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Exercise 4.21 Suppose one of the problem is feasible. By duality, we have two possibilities:
1. the feasible problem is unbounded and the other problem is infeasible
2. Both problem have a finite optimum

In case (1), clearly the set of feasible solutions to the feasible problem is unbounded. Now
suppose we are in case (2). Consider the following dual pair.

L

minimize Z —z; maximize 0Ty
i=1
subject to Ax>0 subject to yTA <(-1,...,-1)
x>0 y>0

If the right problem is feasible, then let yo be a feasible solution to the right problem. Note
Yo # 0. Let p be a solution to the original dual problem. For all A > 0, We have pTA+)yTA <
cT + A(~1,...,-1) < cT and pT+Ayf > 0. Therefore, the feasible set of the original dual is
unbounded. If the right problem is infeasible, then the left problem is unbounded or infeasible.
Since x = 0 is a feasible solution to the left problem, the left problem is unbounded. Let % be
a feasible solution to the left problem such that the corresponding objective cost is negative.
Note % # 0. Let x be a feasible solution to the original primal. For all A > 0, we have
Ax + MA% > b+0 > b and x + Ak > 0. Therefore, the feasible set of the original primal is
unbounded. We conclude that at least one of the original problems is unbounded.

Exercise 4.24 We will first show that every column of the tableau, other than the zeroth
column, remains lexicographically positive through out the algorithm. Let the ! th row be the
pivot row and the j th column be the entering column. By the lexicographic rule, we have

1 L
——4 th column < Lz th column Vi # j, v; <0

] lvss|
: L
= :;ij th column < 4 th column Vi # 3, vi; <0 (1)
4]

For the i th column (i # j, v; < 0), after one iteration, the k th entry (k # !) becomes
Ui — %:-U;,- = Ugi — 3k, and the | th entry becomes Jt > 0. Therefore, by (1), all the
column with the { th entry less than zero remains lexicographically positive. For the ¢ th column
(i # j, v > 0), after one iteration, the first entry (the reduced cost of the i th variable)
becomes & — ;?-u;‘- > 0 (as v, & > 0), meaning that it is lexicographically positive. The j th
column clearly remains lexicographically positive. We now show that the zero th column strictly
decreases lexicographically at each iteration. Similarly, after one iteration, the zero th column is
added —ffli#(j th column +e;) to it. Since the j th column and ey are lexicographically positive

and —I—f‘(jﬂ < 0, the zero th column decreases lexicographically at each iteration, Finally, since

every basic feasible solution 1-1 corresponds to one zero th column, the dual simplex method
will never go back to the same basic feasible solution and hence terminates in finite steps.




Exercise 4.25 The dual problem is equivalent to the following standard form problem.
minimize — p; — p2
subject to p; + 851 =1
p2+s2=1
P1,P2,81,382 2 0

If the initial basic feasible solution is p; = 0,py = 0,8, = 1,53 = 1. Then clearly we need twice
changes of basis to obtain our optimal solution p; = 1,p3 = 1,57 = 0,385 = 0.

Exercise 4.29 Consider the following dual pair,

minimize 0Tx maximize pTb
subject to Ax>b subject to pTA =07
p=20

Since the system of inequalities Ax > b is inconsistent, the primal is infeasible. Note that
p = 0 is a feasible solution to the dual. Thus, the dual is unbounded. Then there is a basic
feasible solution p to the polyhedron P = {p € R™|ATp =0, bTp = 1, p > 0}. Since there
are 7 4 1 equality constraints in P, at most n + 1 entries of p are nonzere. Let I be the
index set of the nonzero entries. We claim that the subsystem a’x > b; Vi € [ is inconsistent,
Since pTA = 3. pial = 0T, pTb = 3., pibi = 1 and p > 0, by Theorem 4.7, if % is a
solution to the subsystem, then we must have 0Fx = 0 < —1. Therefore, the subsystem is
inconsistent. If the subsystem consists exactly n+ 1 constraints, we are done. Otherwise, choose
any constraints into the system to make it consist n+1 constraints. Clearly, the resulting system
is still inconsistent.

Exercise 4.30

(a) Every polyhedron in R™ can be regarded as the solution set of some system of linear
inequalities alx > b; . Thus, the family of polyhedron F is related to a bunch of linear
inequalities afx > b;, i = 1,...,m. Since every n + 1 polyhedra in F has a point in
common and each polyhedron associates with at least one inequality, any choice of n + 1
inequalities of the total m inequalities must be consistent. By the contrapositive of Exercise
4.29, the original system of m linear inequalities is consistent, which means all polyhedra
in F have a point in common,

(b) No, it is not true. Consider the following polyhedra P, = {(z,y) € R%|z = 0}, P, =
{(z,y) € R*|y =0}, P = {(z,y) € R?| z + y = 1}. Clearly, any two of them have a point
in common, but their intersection is empty.

Exercise 4.31 Consider the pair of dual problems:

mn
minimize 0Tx maximize Zp,-
i=1
n
subject to Zp,-kxk —-z;>21 Vi=1,...,n subject to pT(P —1I) =0T
k=1

p>0

The left problem seems trivial, but actually it is trivial iff it is feasible. The right problem is
feasible because p = 0 is a feasible solution. By duality, if the left problem is infeasible, then
the right problem should be unbounded, which means there exists a nonzero feasible solution.
‘We now prove the left problem is infeasible. Assume otherwise there is a feasible solution to the
left problem, say x. Let z; be the largest component of x. Then we have Z;c':l PikTr — Tj >
1 & Yo mawe > 1 2y However, since i Pk = 1 and pjr = 0 Vk, we also have
S piprr < xj. Contradiction. We conclude that the left problem is infeasible and hence

there exists a nonzero solution to the system pTP = p*, p > 0.



Exercise 4.35
(2) Consider the LP

minimize 0T (x +y)
subject to Ax<b
Dy <d
x=y

If PNQ # 9, then this LP is feasible. By the two-phase simplex method, we will obtain a
feasible solution (x,y), and x is a point in PNQ. If PNQ = §, clearly this LP is infeasible.

(b) Consider the dual of the above LP
maximize pib+ pid
subject to prA +pyD =0T
P1,p2<0

If PN Q@ = 0, then the primal is infeasible. The dual is feasible because p; = p, = 0 h
is a feasible solution. By duality, the dual should be unbounded. Then there are vectors \
p1,D2 such that pb + pFd > 0, —pTA = pID, and p1,p2z < 0T. We claim that

cT = —pTA = pTD has the desired property. Let x€ P,y € Q.

: -pTAx < —pTb cTx < —pThb
p1,p2§0?=>{ Pi S Py =s XS Py

pyDy > pfd - cTy > pTd
pib+prd>0 ¢ pjd> —pib

Combine all inequalities, we have cTy > cTx, as desired.

Exercise 4.36

(a) Let P = {x € R"| Ax < b} where A € M,,,x,, and @ = {x e R"|cfx < d;Vi=1,...,1}.
PCcQifandonly if Ax <b=c¢fx <d;Vi=1,...,l. By Theorem 4.7, this is equivalent
to saying that Ip;,...,p; > O such that pfA = cf and pfb < d; forall i =1,...,1
Beginning with ¢ = 1, we solve the following standard form LP

minimize bTp
subject to ATp =¢;
p=0

If at some ¢ the LP is infeasible or has optimal cost greater than d;, then we conclude that
P ¢ Q. Otherwise, P C Q.

(b) Let

P

k L k ( \ /
{Z/\m?-l-zojwfl/\iz(), b; ZO,Z/\.~=1} 4
j=1 i=1

i=1

m n m
Q= {Z,\.-x? +) 0w? N >0,0,>0,) A= 1}
i=1 j=1 i=1

If P is bounded, then P has no extreme ray and is the convex hull of its extreme points.
In this case, we can simply check if x¥' € @ for all i. We prove this algorithm works now.



Suppose x{” € @ Vi. Let p € P. Then

k k m n
p= Z)\.-xf = Z/\.- (Z MxQ 4+ zﬂzw,?)
i=1 =1

a=1" ' Tob=1

m [/ k ) n k )
SOL (Z /\.-/\;) x2+y° (Z ,\.-0;,) wy
a=1 \i=1 b=1 \i=1
Note all the coefficients are nonnegative and 37 7% | A0 = 1. Thus, P € Q. Now

suppose P is unbounded. If Q is bounded, then clearly P ¢ Q. If () is also unbounded,
then we check whether x,—P € (Q for all § and w? can be expressed as a positive linear
combination of the extreme rays of 2 for all j. A similar argument shows this algorithm

works too.

Exercise 4.39 Let C = {x € R*|afx > 0Vi =1,...,m}. Since C is pointed, there are n
linearly independent constraints among alx > 0's and m > n. Let d € C be nonzero. Suppose
there are n — 1 linearly independent constraints active at d and the index set of these constraints
is I. Let f,g € C such that d =f +g, Then ajd = aff + afg = 0 for all i € I. Because
f,g € C,aff,alg > 0Vi € I. Therefore, alf = afg = 0Vi € I. That said, f,g,d are all in the
kernal of the linear system alx = 0 Vi € I. Since the nullity of the linear system is 1, f, g are
scalar multiples of d. Now suppose d has the property in the second definition. Choose ¢ € R®
such that ¢Td = 1. Consider the polyhedron P = {x e R*|afx>0Vi=1,...,m,cTx=1}.
We claim that d is an extreme point of P. Assume otherwise d is not an extreme point of P.
Then there exist f,g € P\{d}, A € (0,1) such that d = Af + (1 - A)g. Note Af,(1 - \g € C.
Hence, by our assumption, there are scalars ky, k2 ¥ 0 such that M = kid, (1 — \)g = kod.
Multiplying ¢T to both sides yields A = ky, (1 — A) = ky. That said, f = g = d. Confradiction.
Thus, d is an extreme point of P. Then there are n linearly independent constraints of P active
at d. By our construction of P, there are n — 1 linearly independent, constraints of C' active at
d, as desired.
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