Problem 1.1 Suppose that a function $f : \mathbb{R}^n \to \mathbb{R}$ is both concave and convex. Prove that f is an affine function.

Solution. Let $f(0) = a$ and let the function $g = f - a$. Then $g(0) = 0$ and g is also both concave and convex. Let $\lambda \in [0, 1]$, and let $x, y \in \mathbb{R}^n$. Since g is convex, we have that $g(\lambda x + (1 - \lambda) y) \leq \lambda g(x) + (1 - \lambda) g(y)$. Since g is concave, we also have that $g(\lambda x + (1 - \lambda) y) \geq \lambda g(x) + (1 - \lambda) g(y)$. Hence, we have $g(\lambda x + (1 - \lambda) y) = \lambda g(x) + (1 - \lambda) g(y)$. This implies that $g(\lambda x) = \lambda g(x)$ for $\lambda \in [0, 1]$ and all $x \in \mathbb{R}^n$, which implies that g is linear. Hence, f is affine.

Problem 1.4 Consider the problem

$$\text{minimize $2x_1 + 3|x_2 - 10|$}$$

subject to $|x_1 + 2| + |x_2| \leq 5$,

and reformulate it as a linear programming problem.

Solution. We are looking to minimize the cost function $2x_1 + 3 \cdot \max\{x_2 - 10, -x_2 + 10\}$. We replace the max function with the variable z_1 and add in the restrictions

$$z_1 \geq x_2 - 10, z_1 \geq -x_2 + 10$$

so that the minimum possible value of z_1 is $|x_2 - 10|$. Similarly, we add in z_2 and z_3, adding the restrictions

$$z_2 \geq x_1 + 2, z_2 \geq -x_1 - 2, z_3 \geq x_2, z_3 \geq -x_2$$

so that the original restriction becomes $z_2 + z_3 \leq 5$. Our linear programming problem is now

$$\text{minimize $2x_1 + 3z_1$}$$

subject to $z_1 \geq x_2 - 10, z_1 \geq -x_2 + 10, z_2 \geq x_1 + 2, z_2 \geq -x_1 - 2, z_3 \geq -x_2, z_3 \geq x_2, z_3 \geq -2, z_3 \geq -z_3 \leq 5$.

Problem 1.7 Suppose that Z is a random variable taking values in the set $0, 1, \ldots, K$, with probabilities p_0, p_1, \ldots, p_K, respectively. We are given the
values of the first two moments \(E[Z] = \sum_{k=0}^{K} kp_k \) and \(E[Z^2] = \sum_{k=0}^{K} k^2 p_k \) of \(Z \) and we would like to obtain upper and lower bounds on the value of the fourth moment \(E[Z^4] = \sum_{k=0}^{K} k^4 p_k \) of \(Z \). Show how linear programming can be used to approach this problem.

Solution. We let \(p_0, \ldots, p_K \) be the variables in our linear program. We would then have two linear programs: one to minimize \(E[Z^4] = \sum_{k=0}^{K} k^4 p_k \) and the other to maximize \(E[Z^4] = \sum_{k=0}^{K} k^4 p_k \). These would give us our upper and lower bounds. We use the known moments to give us two restrictions on our variables. We also know that the \(p_i \) sum to 1, and that each \(p_i \geq 0 \). This gives us \(K + 4 \) restrictions to use in our two linear programs.

Problem 1.8 Consider a road divided into \(n \) segments that is illuminated by \(m \) lamps. Let \(p_j \) be the power of the \(j \)-th lamp. The illumination \(I_i \) of the \(i \)-th segment is assumed to be \(\sum_{j=1}^{m} a_{ij} p_j \), where \(a_{ij} \) are known coefficients. Let \(I^*_i \) be the desired illumination of road \(i \).

We are interested in choosing the lamp powers \(p_j \) so that the illuminations are close to the desired illuminations \(I^*_i \). Provide a reasonable linear programming formulation of this problem.

Solution. We are interested in minimizing the differences between the illumination \(I_i \) of each segment and the desired illumination of that segment, \(I^*_i \). So, our linear program will be to

\[
\text{minimize } \sum_{i=1}^{n} |I_i - I^*_i|, \quad \text{where } I_i \text{ is given by the summation in the problem statement, and our variables are then the } p_j,
\]

subject to the condition that each \(p_j \geq 0 \).

Problem 1.12 Consider a set \(P \) described by linear inequality constraints, that is, \(P = \{ x \in \mathbb{R}^n | a'_i x \leq b_i, i = 1, \ldots, m \} \). A ball with center \(y \) and radius \(r \) is defined as the set of all points within the distance \(r \) from \(y \). We are interested in finding a ball with the largest possible radius, which is entirely contained within the rest \(P \). Provide a linear programming formulation of this problem.

Solution. We are trying to pick a point \(y \) that maximizes the shortest distance from \(y \) to the boundary of the set \(P \). The dot product of our potential point \(y \) with the normal vector to each hyperplane defining the boundary will help us calculate this distance. Our linear program is thus

\[
\text{minimize } \max_i \{|a'_i y - b_i|\}
\]

subject to \(a'_i y \leq b_i \) for all \(i \).

Problem 1.14

Solution.

(a) Let \(a \) be the number of units of the first product and let \(b \) be the number of units of the second product. The desired linear program is then

\[
\text{maximize } 3a + 2.4b
\]
subject to $3a + 4b \leq 20,000$,
$3a - (6 \cdot 0.45)a + 2b - (5.4 \cdot 0.3)b \leq 4000$, $a \geq 0$, $b \geq 0$.

(b) **Solution.** Drawing was done by hand. Net income is only restricted by machine hours in this case, and the net income is maximized by only producing product a, generating $20,000$.

(c) **Solution.** Yes, this will help the company.

Problem 1.19 Suppose that we are given a set of vectors in \mathbb{R}^n that form a basis, and let y be an arbitrary vector in \mathbb{R}^n. We wish to express y as a linear combination of the basis vectors. How can this be accomplished?

Solution. We let a_1, \ldots, a_n denote the coefficients we are trying to find, and let b_1, \ldots, b_n denote the given basis vectors. We would like to impose the constraints \(\sum_{i=1}^{n} a_i b_j = y_j \) for all j, where b_j^i is the jth component of the ith basis vector. These equations will have a unique solution. Thus, we can simply minimize a constant function (such as 0) subject to these constraints in order to find the desired coefficients.