) f--t .•• 

Then the kernel of ¢ has a Z-basis VI, ... , Vn , and these generate A. D 

Lemma 2.3. In the unit case bc = 1, the set X of roots of (2.1) may be 
identified with the group Hom( G, C*) of characters of G = zn / A. 

Proof: We have the identifications 

Homgrp.(G, C*) Homalg. (qG], C) 
specm(qG]) 

!::>!. specm(qxt1 , ... / (XV1 -1, ... ,XVn -1)). 

The first line follows from general principles of character theory (see [CR], §1O). 
The second line follows from the identification of maximal ideals with kernels 
of homomorphisms into fields. The last line follows by lemma 2.2. D 

Proposition 2.4. In the unit case, the matrix S = qEM is non-
singular, and det(STS) = ±Vol(C)Vol(C). 

Proof: By lemma 2.1 and lemma 2.3, the matrix S may be viewed as the 
matrix of characters E X = Hom(G, C*) evaluated at coset representatives 
q E M of zn modulo A. Applying the second orthogonality relation for group 
characters (which sums across characters; see [CR], §31) in the abelian case, 
the matrix ST S is a diagonal matrix with entries IGI on the diagonal. On the 
other hand, the matrix S differs from its complex conjugate S only by some 
permutation of the columns corresponding to the automorphism q f--t -q of G. 
Therefore, det(STS) = ±IGIIGI. On the other hand, IGI equals the number of 
lattice points in C + 8, which equals the volume of C. D 

Corollary 2.5. For all choices of non-zero coefficients in (2.1), the matrix 
S = is non-singular. With bc, Uc, and ac defined as in (1.4)-
(1.6), we have 

det (ST S) (2.2) 

Proof: Suppress the subscript C. Let diag(Yl, ... , Yn) denote the diagonal ma-
trix with Yi'S on the diagonal, and make the change of variables x = diag(Yl, ... , 

u- 1 
Yn)· b . Then 

. u- 1 U U u- 1 U U b = (dIag(YI, ... ,Yn)·b ) = y·b = Y ·b, 
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OL equivalently, iF = 1- Thus after the change of variables we arc ill the unit 
case. The general matrix entry of S differs from the same entT!" for the unit 
case as follows: 

( 2.:3) 

\Ve can factor the constant bW -1 '1) out of the column labelled (). The aggregate 
factor is 

btU j '\' 'I) 
LqET\{ D 

3 General sparse systems 

The roots of (l.2) are algebraic functions x(t) of the parameter t. Their Puiseux 
series for small t may be determined from the ansatz 

. r(t ) y·(y(I+o(l)) := (Yl(n"",YII I')") (1 +0(1)) . (:3.1 ) 

where y is a vector of complex variables and ( = ((1 ..... II) is a vector of 
rational numbers. Substituting (3.1) into the i-th equation of (l.2). onc obtains 
terms 

Ciq,l/t(')·q)t-w,(q) (1+0(1)). (3.2) 

The exponent of t in (3.2) may be expressed as ( h. 1). (q. ",-'I (!])) ). that is 
to say, the value of the linear functional h, 1) all the lifting of SOllle ]loint 
q E Ai' Lowest-order terms are determined by faces F,._ of Pi OIl vihich 1) 

is minimized. Let Fq .- K(Fi")' We refer to each 

.h, (y) Clq y" . i = 1. .... 1/ ( :3.:3) 

as the degeneration of .f; with respect to the linear funcj:ional under the lifting 
Wi. (We include only monomials which lift to the face Fi -,.) Thc following result 
is proved in lemmas 3.1 and 3.2 of [lIS]. 

Lemma 3.1. The system .h,(y) =- ... = fn,,(Y) = 0 has i1 solution y E 

(C*)II if and only if h. 1) supports a mixed facet F of the lower .6. of 
P. For 1 fixed, the number of solutions y equals the mllllllc of tiJe mixed cell 
C = K(F). 

This lemma shows that all relevant degenerations (:3.:3) arc binomial sys-
tems of the form shown in (l.3) and (2.1). Every pair ( E Q" and.lJ E (C*)II as 
in lemma 3.1 contributes a branch (3.1) to the vector-valued algebraic function 
x(t) defined by (l.2). Taking the sum over all mixed facets ill .6.. 0lH' finds that 
the total number of branches equals the mixed volume .. '" PII)' This 
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technique was used in [HSj to give a new proof and algorithm for Bernstein's 
theorem. We are now prepared to prove our main result. 

Proof of theorem 1.1: Suppose {Cj : j = 1, ... , r} are the mixed cells of the 
subdivision .6., and let Mj := (Cj + b) n zn and M := Ml U· .. U Air. We need 
to show that the matrix S := qEM is non-singular, where X := 
(c)n : h = ... = = o}. If the determinant of S were zero, then this 
identity would continue to hold for the branches x(t) in (3.1). Writing Sl for 
the set of all branches, the corresponding matrix is S(t) = (x(t)q)X(t)EO, qEM' 
We will prove det(S(t)) -I- 0 by showing that the lowest-order term in t is 
non-zero. We do this by showing that to lowest order the matrix S(t) is block 
diagonal, and each block is of the type considered in the previous section. 

Let (,i, 1) be the inner normal vector of a mixed facet Fi lying over the 
mixed cell Ci. Let Sli denote the set of branches Xi(t) = Yi fYi (1 + 0(1)) arising 
from Ci as in lemma 3.1. The vector Yi is a solution of the binomial system 
determined by the edges of Ci. We consider the matrix obtained from S(t) 
by multiplying the column labelled q E Mj by tWj(q). This has the effect of 
multiplying det(S(t)) by a factor td , where d = 2::;=1 2::qE M) Wj(q). We have 
det = 

q1 E Ml q2 E M2 qr E Mr 

Xl E Sll (tw ,(qIlxl (t)q, ) (tW2 (Q2) Xl (t)q2) (tWr(qr)Xl (t)q,) 

X2 E Sl2 (tw ,(q,)X2(t)Ql ) (t W2 (q2) X2 (t) q2 ) (tWr (qr)X2(t)qr) 
(3.4) 

Xr E Slr (tw ,(q')Xr(t)q, ) (tW2 (Q2) Xr (t)q2) (tWr(qr)xr(t)q, ) 

Let Sij denote the block corresponding to Sli and Mi' The typical entry of Sij 
looks like 

The order in t of this expression is abbreviated 

We note that aii(q) has a constant value aii for q E Mi. Any mixed facet 
Fj -I- Fi of the lower envelope LS. of P lies above Fi in the direction (,i, 1). 
There be no "ties: in the values of (,i, 1) on vertices appearing on faces 
which Fi shares with Fj , since all the vertices we consider are strictly interior 
to the mixed cells of the displaced subdivision. In more precise terms, we have 
aii < a;j(q), I;fq E !vij , j -I- i. Therefore the components of the diagonal block 
Sii have strictly smaller order in t than any other entries in their rows. We may 
extract from the rows corresponding to Sli a factor ta;;. This leaves terms in 
the Sii block of order (1 + o( 1)), and terms in the off-diagonal blocks Sij with 
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positive exponents a;)(q) - aii > O. The complete power of t extracted from 
(3.4) is 

T 

L iAlil,aii 
i=1 

L L ·q+Wi(q) 
i=lqEAT, 

L L (i'(/ T L L w'i(q). 
;=1 'lEi\!, I c I 'lEAl, 

The last term callcels the extra factor lei we had introduced whell passing from 
S(t) to fi.(t). We therefore have, to lowest order in t, 

det(S(t)) = {g det(S,;)} 

{g det(8,,)} t '\". ')c'/1e L, + .... 

Here (e denotes the vector which selects the mixed cell C. Proposition 2.5. 
each of the factors det(Si') is non-zero. This concludes the proof of theorem 
1.1. D 

4 Trace forms and real roots 

Let B( ' .. ) denote the trace form (d. [PRSj,[BW]) of thc finite-dimensional 
reduced K-algebra A. and let X = Specrr,(A) as before. It i" known that the 
trace of a polynomial is the sum of its values at all roots. ThereforE' the trace 
form can be written as 

B(f, g) = Tr(f' g) L for f.g E.4. CD) 

Proof of theorem 1.2: Let"H be the basis of A which was established ill theorem 
1.1. and let S = as before. Given any elelllent f = LIJEilJ A(l'l'q 

in A with mlunlll vc(,tor of ('oefficients A, then S . A equals the ('ulumn v{'('tor 
(f(O : E X). Therefore, 

T T /1 . (S S)· A B (f. g). where y = L p,,,,I"I. 
'iE.\{ 

In other words. the matrix ST S represents the trace form B with respect to 
the basis Al. 

By the results of the previous sections. the matrix polY1JollliCl] H( t) is 
asymptotically 

[

Sh S11 
o 

B(t) = S(t)T S(t) = : 

o o 



314 P. Pedersen, B. Sturmfels 

From the second orthogonality relation of character theory we saw that, up to 
a constant factor, each block Sr Sii is a permutation of the diagonal matrix 
diag(Vol(Ci ), ... , Vol(Ci )). By Proposition 2.5, the leading term of the matrix 

polynomial B(t) has determinant ± IT Vol(C)Vol(C) 0 
C 

For the remainder of this section we suppose that K contains IR, and 
that the coefficients of the input system (1.1) are real. An important theorem 
of computational algebra (cf. [Pe], [PRS], [BW]) states that the number of real 
roots # X(IR) counted without multiplicity equals the signature of the trace 
form B. 

We now come to the problem of determining the asymptotic nv,mber of 
real roots of the system (1.2), meaning the number of roots x E (IR*)n for 
any sufficiently small fixed real value of t > o. For each mixed cell C of we 
consider the finite abelian group Gc := zn I A, where A is the lattice generated 
by the edges of C. Consider the decomposition into invariant factors, 

(4.3) 

with nl I n2 I ... Ink. Let p( C) denote the number of even invariant factors ni 
of Gc . The following result was proved in [Stl] for the special case of unmixed 
systems. 

Proposition 4.1. The asymptotic number of real roots of (1.2) is at most 
Lc 2P(C). 

Proof: To lowest order in t, the signature of ST S is the sum of the signatures 
of the blocks SrSii. Writing C for the i-th mixed cell and Sc = Sii, we need 
to show that the signature of is bounded above by 2P(C). 

We fix C and consider the invariant decomposition (4.3). Let Wj denote 
the character table of the cyclic group ZlnjZ. It is easy to see that 

[1 

0 ... 

n 0 ... 
WIWj (4.4) 

nj 

because the automorphism x I---t -x of ZlnjZ leaves 0 invariant, and cycles the 
remaining elements as shown. In the matrix (4.4) there are either one or two 
diagonal entries depending on whether ni is odd or even. The signature of such 
a matrix equals the number of non-zero diagonal entries (cf. [Sh], p. 12). Hence 
the signature of WJ Wj is 2 if nj is even, and 1 if nj is odd. Let W be the 
character table of Gc . This is the tensor product of the character tables Wj , 

and therefore 
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Since the signature of real symmetric matrices is multiplicative with respect to 
tensor products, the signature of WTW equals 2P(C). 

Now, the matrix Sc is obtained from W by lIlultiplying each COIUlllll by 
a scalar as in (2.3), and it can be written as Sc = \;1'; W:. where W: 
is obtained from H'i by multiplying each column by a llon-ztTo scalar. Then 
(w:fW'! is obtained from W;rH7; by multiplying each cntrY a nOll-hero 
scalar. preserving symmetry of the matrix and non-negativity of t he signature. 
The new symmetric matrix has signature either 0 or 2 if n) is even. while it 
remains 1 if nj is odd. Therefore the signature of 

S!Sc = (W{ cg ... cg, w:f(W{ cg ...• :2<) W;) = ((H'{)"H'{) X·· 

is bounded above by the signature of f1/T H'. which is 2P(C'). 

5 Two problems 

((TV:)lH-;) 

o 

We close with two remarks which suggest directions for future research. 
(1) Our theorem 1.1 is non-trivial in the sense that. ('ven for generic coeffi-

cients c;'q. not all collections of MV( PI, ... , P,,) monomials form a basis 
for A. (For instance, the set { 1. .r4 y2 , :r3 y3, .y2 y I } is a nOll-hase modulo 
the system {an + alx + a2XY -+ a:lY, bo + b1:r2y -+ b2:n/}.) It would ]w 

interesting to find a combinatorial characterization of the !lOll-bases. This 
problem can be rephrased as follows: The data AJ ..... Ali C 'En define a 
lnatroid ofrank M V( PI . .... Pn) on the (infinite) set 'En. bv independence 
of monomials in A. The idea is to study this matroid. For instance. when 
is it uniform"! 

(2) Given any Illonomial basis for A. we can express t he trace form B by 
a symmetric matrix, and its determinant det(B) i:-: well-defined rational 
function of degree 0 in the coefficients Ciq. The most important divisor of 
the numerator of this rational function is the A-discrimi'llunt DA du(' to 
Ge]'fand, Kapranov, and Zelevinsky [GKZl ],[GKZ2]. Here A = Ui'=l (i X 
Ai C 'E2n is obtained by the Cayley trick from (1.1). It would be very 
interesting to understand all other factors, and to sec how t hey depend 
011 the choice of monomial basis. In light of our theorem l.2. Wt' conjecture 
that the leading coefficient of the A-discriminant D A wit h respect to w 
is precisely ± TIc Volt C) Vol(C), where C runs over all mixed cells of the 
mixed subdivision 6.. This would provide a refinelllcnt oj ThIll :3D.2 ill 
[GKZ1]. 
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