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Introduction

Grobner bases theory provides the foundation for many algorithms in algebraic ge-
ometry and commutative algebra, with the Buchberger algorithm acting as the en-
gine that drives the computations. Thanks to the text books by Adams-Loustaunau
(1994), Becker-Weispfenning (1993), Cox-Little-Q’Shea (1992) and Eisenbud (1995),
Grobner bases are now entering the standard algebra curriculum at many universi-
ties. In view of the ubiquity of scientific problems modeled by polynomial equations,
this subject is of interest not only to mathematicians, but also to an increasing
number of scientists and engineers.

The interdisciplinary nature of the study of Grobner bases is reflected by the
specific applications appearing in this book. These applications lie in the domains
of integer programming and computational statistics. The mathematical tools to
be presented are drawn from commutative algebra, combinatorics, and polyhedral
geometry.

The main thread of this book centers around a special class of ideals in a
polynomial ring, namely, the class of toric ideals. They are characterized as those
prime ideals that are generated by monomial differences, or as the defining ideals of
(not necessarily normal) toric varieties. Toric ideals are intimately related to recent
advances in polyhedral geometry, which grew out of the theory of A-hypergeometric
functions due to Gel'fand, Kapranov and Zelevinsky (1994). A key concept is
that of a regular triangulation. All regular triangulations of a fixed polytope are
parametrized by the vertices of the secondary polytope.

Both the algebra and the combinatorics appearing in this book are presented as
self-contained as possible. Most of the material is accessible to first-year graduate
students in mathematics. The following prerequisites will be assumed throughout:

e working knowledge of the basic facts about Grobner bases, specifically of

Chapters 1-5 and 9 of (Cox-Little-O’Shea 1992), or Chapters 1-2 of (Adams-

Loustaunau 1994),

o familiarity with the terminology of polyhedral geometry and linear program-

ming, as introduced in {Schrijver 1986) or (Ziegler 1995).

The fourteen chapters are organized as follows. In the first two chapters
we present some introductory Grobner bases material, which cannot be found in
the text books. Here we consider arbitrary ideals I in a polynomial ring § =
klxy,...,T,), not just toric ideals. Tt is proved that I admits a universal Grobner
basts, that is, a finite subset which is a Grobner basis for I with respect to all
term orders simultaneously. This leads to the concept of the Grébner fan and the
state polytope of I. The state polytope is a convex polytope in R™ whose vertices
are in bijection with the distinct initial monomial ideals of I with respect to all
term orders on S. In the special case where I = (f) is a principal ideal, the state



x INTRODUCTION

polytope coincides with the familiar Newton polytope New(f). In Chapter 3 we
present results and algorithms which involve the variation of term orders for a fixed
ideal. In particular, it is explained how to compute the state polytope.

Chapters 4-9 deal exclusively with toric ideals. Basic algebraic features of
these ideals are collected in the fourth chapter. These include degree bounds for
Grobner bases. An explicit universal Grobner basis, the so-called Graver basis, is
constructed.

The fifth chapter relates toric ideals to three fundamental problems associated
with a (non-negative integer) linear map 7 : N — N¢. Each fiber 7~!(b), b € N¢,
consists of the lattice points in a polyhedron in R®. The three problems are:
enumeration (list all points in 7~ (b)), sampling (pick a point in 7~ (b) at random)
and integer programming (find a point in m~!(b) which minimizes a given linear
functional). The toric ideal I 4 which is used to model these questions is the ideal
of algebraic relations on the monomials with exponent vectors the columns of a
matrix A representing 7.

Chapter 6 deals with the one-dimensional case d = 1. In this case the Graver
basis elements of I 4 correspond to primitive partition identities, the variety defined
by I4 is a monomial curve, and the associated integer program is the knapsack
problem. Sharp degree bounds for Grébner bases are available in this case.

Returning to our general discussion in Chapter 7, we present a geometric char-
acterization of the universal Grobner basis U4, and we discuss algorithms for com-
puting U 4. In Chapter 8 we establish a correspondence between the initial ideals of
I 4 and the regular triangulations of A. These triangulations are parametrized by
the secondary polytope £(A), which is a Minkowski summand of the state polytope
of I 4. In Chapter 9 we apply our general theory to a specific family of toric ideals,
namely those defined by the second hypersimplex.

In the next two chapters we venture into the realm of commutative alge-
bra beyond toric ideals. Chapter 10 deals with Arnold’s notion of .A-graded al-
gebras. These are algebras with the simplest possible Hilbert function, namely,
1,1,1,1,1,1,.... Their defining ideals are a natural generalization of initial ideals
of toric ideals. In Chapter 11 we discuss canonical subalgebra bases (or SAGBI
bases, as they were called by Robbiano & Sweedler (1990)). These bases need
not be finite. But if they are, then they admit a nice geometric interpretation as
degeneration of a parametrically presented variety into a toric variety.

In Chapter 12 we present advanced techniques for computing with toric ideals,
and for applying them to integer programming. Chapter 13 aims to span a bridge
to the theory of toric varieties as it exists in algebraic geometry, and, finally, in
Chapter 14 the reader finds a collection of toric ideals and Grobner bases which are
dear to the author’s heart.

‘At the end of each chapter there is a list of exercises and bibliographic notes.
The exercises vary in difficulty: some are straightforward applications of the ma-
terial presented, while others are more difficult and may lead to research projects.
Many of the exercises assume a certain level of enthusiasm for performing computer
experiments. The bibliographic notes are kept very brief. Their main purpose is
to help the reader in locating a sample of the original or background literature.
They are not intended to give a historical account or a complete bibliography of
the respective subject areas.

INTRODUCTION xi

This monograph grew out of a series of ten lectures given at the Holiday Sym-
posium at New Mexico State University, Las Cruces, December 27-31, 1994. The
material was updated and expanded considerably after the Holiday Symposium.
In particular, Chapters 3, 12, 13 and 14 were added. I am grateful to numerous
participants who supplied comments and helped me in locating errors in previous
versions. Serkan Hosten did a particularly great job during the last round of proof-
reading. I wish to thank all my co-authors listed in the bibliography for inspiring
collaborations. Many of the techniques and results presented in this book I learned
from and with them.

This project was supported financially by the David and Lucile Packard Foun-
dation and the National Science Foundation through an NYT Fellowship. Most of
the writing was done during my 94/95 visit at the Courant Institute of New York
University. I wish to thank my hosts at NYU and at New Mexico State University
for their terrific hospitality.

Special thanks go to Hyungsook and Nina, for their support, love and cheerful
energy.

Bernd Sturmfels
Berkeley, August 1995



CHAPTER 1

Grobner Basics

Let k be any field and k[x] = k[z1, ..., z,] the polynomial ring in n indetermi-
nates. The monomials in k[x] are denoted x® = z{*z5? - - - 2z and identified with
lattice points a = (a1, ...,a,) in N™, where N stands for the non-negative integers.
A total order < on N" is a term order if the zero vector 0 is the unique minimal
element, and a < b implies a+ ¢ < b + ¢ for all a,b,¢c € N". Familiar examples
of term orders are the purely lexicographic order, the degree lexicographic order and
the degree reverse lexicographic order.

Given a term order <, every non-zero polynomial f € k[x] has a unique initial
monomial, denoted in.(f). If I is an ideal in k[x], then its initial ideal is the
monomial ideal

ing(I) = (ing(f) : felI).

The monomials which do not lie in in«(I) are called standard monomials. A finite
subset G C I is a Grébner basis for I with respect to < if in_(I) is generated by
{in<(g) : g € G}. If no monomial in this set is redundant, then the Grébner basis
G is minimal. It is called reduced if, for any two distinct elements g, ¢’ € G, no term
of ¢’ is divisible by in<(g). The reduced Grobner basis is unique for an ideal and
a term order, provided one requires the coefficient of in(g) in g to be 1 for each
g € G. Starting with any set of generators for I, the Buchberger algorithm computes
the reduced Grobner basis G. The division algorithm rewrites each polynomial f
modulo I uniquely as a k-linear combination of standard monormials.

Proposition 1.1. The (images of the) standard monomials form a k-vector space
basis for the residue ring k{x|/I.

Clearly, there are infinitely many term orders if n > 2. However, if the ideal
1 is fixed, then they can be grouped into finitely many equivalence classes by the
following theorem.

Theorem 1.2. Every ideal I C k[x] has only finitely many distinct initial ideals.

Proof: Suppose that I has an infinite set ¥ of distinct initial ideals. Choose a

non-zero element f; € I. Since f; has only finitely many terms and since each -+ .

term lies in an-element-of 3y; there exists a monomial m; in f; such that the set -
Y = {M € Xy : m € M} is infinite. Since (m;) is strictly contained in an -
initial ideal of I, Proposition 1.1 tells us that the monomials outside of (m,) are k-
linearly dependent modulo I. Hence there exists a non-zero polynomial f; € I none
of whose terms lies in (m;). Since f, has only finitely many terms, there exists a
monomial ms in f> such that the set o := { M € ; : mp € M} is infinite. Since
(my, mo) is strictly contained in an initial ideal of I, Proposition 1.1 tells us that
the monomials outside of {(m1, ms) are k-linearly dependent modulo I. Hence there
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exists a non-zero polynomial f3 € I none of whose terms lies in (mj,mq). Since f3
has only finitely many terms, there exists a monomial mgs in f3 such that the set
Y3 ;= {M € ¥ : m3z € M} is infinite... etc...etc... Iterating this construction,
we obtain an infinite strictly increasing chain of monomials ideals:

(my) C (mi,my) C (my,my,mz) C -+

Since k[x] is Noetherian, this is a contradiction, and we are done. m

Theorem 1.2 permits the following definition. A finite subset U C [ is called a
universal Grobner basis if U is a Grobner basis of I with respect to all term orders
=< simultaneously.

Corollary 1.3. Every ideal I C k[x] possesses a finite universal Grébner basis U.

Proof: By Theorem 1.2, there exist only finitely many distinct reduced Grébner
bases for I. Their union ¥f is finite, and it is a universal Grébner basis for I. m

Example 1.4. (2 x 2-minors of a 2 X m-matrix)
Consider a polynomial ring in 2m indeterminates

i1 T2 - Tim
T21 X22 - T2m

Let I be the ideal generated by the (7;‘) polynomials D;; := x1;T2; — 1;T2; for
1 < i < j < m. We shall prove that this set of 2 x 2-minors is a universal Grébner
basis. First consider the case m = 3. Given any term order <, there are eight
conceivable cases:

T11Zo2 > T12T21, T11T23 = T13Tz1 and T1oTaez > T13T22-

T11Z22 > L1221, £11%23 = T13T21 and T1oTe3 < T13T22.

T11T22 > T12T21, T11%23 < T13T21 and T12Te3 > T13T22.

T11Z22 > T12%21, T11T23 < T13T21 and T12Ta3 < T13T22.

Z11Z22 < T12%21, T11%23 > T13T21 and T1aTaz > T13T22.

Z11Z92 < T12%21, T11T23 = T13T31 and T1aTa3 < T13T22-

T11T22 < T12T21, T11%23 < T13T21 and T19T93 > T13T20-

T11T92 < T12T21, T11%23 < T13T9; and T12To3 < T13T22.

TN TN N N
00 ~1 O O i W N -~
—

Nl e S S S Nt

The ideal I is invariant under the action of the group S3 by permuting columns.
This induces an action on the eight cases above, with two orbits: {(1),(2),(4),(5),(7),
(8)} and {(3),(6)}. Therefore it suffices to consider only the two cases (1) and (3).
Case (3): We multiply the left hand sides and right hand sides of the three given
inequalities. The multiplicativity of term orders implies

($11$22) : ($13$21) : ($12$23) - (5'3125'321) : ($11$23) : ($13$22)-

Both sides are equal. This is a contradiction, hence no such term order can exist.

Case (1): We apply Buchberger’s Criterion to establish the Grébner basis property
of the set {Dlg, D13, Dgg}. The S—pair S(Dlz, D13) = .’L‘23D12 —.’L'22D13 = —-1321D23
reduces to zero with respect to {Ds3}. The S-pair S(Di3,Do3) = z12D13 —
211 D93 = z13D12 reduces to zero with respect to {D;2}. Finally, the minors D;,
and D,3 have relatively prime initial monomials, so that S(Dj2, D23) reduces to

S
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zero with respect to { D13, Dag}. This completes the proof of the universal Grébner
basis property for the three 2 x 2-minors of an indeterminate 2 x 3-matrix.

Now let m > 4 and fix a term order <. Consider any two minors D;; and
Dy;. 1f the set {i,4,k,1} has four elements, then the variables in D;; are disjoint
from the variables in Dy, hence their initial monomials are relatively prime, and
S(D;j, Dri) reduces to zero with respect to {D;j;, Dy }. If {i, 7, k,1} has three or
less elements, then we may restrict to a 2 x 3-submatrix, and S(D;;, Dy;) reduces
to zero with respect to the three 2 x 2-minors of that submatrix by our previous
discussion. We are done. m

Example 1.5. (Linear Subspaces) Let V be an (n — d)-dimensional vector
subspace of k™, and let I be its vanishing ideal in k[x]. It is generated by d linear
forms

PR

I = (Zaij:cj i=1,2,...,d).
j=1

We say that a non-zero linear form in 7 is a circuit if its set of variables is minimal
with respect to inclusion. We say that a d-subset {ji,...,ja} of {1,2,...,n} is
a basis if the corresponding d x d-determinant is non-zero. We abbreviate this
determinant by

aij; o G,
D[jl,...,jd] = det
Adjy -+ Gdjy

The entries a;; in these determinants are the coefficients of the linear forms defining
I. Tt is an exercise in linear algebra to show that the circuits are precisely the non-
zero linear forms

D[kl,...,kd_l,l]'ﬂcl +D[k1,...,kd_1,2]~132 + .- +D[k1,...,kd_1,n]-:cn, (11)

where 1 < k; < --- < kg1 < n. Hence there are at most (dfl) circuits (up to
scaling). For the precise relationship between circuits and bases consult any book
on matroid theory.

When applied to an ideal generated by linear forms, the Buchberger algorithm
amounts to performing Gaussian elimination on the coefficient matrix. As a conse-
quence of this, we see that every reduced Grobner basis of I consists of precisely d
circuits.

Proposition 1.6. If [ is an ideal generated by linear forms, then the set of circuits
in I is a minimal universal Grébner basis of 1.

Proof: Our discussion above shows that the set of circuits is finite and is a universal
Grobuer basis. It remains to be seen that it is minimal, i.e., every circuit ¢ appears
in some reduced Grébner basis. Let X be the set of variables in £. Let < be an
elimination term order such that each variable not in X comes before any variable
in X, and let G be the reduced Grobner basis of I with respect to <. We claim that
¢ appears in G. If not, then there exists another linear form ¢’ € G with the same
initial term as £. By the elimination property of our term order, cvery variable
appearing in ¢’ must lie in X. But then ¢ — ¢ is a non-zero linear form whose set of
variables is strictly contained in X. This is a contradiction to the assumption that
{ is a circuit. m
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We now turn to the representation of term orders by weight vectors. Fix
w = (w1,...,w,) € R®. For any polynomial f = > ¢; - x* we define the initial
form in,(f) to be the sum of all terms ¢; - x® such that the inner product w - a; is
maximal. For an ideal I we define the initial ideal to be the ideal generated by all
initial forms:

in,(I) = (in,(f): fel).

This ideal need not be a monomial ideal. However, it is whenever w is chosen
sufficiently generic. If in addition w is non-negative, then, as we shall see, in, (1)
is an initial monomial ideal in the earlier sense.

Example 1.7. (Initial ideals of a principal ideal in two variables)

Let I be the ideal generated by f(z1,z2) = zizstrizi+zi+2225+r 23+ 28+,
f w = (1,1) then in,(I) = (z$zd) is a monomial ideal. If w = (1,2) then
ino(I) = (zizd + z2z5 + z8) is not a monomial ideal. We invite the reader to
determine all initial ideals of I. How many of them are monomial 7 What happens
fw=(0,0)7m

Let w > 0 and let < be an arbitrary term order. We define a new term order
<, as follows: for a,b € N™ we set

a<,b <= w-a<w-b o (w-a=w-banda<b)

Proposition 1.8. For every ideal I C k[x]| we have in(in,(I)) = in<,(I).

Proof:  For every polynomial f € k[x] we have in.(in,(f)) = in<, (f). This
implies that in<(in.(I)) and in-_(I) contain the same monomials, and hence they
are equal. m

Proposition 1.8 implies the following two corollaries. The first provides an
algorithm for computing (Grébner bases of) non-monomial initial ideals.

Corollary 1.9. If w > 0 and G is a Grobner basis of I with respect to <, then
{in.(9) : g € G} is a Grébner basis for in,,(I) with respect to <.
Corollary 1.10. Ifw > 0 and in,(I) is a monomial ideal, then in,(I) = in_(I).

Proof: Monomial ideals remain fixed under the operation of passing to the initial
ideal. m

Proposition 1.11. For any term order < and any ideal I C k[x|, there exists a
non-negative integer vector w € N™ such that in,(I) = in<(I).

Proof: Let G ={gi,...,9-} be the reduced Grobner basis of I with respect to <.
Write

g = Ci0X20 + ¢; X2 4 -+ cijixaijiv
where in.(g;) = x*°. We define C; < to be the set of all non-negative vectors

w € R such that in,(g;) =x*° fori=1,...,r. Equivalently,

i

Ci< = {weR}:w-(ag—ay)>0fori=1,...,r1=1,...,5} (12
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We claim that C; < is non-empty. Suppose on the contrary that Cr< = 0. By the
Farkas Lemma of Linear Programming (Schrijver 1986; Section 7.8), there exist
non-negative integers A;;, not all zero, such that (componentwise)

T Ji
ZZ Ai(ag—ay) < 0.

i=11=1

By the multiplicativity property of our term order, this translates into

HH(xaiO)/\il =< HH(xail)/\il'

i=11=1 i=1l=1

On the other hand, the requirement in.(g;) = z®° implies x®© » x2i and

therefore ] .

L T Ji

H H(xaio))\u - H H(xau )Ml )

i=1]=1 i=11=1
This is a contradiction, and we conclude that Cr < is a non-empty open convex
cone.

Choose any w € Cr,< NZ". We must show that in,(I) = in<(I). The right
hand ideal is generated by the monomials in(g;) = in,(g;) = x®°, and so it is
clearly contained in the left hand ideal. If this containment were strict, then it
would remain so after passing to the initial ideal with respect to <, which means
that in(I) is strictly contained in én<_(I). This is impossible by Proposition 1.1.
[ } .

If w is any real vector such that in,,(I) = inL(I) for some term order <, then
we call w a term order for I. We also say that w represents < for I. We define the
Grébner region GR(I) to be the set of all w € R™ such that in,,(I) = in,(I) for
some w’ > 0. Clearly, GR(I) contains the non-negative orthant R%.

Example 1.7. (continued) The left diagram in Figure 1-1 below depicts the
seven monomials appearing in f(z1,z2). Their convex hull is a hexagon. The right
diagram is the normal fan of this hexagon. The Grobner region is the complement
of the closed cone which is shaded in white:

GR(I) = {(wi,w)€R?:wy>00rwi+2w;>0}.

When dealing with problems in projective geometry, the given ideal I is gen-
erated by homogeneous polynomials. In this case the Grébner region is all of R™.

Proposition 1.12. Suppose that I C k[x| is a homogeneous ideal with respect to
some positive grading deg(z;) = d; > 0. Then GR(I) = R™.

Proof: Given any w € R", there exists A > 0 such that &’ = w+ \- (di,...,dp)
is a positive vector. It suffices to show that in,, (1) = in.(I).

If f € I is homogeneous with respect to the grading deg(z;) = d;, then we
have clearly in,(f) = in./(f). Consider a non-homogeneous polynomial f € I,
and write f = fo + fi + f2 + - + f, for its decomposition into homogeneous
components. Since [ is homogeneous, we have fy, f1,..., f» € I. The w-initial form
of f equals in,(f) = inu(fi, )+ -+in,(fi,), for a suitable index subset {i,,...,i,}.
Each summand in,(f;,) lies in ¢n,(I), and hence so does in,(f). This proves that
iny,(I) C in,(I). The proof of the reverse inclusion is analogous. m
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H\

Figure 1-1. Grobner region of a principal ideal
in two variables.

We close this section with an identity which will be useful in the next chapter.

Proposition 1.13. Let I C k[x] be an ideal, w,w’ € R"™ and € > 0 sufficiently
small. Then
ing (ing,(I)) = inutew (D) (1.3)

Proof: Let G be the reduced Grébner basis of I with respect to the term order

~wtcw- For each g € G we have iny (iny(g)) = inw+€.w/(.g). Using Coroll.ary
’ 1.9, this implies that the right hand side of (1.3) is contained in the left ha.md side,
provided ¢ is sufficiently small. If this containment were proper, then it wc')ul'd
be proper after passing to initial monomial ideals with respect to <. But this is
impossible by Proposition 1.1. m

o

Exercises:

(1) Let I be the ideal generated by the nine 2 x 2-minors of a 3 X 3.—mat'ri}‘( 'of
indeterminates. Find a universal Grobner basis. How many distinct initial
ideals sn(I) are there ?

(2) Let U be a universal Grobner basis for an ideal I in k[z1, . .. ,zn].. Show that,
for every subset Y C {z1,...,Z,}, the elimination ideal I N k[Y] is generated
by U N k[Y]. Is this property sufficient for a set U to be a universal Grobner
basis ?

(3) Compute all circuits in the following ideal of linear forms

I = {2z + T3+ x3, T9+ 224+ 5, 3+ 25 + 276 ).

What would be a good algorithm for computing circuits in general ?

(4) Show that in,(f - g) = inu(f) - inu(g) for f,g € k[x]. Show .that inu‘,(I - J) Q
ing,(I) - in,(J) for ideals I and J. Find I and J where this containment is
proper.
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(5) Let I = (f(x1,x2,x3)) be a principal ideal for n = 3. Explain how to determine
the Grobner region GR(I) and how to enumerate all the distinct initial ideals
of I. ‘

(6) Let I be an ideal in k[x;,z;] generated by polynomials of degree at most d.
Give an upper bound (in d) on the number of distinct initial monomial ideals
of I.

Notes:

A standard reference on Grobner bases and the Buchberger algorithm is (Buch-
berger 1985). The most conceptual approach to the topics in Chapters 1, 2 and
3 is the interpretation of Grobner bases computations as a torus action on the
Hilbert scheme. This geometric point of view was developed in the thesis of
D. Bayer (1982). Universal Grobner bases were introduced in (Weispfenning 1987)
and (Schwartz 1988). Their existence and finiteness follows also from the general
doubly-exponential degree bounds for Grébner bases, see e.g. (Mbller & Mora 1984).
The more direct proof of Theorem 1.2 given here is due to A. Logar. It appeared
in (Mora & Robbiano 1988). In that paper the concepts of the Grobner fan and
the Grobner region were introduced. The representation of term orders by weight
vectors was pioneered by Ostrowski (1921).



CHAPTER 2

The State Polytope

In the first half of this chapter we review some basic concepts from polyhedral
geometry. In the second half we introduce the state polytope of an ideal I. It
has the property that its vertices are in a natural bijection with the distinct initial
ideals in<(I).

A polyhedron is a finite intersection of closed half-spaces in R™. Thus a poly-
hedron P can be written as P = {x € R™ : A-x < b}, where A is a matrix with
n columns. If b = 0 then there exist vectors uy,...,u,, € R™ such that

P = pos({ul,...,um}) = {A1u1+~--+)\mum : )\1,...,)\m €R+}. (21)

A polyhedron of the form (2.1) is called a (polyhedral) cone. Here and throughout
this book R denotes the non-negative reals. The polar of a cone C is defined as

C* = {weR':w-c<0forallceC}

A polyhedron @ which is bounded is called a polytope. Every polytope Q can be
written as the convex hull of a finite set of points

m

Q =conv({vy,...,vn}) :={ Z’\ivi P AL Am € R+’Z)‘i =1}. (22
=1

i=1

Here are two examples of 3-dimensional polytopes:

Figure 2-1. The cube and the octahedron.
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Let P be any polyhedron in R™ and w € R", viewed as a linear functional.
We define

face,(P) = {u€P :w-u>w-viorallve P}

Every subset F' of P which has this form, that is, which maximizes some l_inear
functional, is called a face of P. Note that P = faceo(P) is a face of 1tse1.f.
For instance, each of the two polytopes in Figure 2-1 has exactly 27 faces. Their

dimensions range from 0 to 3. N
The relation among polyhedra “is a face of” is transitive, because of the fol-

lowing basic identity:
face., (facew(P)) = face,tew (P) for € > 0 sufficiently small. (2.3)

We illustrate this identity for the 3-dimensional cube. Here face, (P) is the upper
backward edge and ' is the vector pointing straight to the right.

w wte-w

Figure 2-2. Illustration of identity (2.3).

The dimension of a face F of a polyhedron P is the dimension of its affine span,
and its codimension is codimp(F) := dim(P) — dim(F). A face of codir‘nension lis
a facet. Faces of dimension 0 and 1 are called vertices and edges respc.ec.tlvely. Eve.ry
polytope is the convex hull of its vertices, and every cone is the p051.tlye hull of its
edges. This makes the representations (2.2) and (2.1) unique and minimal.

Proposition 2.1. Every polyhedron P can be written as the sum P = Q +C of
a polytope Q and a cone C. The cone C is unique and is called the recession cone
of P.

Proof: See Section 8.2 in (Schrijver 1986). m
The sum in Propositon 2.1 is defined via Minkowski addition of polyhedra,
P +P, = {pi+p2 : p1€P,p:€ P}
A basic fact about the Minkowski sum operation is the additivity of faces:
face,(PL+ P;) = face,(P1) + face,(P2). (2.4)

This implies the following remark: if v is a vertex of P, + P, then there'exist unique
vertices p; of P, and p; of P such that v = p; + p2. The Minkowski sum of two
polygons is computed as follows:

2. THE STATE POLYTOPE 11

I
O O O O

Figure 2-3. Minkowski addition of two quadrangles.

Every vertex of the Minkowski sum is a sum of vertices of the summands.
Certain sums of vertices do not give vertices but interior points of the Minkowski
sum. These are indicated by circles in Figure 2-3. Note also that every edge of
P, + P; is a parallel translate of an edge of P; or of an edge of Ps.

A (polyhedral) complex A is a finite collection of polyhedra in R™ such that
(i) if P € A and F is a face of P, then F € A;

(ii) if P;, P, € A, then P, N P, is a face of P, and of P,.
The support of a complex A is |A| := UpeaP. A complex A which consists of cones
is called a fan. A fan A is complete if |A| = R".

If P Cc R" is a polyhedron and F' a face of P, then the normal cone of F at P
is

Np(F) = {weR": face,(P)=F}.

Note that dim(Np(F)) = n — dim(F). If F and F’ are faces of P, then F' is a
face of F' if and only if Np(F) is a face of Np(F’). Hence the collection of normal
cones Np(F), where F ranges over the faces of P, is a fan. This fan is denoted
N(P) and called the normal fan of P. The support of ' (P) equals the polar C*
of the recession cone C in the decomposition of P given in Proposition 2.1. The
cone C* has a simple interpretation in terms of linear programming: it consists of
those linear functionals w which give a bounded solution when maximized over P.

If Q is a polytope, then its recession cone is {0}, and its normal fan A/ (Q) is
a complete fan. Two polytopes Q and Q' are called strongly isomorphic if N' Q) =
N(Q'). In Figure 2-4 we depict two strongly isomorphic hexagons.

Let us now see how these concepts of polyhedral geometry are related to the
primitives of computational algebra. With every polynomial f = Zzl C; - X
in k[x] we associate the Newton polytope New(f) := conv{a; : i=1,...,m}
in R™. The algebraic operation of multiplication corresponds to the geometric
operation of Minkowski addition:

Lemma 2.2. New(f-g) = New(f)+ New(g).

Proof: It suffices to show that both polytopes have the same vertices. We first
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Figure 2-4. Two strongly isomorphic hexagons.

note the following general relation between faces and initial forms:
face,(New(f)) = New(in,(f)) ©(2.5)

We next observe that Lemma 2.2 holds for monomials f = x® and g = xP beFause
x2 . xP = x2+P_ The following relation holds for all w € R™ which are sufficiently

generic:

facew(New(f : g)) =(2.5) New(znw(f . g)) =’Exerc.(4) in Chapterl
= New(inw (f) . inw(g)) ~mono New(inw (f)) + New(znw(g)) =(2.5)
= face,(New(f)) + face,(New(g)) =(2.4) face.(New(f) + New(g)).

Here “sufficiently generic” means that the operator face,(-) selects a vertex on
both the left hand side and the right hand side. We conclude that the two polytopes
in question have the same set of vertices and hence they are equal. m

It is our goal to generalize the construction of the Newton polytope from
4 /
polynomials to ideals. We fix an ideal I C k[x]. Two weight vectors w,w’ € R" are
called equivalent (with respect to I) if and only if in,(I) = in.(I).
Proposition 2.3. Each equivalence class of weight vectors is a relatively open
convex polyhedral cone.
Proof: Let C|w] denote the equivalence class containing w. We fix an arbitrary

term order < as a “tie breaker”. Let G be the reduced Grébner basis of I with
respect to <,,. We claim that the following formula holds:

Clw] = {W €R" : in,(g) =inu(g) forall ge G} (2.6)

This formula implies Proposition 2.3 because it expresses C|w] as an intersc?ction
of hyperplanes and open half-spaces. To see this, note t'hat the. r.ight }Iland s1d,e of
(2.6) is defined by the equations «’-a = w’-b and the inequalities w'-a > w'-c
where x® and xP run over the terms of in,(g) and x° runs over the terms of g
which do not appear in in,(g).
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We first prove the inclusion “O” in (2.6). If w’ lies in the right hand side of
(2.6), then in,(I) = (in.(9): g€ G) C 1, (I). If this inclusion of ideals were
proper, then the same would be true for their initial ideals:

ing, (I) = ing(in,(I)) C ing(ing (1)) = ing , (I).

(Here we are using Proposition 1.8). But, in view of Proposition 1.1, it is impossible
to have a proper inclusion among two initial monomial ideals of I , and therefore
in,(I) = in, (I).

To prove the inclusion “C” in (2.6), suppose that w’ € C [w]. By Corollary 1.9,
the set in,(G) = {in.(g) : g € G} is the reduced Grébner basis of in,, (I) = in,, (1)
with respect to <. Fix g € G. Then in,, (g) reduces to zero with respect to N, (G)
using the term order <. This implies that the monomial m := in_(g) must appear
in in,/(g), because all other monomials of g do not lie in ing, (I) = ing(in,(I)).
We write in,(9) = m+ h and in,(9) = m + A’ where h and k' are k-linear
combinations of such standard monomials. After the first step of the above zero-
reduction we arrive at the polynomial A’ — h, which lies in in,, (I). However, none
of the terms appearing in h' — h lies in in__(I) = in(in,(I)). Therefore h' — h
is the zero polynomial, and we conclude that in,, (g) = in,,(g). This completes the
proof. m

We remark that formula (2.6) has the following geometric reformulation in
terms of (normal cones of the Newton polytopes of) the reduced Grébner basis G:

Clw] = Ng(face.(Q)), where Q := New(H 9) = ZNew(g). (2.6")

9€G geG

We define the Grébner fan GF(I) to be the set of closed cones C [w] for all w € R™.
The usage of this term is justified by the following proposition.

Proposition 2.4. The Grébner fan GF(I) is a fan.

Proof: Let w’ be any vector in the closure C[w] of an equivalence class Clw]. Then
iny (1) is an initial ideal of in,,(I), and hence there exists a term order < such that
in<,(I) =in<_,(I). Let G be the reduced Grébner basis of T with respect to <,
and let Q be the polytope defined in (2.6’). Since G is the reduced Grébuer basis
for <./ as well, the equivalence classes C[w] and C[w'] are outer normal cones of
the same polytope:

Cl] = No(face, (@)  and  Cl'] = No(facew (Q)).

Our hypothesis implies that the polytope face,(Q) is a face of the polytope
face,s(Q), and therefore the closed convex cone C[w’] is a face of the closed convex

cone Clw],

We must show that GF(I) satisfies the two axioms (i) and (ii) for being a
complex. To verify axiom (i), let F be any face of the closure of an equivalence
class Clw]. If o' is any vector in the relative interior of F, then the argument in
the previous paragraph shows that F' = C[w'] is a face of CJw]. To verify axiom
(ii), let w,w’ € R™ and consider the closed convex cone P := Clw]NClw']. We
have proved that, for every w” € P, the cone C[w"] is a face of Clw] and a face of
C[w']. Hence P is a finite union of such common faces. But an irredundant union
of faces of Clw] can only be convex if this union is a singleton. We conclude that

P is itself a common face of both Clw] and C[w']. =
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We now come to the main theorem in this chapter. From now on we shall
assume that I is homogeneous with respect to some positive grading, say, deg(z;) =
d; > 0.

Theorem 2.5. Let I be a homogeneous ideal in k[x]. There exists a polytope
State(I) ¢ R™ whose normal fan N (State(I)) coincides with the Grobner fan
GF(I).

The polytope State(I) in Theorem 2.5 will be called the state polytope.of I .
Its construction goes as follows. The degree of a monomial in the given gradmg is
deg(x®) = 37, dia;. We write I for the vector space of homogeneous polynomials
of degree d in I. If M is any monomial ideal, then 3 M, denotes the sum of all
vectors a € N™ such that x® has degree d and lies in M. We define

Stateq(I) = conv{ Zin< (I'g : =< any term order }. (2.7)

Let D be the largest degree of any element in a minimal universal Grobner basis of
I. We define our polytope of interest as the Minkowski sum

D
State(I) = Y Statey(I). - (2.8)
d=1

The following lemma generalizes formula (2.5).
Lemma 2.6. For all w € R™ we have face,, (Stateq(I)) = Stateq(in,(I)).

Proof:  First suppose that w is generic in R™, so that in,([) is a monomial
ideal and face,(-) selects a vertex of the state polytope. Let x*1,...,x*" be all
monomials of degree d, and let r := dim(I;) < m. Let < be any term order such
that face,(Stateq(I)) = {3 in<(I)q}. After relabeling we may suppose t.hat
x®1_ ... x® are precisely the monomials in in([)4. Since the standard monomials
form a basis modulo I, there exist polynomials

m
x® — Z ci;x* € Iy fori=12,...,m
j=r+1

In each of these r equations the respectively first term is the w-largest, i.e., w-a; >
w - a; whenever c;; # 0. Recall that States(in,(I)) = {a1 +---+ a.}. /

The vertex face,,(Statea(I)) is equal to 3 in (I)a for some term order <'.
Let x®1,...,x% be the monomials in in/ (I)y. Suppose the equation claimed
in Lemma 2.6 were not true. By definition of the operator face, (), this implies
w-(aj, +---+a;,) > w-(a;+---+a,). By Steinitz’ basis exchange lemma applied
to the vector space (k[x]/I)4, we can pass from the sum a; + ---+a, to the sum
a;, +---+a,;_ by asequence of replacements a; — a; with ¢;; # 0 as above. We
have seen in the previous paragraph that each of these replacements decreases the
value of the linear functional w. This is a contradiction. We have shown that the
assertion of Lemma 2.6 holds for almost all w € R™.

To prove Lemma 2.6 in general, we shall show that both polytopes have the
same vertices. Let w’ be a generic vector in R™. Then, for € > 0 sufficiently small,

face, (facew (Stated (I))) =(2.3) face,rew (Stated(I))
= Stateq( inwtcw (1) ) =a3) Stateq ( in. (in,(I) ))
= face. (Stateq(in,(I))).
Here the second and the fourth equation use the generic case established above. m
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The exchange lemma argument in the above proof gives the following corollary.

Corollary 2.7. If <, <’ are two distinct term orders, then
in<(Ia # in<()a implies Y ini(I)a # Y in<(I)a.

Proof of Theorem 2.5: 'We must show that the Grébner fan GF(I) equals the fan
N (State(I)). Note that GF(I) is a polyhedral complex by Proposition 2.4. All
faces of a polyhedral complex are determined by the maximal faces. Therefore two
polyhedral complexes coincide if and only if their maximal faces coincide. Thus it
suffices to show that the maximal (open) cones in GF(I) coincide with the maximal
(open) cones in NV(State(I)). Equivalently, we must show that in,, (I) =in, (I) if
and only if face,(State(I)) = face..(State(I)), for any two generic vectors w, w’
in R™.

"Two homogeneous ideals are equal if and only if they agree in each degree. By
definition, the integer D appearing in (2.8) is a universal bound for the degrees of
minimal generators for these ideals. Therefore

ing(I) = ing(I) <= iny,(I)qa = in,(I)g foralld=1,2,...,D. (2.9)
Also note that, by (2.4), we have

D
face,(State(I)) = Zfacew(Stated(I)), (2.10)
d=1

and similarly for w’. The “only-if” direction of our claim follows immediately from
(2.9), (2.10) and Lemma 2.6. For the converse suppose that face,(State(I)) =
face,/(State(I)). Since w,w’ are generic, these faces are vertices, and we may
replace w,w’ by term orders. The “if”-direction now follows from Corollary 2.7 and
the remark after equation (2.4). m

Passing to the indefinite article, we say that a polytope Q € R" is a state
polytope for a given ideal I C k[x] if it is strongly isomorphic to State(I). In other

words, a polytope @ is a state polytope for I if its normal fan A(Q) equals the
Grobner fan GF(I).

We shall now discuss state polytopes for three families of examples.

Proposition 2.8. Let f be a homogeneous polynomial and I = (f) the principal
ideal it generates. Then the Newton polytope New(f) is a state polytope for I.

Proof:  The singleton {f} equals the reduced Grobner basis with respect to any
term order. From (2.6) we sce that Clw] = Nyew(s)(face,(New(f))), ie., the

equivalence classes of term orders are the normal cones of the Newton polytope
New(f). =

In fact, the same argument proves the following stronger statement:

Corollary 2.9. Let G be a universal Grébner basis of I which is a reduced Grébner

basis of I with respect to every term order. Then ¥ gec New(g) is a state polytope
for I.

Example 2.10. (2 x 2-minors of a 2 x 3-matrix) Recall from Example 1.4 that

g = {$11122 — T12T21, T11T23 — T13T21, T12ZT23 — T13T22 }
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is the reduced Grobner basis for every term order. We can thus apply Corollary
2.9. The three Newton polytopes New(zy;z2; —1;Z2;) are line segments lying in
a two-dimensional linear subspace of R. The symmetry group S; permutes them.
The Minkowski sum of the three segments is a centrally symmetric hexagon. (In
particular, dim(State(I)) =2.) m

We finally consider an ideal I generated by linear forms (cf. Example 1.5 and
Proposition 1.6). Here Proposition 2.9 does not apply, because the set of all circuits
is not a reduced Grébner basis for I. As in Chapter 1 we let d denote the dimension
of the space of linear forms in I. We say that a d-subset {i1,...,%a} of {1,...,n}is
a basis if the (n —d)-set {z1,...,2,}\{i;,...,%i,} is linearly independent modulo
I. The matroid polytope of the linear ideal I is defined as

Mat(I) := conv{e;, +---+ey, : {i1,---,ia} basis }. (2.11)

This polytope plays a fundamental role in combinatorial optimization.

Proposition 2.11. If I is an ideal generated by linear forms, then its matroid
polytope Mat(I) is a state polytope for I.

Proof: We first note that the degree bound D used in (2.8) is equal to 1. Therefore
State(I) = State;(I). Next we claim that the initial ideals of I are precisely the

ideals (z;,,...,;,), where {i1,...,14} runs over all bases. Clearly, every initial
ideal has this form. Conversely, given any ideal of this form, then its own incidence
vector w = e;, + - +e;, selects in,(I) = (&i,...,Ti,;). Therefore the convex

hull in (2.11) coincides with the convex hull in (2.7), and we are done. m

Exercises:
(1) Show that every complete fan in R? is the normal fan of a polytope. Give an
example of a complete fan in R? which is not the normal fan of a polytope.
(2) Consider the monomial ideals M, = (z,1°, z%y?) and M, = (z?y,zy? 2*,y%).
Does there exist an ideal I C k[z,y] and two term orders <; and <2 such that
ing, (I) =M, and in,,(I) = My ?
(3) Compute the matroid polytope for the linear ideal in Exercise (3) of Chapter 1.
(4) Let I be an ideal in k[z1,...,z,], ¥ C {z1,...,Zn} a subset of the variables,
and I N &[Y] the corresponding elimination ideal.
(a) Show that State(I N k[Y]) appears as a face of State(I).
(b) Give an example which shows that this face is generally not unique.

(5) Determine the state polytope and Grobner fan for the ideal of 2 x 2-minors of
a 2 x m-matrix of indeterminates.

(6) Explain the relationship between State(I + (z;)) and State(I).

(7) Given two ideals I; and I, in the polynomial ring k[x], what is the relationship
between the polytopes State(I; - I5) and State(I1) + State(Iy) 7

(8) Show that an ideal I is a monomial ideal if and only if dim(State(I)) = 0.
Give a characterization of all ideals whose state polytope is one-dimensional.
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Notes:

The Newton polytope occupies a central place at the crossroads of algebra, geometry
and .combinatorics. An excellent general reference, especially for polyhe:iral meth-
ods.m elimination theory, is (Gel'fand, Kapranov & Zelevinsky 1994). Minkowski
addition of polytopes was applied to Grébner bases in (Gritzmann & Sturmfels
1993). The state polytcpe of an ideal was introduced in (Bayer & Morrison 1988)

The Grobner fan was introduced in (Mora & Robbiano 1988). A thorough analysis:
of the polytopes Stateq(I) and their normal fans for varying d was undertaken by
Mall (1995).. A natural Minkowski summand of the state polytope is the Chow
polytope of an algebraic cycle in projective space. It was shown in (Kapranov,

S‘tu_rmf.els & Zelevinsky 1992) that the Chow polytope can be realized as a suitable
limit limg_, o Stateq(I).



CHAPTER 3
Variation of Term Orders

In this chapter we discuss algorithmic issues in Grobner basis theory which
involve the variation of term orders for a fixed ideal I. The global “combinatorial
space” for studying such variations is the state polytope State(I), or, equivalently,
the Grébner fan GF(I). In what follows we let I denote a fixed ideal in k[x], and we
assume that I is homogeneous with respect to some positive grading deg(x;) = d; >
0. Our first topic is algorithms for computing the state polytope and a universal
Grobner basis of 1.

For the computation of the state polytope State(I), it is useful to have the
following easy formula for its dimension. If F is any finite set of polynomials in
k[x], then we abbreviate the Minkowski sum of their Newton polytopes as follows:

New(F) = ZNew(f) = New(Hf). (3.1)

feF fer

We call New(F) the Newton polytope of the set F.

Lemma 3.1. Let G be any reduced Grébner basis for I. Then the affine span of
New(G) and the affine span of State(I) are parallel linear subspaces in R™. In

particular,
dim (New(G)) = dim (State(I)). (3.2)

Proof: Let w € R™ be a weight vector for the Grébner basis G. Then v :=
Jace,(New(G)) is a vertex of New(G), and v’ := face,(State(I)) is a vertex of
State(I). It was shown in equation (2.6’) that the normal cone of v at New(G) is
equal to the normal cone of v/ at State(I). This cone is denoted Clw] (see (2.6)).
Consider the lineality space of this cone, Cw] N —C[w]. This linear subspace is the
orthogonal complement of the affine span of New(G), and it is also the orthogonal
complement of the affine span of State(I). m

Our first algorithm computes the state polytope State(I) by an incremental
method. The basic idea is to construct an increasing sequence of polytopes by
computing Grobner bases for more and more term orders. Each polytope P in this
sequence is stored by the list of its vertices and the list of its facets F. Each facet
F consists of the following data: an outer normal vector w € Np(F) and the list
of all vertices of P which lie on F'.

Algorithm 3.2. (Computing the state polytope)
Input: Generators of a homogeneous ideal I in k[x]. A tentative maximum de-
gree D.
Output: Vertices and facets of the state polytope State(I).
0. Fix an arbitrary tie breaking term order <.

19
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1. Compute the reduced Grobner basis G of I with respect to <.

2. Let L C R™ be the linear subspace which is parallel to the affine span of the
Newton polytope New(G). Fix a basis of L. Set r := dim(L).
(All subsequent computations are to be carried out inside L.)

. Choose r + 1 vectors wi,...,w,y1 € L whose positive span equals L.

4. Fori=1,2,...,7+ 1 compute the reduced Grébner basis G; for I with respect
to <,,. If the maximum degree D; of an element in G, is larger than D, then
replace D by that D,. For i=1,2,...,7 + 1 compute v; := ZdD=1 in<, (I)a-
This is the sum of the exponent vectors of all non-standard monomials of degree
at most D.

5. Let P := conv{vi,va,...,v,4+1}. Let activefacets be the set of facets
of P, where each facet F is a pair (set of vertices, normal vector). Set
passivefacets := 0.

6. While activefacets is non-empty do
6.1. Pick any facet FF = (V,w) € activefacets. Remove (V,w) from ac-

tivefacets.

6.2. Compute the reduced Grébner basis G for I with respect to <. If the
maximum degree D’ of an element in ¢ is larger than D, then replace D
by D’ and return to step 3. Otherwise compute v := Z aep i<, (I)a.

6.3. If v € V then set passivefacets := passivefacets U {(V,w)}.

6.4. If v ¢ V then compute the new polytope P := conv(P U {v}) using
the beyond-beneath technique. Update the sets activefacets and pas-
sivefacets accordingly. (Note: all new facet normals w are to be chosen
in the subspace L.)

7. Output the polytope P. Its set of facets equals passivefacets.

w

This algorithm description is very coarse. A few comments are in place. The
choice of r + 1 positively spanning vectors in step 3 has the effect that the polytope
P in step 5 has dimension r = dim(State(I)), by Lemma 3.1. This simplifies the
subsequent computations because, by restricting to the subspace L, we are dealing
with full-dimensional polytopes only. This consideration makes each new normal
vector w computed in step 6.4 unique up to a positive scalar multiple. The beyond-
beneath technique called upon in step 6.4 is the characterization of the face(t)s of
the enlarged polytope conv(P U {v}) in terms of the face(t)s of P and their relative
position (beyond-beneath) to the new point v. The beyond-beneath technique is
introduced in (Griinbaum 1967). An algorithmic version can be found in Section
8.4 of (Edelsbrunner 1987). We refer to these two books for details on how to
implement step 6.4.

The correctness of Algorithm 3.2 can be seen as follows: At each stage in the
procedure, P is a full-dimensional subpolytope of State(I). They fail to be equal
if and only if there exists a linear functional w whose maximum over State([) is
larger than its maximum over P. Here it suffices to consider only w’s which are outer
normal vectors to facets of P. Moreover, the facets in passivefacets need not be
tested, since each of them was already shown to span the supporting hyperplane to
a facet of State(I). In summary, the subpolytope P fails to be equal to State(I) if
and only if there exists (V,w) € activefacets such that v ¢ V' in step 6.4. This
shows the correctness of Algorithm 3.2.

We remark that if we return from step 6.2 to step 3 then, as it stands, all ac-
tivefacets and all passivefacets are discarded. In any practical implementation
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Algorithm 3.2 should be reorganized to be less wasteful and thus more efficient.

A byproduct of Algorithm 3.2 is the generation of a universal Grébner basis U
for the ideal I. We simply define U as the union of all reduced Grobner bases G; and
G which were computed along the way. In fact, the knowledge of the state polytope
State(I) of a homogeneous ideal I is essentially equivalent to the knowledge of a

universal Grébner basis U for I. We shall present algorithms for converting State(I)
into U and conversely.

Algorithm 3.3. (From the state polytope to a universal Grébner basis)
Input: The state polytope State(I) of a homogeneous ideal I in k[x].
Output: A universal Grobner basis U of 1.
1. Let U := 0. Set P = State(I). Fix any tie breaking term order <.
2. For each vertex v of P do:
2.1 Select any vector w in the open cone Np({v}).
2.2 Compute the reduced Grobner basis G of I with respect to <.
23 Set U .= U UG.

For the converse direction we shall make use of the following fact.

Proposition 3.4. Let U be a universal Grobner basis of a homogeneous ideal I.

Then( the state polytope State(I) is a Minkowski summand of the Newton polytope
New(U).

Proof: 'We must show that the normal fan of New(i) refines the Grobner fan
GF(I). Suppose w,w’ € R™ lie in the same cell of the normal fan of New(U) =
> peu New(p). Then in,(p) = in. (p) for all p € U. By Corollary 1.9 and the
universal Grébner basis property of U, this implies in,(I) = in. (I), i.e., w and
w' lie in the same cell of GF(I). m

Algorithm 3.5. (From a universal Grébner basis to the state polytope)
Input: A universal Grobner basis U of a homogeneous ideal I in k[x].
Output: The state polytope State(I). :

0. Let D be the maximum degree of any element in i.

1. Compute the Minkowski sum of the Newton polytopes:

New(U) = ZNew(p)
peEU

2. For each vertex v of New(U) do:
2.1 Select any vector w in the open cone Ny.w@)({V}).
2.2 Read off the initial monomial ideal in,(I) = (in,(p) : p € U).
2.3 Compute the corresponding vertex of the state polytope: 25:1 (g
If this vertex has not been computed previously, then output it now.

The correctness of Algorithm 3.5 follows from Proposition 3.4. Again, what
is written here is only a crude outline. For instance, it is a non-trivial issue how
to implement step 1. Techniques for computing Minkowski sums can be found in
(Gritzmann & Sturmfels 1993). If step 1 computes all faces of P, not just the
vertices, then the same can be done for the state polytope in step 2. The point is
that the normal fan of State(I) is obtained from the normal fan of P by identifying
certain adjacent cones. An alternative way of performing the task of Algorithm 3.5
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is to run Algorithm 3.2 on the input U. In that case the Grébner basis computations
in steps 1, 4 and 6.2 are redundant, since U is already a universal Grobner basis.
It would be interesting to compare these two approaches experimentally.

Algorithms 3.2 and 3.5 for computing the state polytope are global in the
sense that they make little use of the local polyhedral information contained in
each reduced Grobner basis. An alternative algorithm is to construct the state
polytope by a local search along its edge graph. Here is the general scheme for
carrying out such a search.

Algorithm 3.6. (Computing the state polytope by searching its edge graph)
Input: Generators of a homogeneous ideal I in k{x].
Output: Vertices and edges of the state polytope State(I).

1. Choose any random vector w € R™ and compute the reduced Grobner basis G
of I with respect to w. Represent the monomial ideal in,(I) by its minimal
generators.

2. Set Vertices := {in, ()} and set Edges := {. Fix an infinitesimal real ¢ > 0.

3. Let C[w] be the normal cone at the vertex of the Newton polytope New(G)
supported by w (cf. (2.6)). Let Fy, Fy,..., Fs denote the facets of Clw]. Select
a vector w; in the relative interior of each facet Fj.

4. For : from 1 to s do
41. Let ' i=w; —€-w.

4.2. Transform G into the reduced Grobner basis G’ of I with respect to w’.
4.3. Edges := Edges U {{in. (1), in. (I)}}.
4.4. If in, (I) & Vertices then
4.4.1. Vertices := Vertices U {in.(I)}
4.4.2. Proceed recursively by calling step 3 of this algorithm, with w
replaced by w’ and G replaced by G'.

5. Let D be the maximum degree of any minimal generator of an ideal in
Vertices.

6. For every monomial ideal M in Vertices do
6.1. Output M and the corresponding vertex of the state polytope, 2521 My.
6.2. If desired, output all edges in Edges which contain M.

Algorithm 3.6 searches the edge graph of the state polytope indirectly, namely,
by traversing the maximal cells in the Grébner fan. The key ingredient of this algo-
rithm is step 4.2, the transformation from a reduced Grobner basis to a neighboring
reduced Grébner basis. This step will be described in Subroutine 3.7 below. It uses
the following notation and assumptions. Let C; and C3 be two open cells in the
Grobner fan, let w; € C; and wy € Cy, and let w € C; N Co.

Subroutine 3.7. (Local change of reduced Grébner bases)
Input: The reduced Grobner basis G; of I with respect to w;.
Output: The reduced Grébner basis Go of I with respect to wo.
1. Let H, := in,(G1) = {in.(9) : g € G1}.
(This is the reduced Grobner basis of the ideal in,,(I) with respect to w;.)
2. Compute the reduced Grobner basis Ha of in.(I) = (H1) with respect to wo.
3. Set G, = 0.
4. For each h in H, do
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4.1. Reduce h to zero modulo H; using the term order w;, and keep track
of the coefficient polynomials during the reduction. This gives an w-
homogeneous representation

h = Z Py - 1nu(g)- (3.3)

9€G1

Z Dy 9, (3.4)

IS

4.2. Compute the polynomial

and add it to the set G}.
(After this loop the sgt .QQ is a minimal Grébner basis for I with respect to wy.)
5. Transform the minimal Grébner basis G5 into the reduced Grébner basis Gs.

Proof of correctness of Subroutine 3.7:  Since w, represents a term order which
refines w for I, we may assume that wo is arbitrarily close to w (by replacing wy
by w + €w;). We must show that G} is a minimal Grébner basis for I with respect
to wy. This means that in,(G3) = {in.,(f) : f € G5} minimally generates the
monomial ideal in,,(I) = in,, (in,(I)). Since H, is the reduced Grébner basis for
in,,(I) with respect to wy, it suffices to show that in,,(Hs) = in,, (G}). Let f € g
and consider its representation (3.4). The expression (3.3) being w-homogeneous
means that each monomial in the expansion of h has the same w-weight. Therefore
h is the initial form of f with respect to w. By the above closeness assumption, we
have in,, (f) = ing, (inu(f)) = in,,(h), as desired. m

Example 3.8. (Two ternary quadrics)
Consider the generic complete intersection

I = (a1$2 + aozy + aszz + agy? + asyz + agz?,
biz? + bazy + b3zz + bay? + bsyz + bg2? )
where k = Q(aq,...,a6,b1,...,bg) is the field of rational functions in the 12 in-

determinate coefficients. Choose the weight vector w; = (3,2,1). Then in,, (I) =

(2%, zy,y®). The corresponding reduced Grébner basis G, = {91,92,93} of T has

the structure

9 = 011_-'132 + a2y2 + azrz + aqyz + a5z2,

92 = By + By’ + Bazz + Bayz + Bs27,
93 = N’ + 7222 + 1y’e + vy’ + y52°.

The corresponding cone in the Grobner fan equals
Clw] = {(’(}1,'02,’()3) €R? : v; > vy and 3up > vy + 2113}.
The lineality space of Clw;] is one-dimensional, hence

dim(State(I)) = d&im(N(G,)) = 2.

We now demonstrate the change of Grobner bases across the facet {3v, =
v1 + 2v3}. Select a vector in the relative interior of this facet, say w = (3,1,0).
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Then H; = iny,(G1) = {122, Bizy, Ny + vex2?} is thfe fe.duced Gr.t')bner basis
of in.,(I) with respect to w;. (We don’t bother cancelling initial cc.)efﬁqents.) N.ow
set wy := w — ew; for € > 0 very small. The reduced Grobner basis of in,, (I) with
respect to wy is found to be Hy = H; U {h},

. 2 .
where h = ﬂ171y4 = ﬂly'mu(QS) - Y22 'an(gz).

This is the representation (3.3) in Subroutine 3.7. The new polynomial (3.4) equals

f = By g5 — 12’ g
2.2
= Bimy’ — Bsyex2® + Bivsy’z + (Bivs — Bav2)y 2
+ (Brys — Bara)yz® — Bsy2t.

Therefore G, U {f} is a minimal Grobner basis for I with respect 'to wy. However, ;t
is not reduced yet, since the term —f3v,x23 of f is divisible by in,, (93) = Yez2”.
We perform the corresponding reduction to get

f'=Ff+Bsz-g3=0Bimy" + Bivs+ B’z + (Brva— By + Byys)y?2?
+ (Biys — Baya + Bava)y?® + (Bsvs — Bsv2)2".

We conclude that the reduced Grébner basis of I with respect to wy equals Gy =
Gy U {f'}. We read off the corresponding cone in the Grébner fan:

C[WQ] = {(’Ul,’Uz,’Ug)ERS : vg > vz and ’U1+2’U3>3’U2}.

The two initial ideals we have found so far cover all term orders with = > y > 2

since s
Clwi] U Clw2] = {(’Ul,’Ug,’Ug) eR’ : vy >2v >3 }

Since the given complete intersection was generic, we can argue by symmetr}f that
there are two distinct initial ideals for each of the six permutatlops of the va,rlabl.es
z,y, z. In summary: The state polytope of the ideal of two generic ternary quadrics
is a planar 12-gon. w

By repeated application of Subroutine 3.7, we can transform the reduced
Grobner basis G of an ideal I with respect to some term order < into the reduced
Grobner basis G’ with respect to any other term order <’. This is accomplishfad as
follows: Select weight vectors w,w’ € R™ which represent < and <’ respectively.
Now move the weight vector along the line segment {A-w'+(1-A)-w : 0 < /\‘5 1}
by incrementally increasing A from 0 to 1. Each time we pass through a codm.len—
sion 1 face of the Grobner fan GF(I), Subroutine 3.7 is called to update the given
Grobner basis. This method for transforming Grébner bases was proposed by .Col—
lart, Kalkbrener & Mall (1993). It is a polyhedral alternative to the more filrect
algorithm of Faugére, Gianni, Lazard & Mora (1992). An import?.nt app.llcatlon (_)f
their technique is to change reverse lexicographic Grébner bases into lexicographic
ones, as the latter are much harder to compute than the former. '

,We next address the question of how to select the “best” term order for a given
system of polynomials. As a motivation for this question, consider the following
simple example.
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Example 3.9. Suppose we wish to find all complex zeros of the polynomial system
F ={al+a3+23-1, 2?2 +22+23-1, B+ +23-1) C Qlz1, 2y, T3]

A first attempt might be to compute a purely lexicographic Grébner basis. There
are six lexicographic Grobner bases, one for each ordering of the variables. Unfor-
tunately, each of the six lexicographic Grobner bases for (F ) contains high degree
polynomials with very large coefficients. For instance, a typical polynomial in the
lexicographic Grobner basis induced by z, < z, < z3 has degree 21 and the max-
imal appearing integer coefficient is 1553067597584776499. This means that the
Grobner basis computation is rather slow.

For this example there is a much better term order, namely, w = (3,4, 7). For
these weights, our input set F has the initial terms z7, 22 and z3. These monomials
are relatively prime, and hence F is already a Grobner basis. We see that the ideal
(F) is zero-dimensional and has 30 = 5-2-3 zeros up to multiplicities in affine
3-space C3. m

The lucky term order w = (3,4,7) in Example 3.9 is found systematically as
follows.

Algorithm 3.10. (Grébner basis detection)
Input: A set F C k[x] of polynomials.
Output: A term order w € R™ such that F is a Grobner basis with respect to w,
if such w exists; “NQO” otherwise.
1. Compute the Newton polytope P = New(F).
2. For each vertex v of P do:
2.1. Decide whether the cone Np({v}) intersects the positive orthant R} If
yes, then
2.1.1. Select w € Np({v}) N RT.
2.1.2. Using the Buchberger criterion, decide whether F is a Grébner basis
with respect to the choice of initial terms defined by w. If yes,
then output w.
3. If the answer in 2.1.2 has never been “yes”, then output “NO”.

For most polynomial systems arising in practise, the output of Algorithm 3.10
will undoubtedly be “NO”. Nevertheless the same procedure can be used to deter-
mine the “best” term order with respect to any predefined local criterion. In what
follows we define a natural such criterion. Fix a set of polyncmials F C k[x]. For
each weight vector arising in step 2.1.1 above, we consider the monomial ideal

M, = (ing(F)) = (in.(f): feF).

We define h,(r) to be the Hilbert polynomial of the homogeneous ideal M,,, that
is,

ho(r) = dimp((k[x]/M,),) for r>> 0.

If w and W’ are two generic weight vectors as in 2.1.1, then we say that w is better
than o' if the initial coefficient of the polynomial h,,(r) — h,(r) is negative. With
this criterion (and a fast subroutine for computing Hilbert polynomials), Algorithm
3.10 can be used to generate a short list of best term orders. Our criterion is justified
by the following result.
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Proposition 3.11. Let F be a homogeneous set of polynomials and w € R™ such
that F is a Grobner basis with respect to w. Then w is a best term order for F.

Proof: The ideal M,, is a subideal of in,({(F)). Equality holds if and only if F is
a Grobner basis with respect to w. In particular, h,(r) is an upper bound for the
number of w-standard monomials of large degree r modulo (F), and equality holds
in the Grobner basis case. m

Our last topic in this chapter is a characterization of term orders by their
reduction properties. By a marked polynomial we mean a polynomial f € k(x|
together with a specified initial term in(f). Here in(f) can be any of the terms
appearing in f. Given a set F of marked polynomials, we define the reduction
relation modulo F in the usual sense of Grobner bases. We say that F is marked
coherently if there exists a term order < on k([x] such that in(f) = in<(f) for all
f in F. Clearly, if F is marked coherently, then the reduction relation “agp” is
Noetherian. The following theorem establishes the converse.

Theorem 3.12. A finite set F C k[x| of marked polynomials is marked coherently
if and only if the reduction relation modulo F is Noetherian, i.e., every sequence of
reductions modulo F terminates.

The following example of an incoherent marking was given in Example 1.4,
case (3):

T11T22 — T12221, T13%21 — T11T23, T12T23 — T13T22- (3‘6)

Theorem 3.12 tells us that the corresponding reduction relation is not Noetherian.
For instance, the following reduction sequence modulo the marked polynomials (3.6)
is infinite
2 2 2 2
T11T12L13221%22L23 — T15T13T51T23 — X11T79T21T23
— T11T12%13T21222T23 — -

To prove Theorem 3.12 in general, we need to establish the following lemma.

Lemma 3.13. Let F = {fi1,..., fi} C k[x] be marked incoherently. Then there
exists a reduction sequence modulo F which does not terminate.

Proof: Let f; = x® — ¢cix™T71 — cox®Hm2 — ..o — ¢ x*FVie:, where ;5 =
(Yij1s - - -+ Yijn) are distinct, non-zero vectors in Z". Suppose that the marking
in(f;) = x™ is incoherent, i.e., there does not exist a term order < on k[x] such
that in (f;) =x> foralli=1,...,1[

Let e, ..., e, denote the standard coordinate vectors in Q™. Since F is marked
incoherently, the following system of linear inequalities is infeasible (cf. Proposition
1.11): ‘

wl. [el,...,en,—’yu,...,—’ylsl,...,-'yi]-,...,—’y“,...,—’ylsl] > 0.
Here the 7;; are column vectors. By Linear Programming Duality (Schrijver 1986,
Section 7.3), there exists a non-zero, non-negative integer vector

y = (gl3"'7g’n1y117"'aylsly'"7yij7"'7yllv"'7ylsl)
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such that

[el"”’en’_711"'"—71317"'7—f)/‘ij7"'?_’7lla"‘7_’7lsl]'y = 0. (36)

In particular, y11711+. ..+ 15,7, is a non-negative vector. We say that a solution
vector y to (3.6) is minimal if N := Zizl Z]szl yi; is as small as possible. Among
the possible solutions to (3.6), if there exists a solution y with yyyv1 + ... +
Yis, Vs, = 0, we choose a minimal such solution. If all solutions y are such that
??1,1(;7)11 + ...+ Y%sYs, > 0 we choose a minimal solution among all solutions to
We will construct an infinite reduction sequence modulo F. Let x® =z ... zf»
= Hé:l in(f:)", where v; = y;1 + -+ + y;,,, and let D = Zi‘l $;. We choosena
sequence of non-negative vectors po,py,...,p, in Z2, where p, = (Pris--->Pr1)
and pr; = (pri1, - - -, Pris;) € Z% according to the following rules:
(a) For r=0,1,2,..., N werequire p,j;+-- “+Pr1s, +- APt AP, =

. - r
(b) We require the componentwise inequalities 0 = po <p1 <...<p,, <
< < < Pauy S
Py =Y.
For each r=0,1,2,..., N we define
BT = B+ pum A peav2+ - + P,
where v; = (vi1,...,%is,). Our construction implies that all 3(") are non-negative

integer vectors and that the monomial x? divides the monomial x#*" . To see this

’
note 3=3,3 v, and gV = 3 >_; ¥ij(a: + ;) , and at each intermediate
step 3(") one of the 7;; enters the double sum.

For each ’r = 1,2,...,N, the vector p, — p,_1 € ZP consists of a unique
entryﬁl and 0’s elsewhere. The entry 1 is given by two indices 7, € {1,...,1}
and jr € {1,...,s;,}. We define the set of stage r monomials as stage(r) :=
{xﬂ(r_l)-i-"h'rl’ L ,xﬂ(rﬁl)-i-"nrsir }

Let red(xﬁ(r), fi,) denote the polynomial obtained by reducing x#"" once
with respect to f; . The monomials appearing in red(xﬁ(r), fi.) are precisely the
monomials in stage(r). (Also note that x#” lies in stage(r) since the conditions (a)
and (b) imply 8(") = BT 44, ; forsome 1< j, < s;,). Consider the sequence of
reductions go —r g1 =5 g2 = ... = g, which is obtained by reducing X877

in the r-th step by f; , where the index i, is determined as above by the sequence
of p,’s. More precisely, we define :

go = Xﬁ
g1 = Ted(xﬁvfil)v
(1)
g = g —coef(x"", g))(x*" — red(x*", §..)),
g = gro1—coef(x"" " g, ) —red(x*" 7 f.)).

Here coef (x’f, h) is the coefficient of x# in h. Note that g, is a polynomial involving
only monomials in the set U;=1 stage(j). In order to prove Lemma 3.13, we need
to show that no unwanted cancellations occur. The following lemma is the key.
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Lemma 3.14. For 1 <r,t < N, the monomial x#" lies in stage(t) if and only if
r={t.

Proof: Suppose that x7" e stage(t) for t # r. This implies
B = B+ pum + ... + P

=B +paant .- FP—umF Yy = B

for some j € {1,...,5:,}. We define a vector in Z? as follows:

P Pt—1+ €ij — Pr %f t>r
T Yyt P e ift<r.

- 4 Yieg

Y

!

By the requirements (a) and (b), the vector y’ = (Yi1s- > Ylsyr o2 Yo+ Yis,)
t—r ift>r d

N—-r+t ift<r’
consequently S3'_ S5 yi; < N. The vector y' -y = y"lfyl +...+ym €2 is
either zero (if t > r) or equal to y -y := y1v1 +---+yy (if ¢ < r). In particular, if
y-v =0, then ¢’ -y = 0 as well. In any case, v’ - is non-negative, and therefore the
vector y € NP can be completed to a solution (7',y') of (3.6). But'y was chosen
to be minimal among such solutions to (3.6), hence this is a contradiction. m

: l s; '
is non-zero and non-negative. Also, >, ;> L, ¥i; = {

Proof of Lemma 3.13 continued: Lemma 3.14 implies that coef (xﬁ(r) ,Gr) ;fN? for
r=1,2,...,N. At the last stage in our reduction sequence we get g, = cx? +.g
wherej c, is non-zero and, again by Lemma 3.14, all monomials of g are contained in
U, stage(s) \ x#”,...,x#"}. Since B™) — B = Sy is non-negative, we
ca]n start the reduction sequence again, with 8™) replacing 3. If V) = 3 (that
is, y - v = 0), then this reduction sequence takes the form

x?  —F ex? + g —F c2x5+(1+c)g
—zr XP(l+e+c®)g —rF
and is clearly infinite.

If, on the other hand, the non-negative vector y-~v = BW) — B is non-zero,

then this reduction sequence takes the form
Ny _ (V) _
X — exP g —f x84 (L+cx? P)g |
vy _
— 03x3[3(N)_.2[3 + (1 + ng(N)_g +02x2[3 2[3) g — e

To see that this sequence is infinite as well, we must shpw that no ur?want'ed
cancellations can occur. An unwanted cancellation would 1mpl};V that an identity
B = gt=1) 4 4, . holds modulo the integer linear span (?f g — 3 =y To
show that this is impossible, we shall call upon our minimality assumption for the
solution y once more. B |

Suppose there exists an integer m > 0 such that BD +my-) = B4V + ;.
(The case 37 =m(y-7) + Bt 4+ +,,; is analogous.) We define

ro Pt—1+ € — Pr %ft>7”
yo= my —pr+pi-1+e,; ft<r.

Note that as before, ¥’ € ZP is a non-negative, non-zero solution to (3.6).. F“or
+> r. as in Lemma 3.14, the vector 3’ is a smaller solution to (3.6), contradicting

! - . . -
our choice of y. For t < r, we have 3’ -v = 0, again contradicting our choice of y.
This completes the proof of Lemma 3.13 and of Theorem 3.12. m
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Exercises:

(1) Generalizing Example 3.9, consider the polynomial system

Fo=A{al +22 +25° -1, s + a2l + 2 -1, 29 + 23 + 32 -1}
C Q[$1,$2,$3]-

Give necessary and sufficient conditions on the exponents a1, as,as, by, by, bs,
¢1, ¢, c3 such that F is a Grobner basis with respect to some term order.

(2) Let I be the ideal generated by two generic linear forms in klz1, &2, 23, 24),
and let ¢ be the universal Grébner basis consisting of the six circuits of I

(cf. Proposition 1.6). Compute New(i) and State(I) explicitly, and verify
Proposition 3.4 in this case.

(3) In Corollary 2.9 a sufficient condition was given for the equality New(ld) =
State(I) to hold in Proposition 3.4. Is this condition also necessary ?

(4) Compute the state polytope of the ideal of two generic ternary cubics.

(5) List all coherent markings for the set of 3 x 3-minors of a 3 X 5-matrix of
indeterminates.

(6) Consider the Grassmann variety Grass, , of r-dimensional linear subspaces in

k®. What is the dimension of the state polytope of its vanishing ideal in the
Pliicker embedding ? ‘

Notes:

Subsequent to the fundamental work on this subject in (Bayer 1982) and (Bayer &
Morrison 1988), Bayer and Morrison implemented an algorithm for computing the
state polytope of an ideal. The emphasis of their work was on space curves with
a view toward applications in geometric invariant theory. A new implementation
was done in 1991-92 by Alyson Reeves (unpublished) and applied to the study of
Borel-fixed ideals. Reeves’ program for computing the state polytope is available in
(some versions of) MACAULAY under the command hull. It is based on Algorithm
3.2. Algorithm 3.6 has not yet been fully implemented. Subroutine 3.7 for locally
changing Grobner bases is due to Collart, Kalkbrener & Mall (1993). Earlier work
on transforming Grobner bases from one term order to another term order is found
in (Faugére, Gianni, Lazard & Mora 1992). Algorithm 3.10 and Proposition 3.11
appeared in (Gritzmann & Sturmfels 1993). Theorem 3.12 and its proof are taken
from (Reeves & Sturmfels 1993).



CHAPTER 4
Toric Ideals

We shall study a special class of ideals in k[x] := k[zi,...,z,]. Fix a subset
A = {aiy,...,a,} of Z% Each vector a; is identified with a monomial t® in the
Laurent polynomial ring k[t*!] := k[ty,...,ta,t7}.. ., t5"]. Consider the semigroup
homomorphism

7 N" - Z¢, u=(up,...,un) — a1 + - + Upa,. (4.1)
The image of 7 is the semigroup
NA = {Xai+-+Aa, : A,..., A, EN}.
The map lifts to a homomorphism of semigroup algebras:
i k[x] > k[tEY], z; - 2 (4.2)

The kernel of 7 is denoted I 4 and called the toric ideal of A. Clearly, I 4 is a prime
ideal, and hence its affine variety V(I 4) of zeros in k™ is irreducible. It is the Zariski
closure of the set of points (t2!,...,t2), where t € (k*)?. Here k* denotes k \{0}.
The multiplicative group (k*)? is called the (d-dimensional algebraic) torus. A
variety of the form V(I 4) is an affine toric variety. This differs from the definition
of “toric variety” found in the algebraic geometry literature (cf. (Fulton 1993)) in
that we do not require toric varieties to be normal. The issue of normality and
relations to algebraic geometry will be discussed in Chapter 13. Our first lemma
specifies an infinite generating set for the toric ideal 1 4. ‘

Lemma 4.1. The toric ideal I4 is spanned as a k-vector space by the set of
binomials
{x" —x¥ : u,v € N" with m(u) = n(v)}. (4.3)

Proof: A binomial x"—x" liesin I 4 if and only if 7(u) = m(v). It therefore suffices
to show that each polynomial in I 4 is a k-linear combination of these binomials. Fix
a term order < on k[x]. Suppose f € I4 cannot be written as a k-linear combination
of binomials. We choose a polynomial f with this property such that the initial
term in(f) = x" is minimal with respect to the term order <. When expanding
f(t%,...,t2") we get zero. In particular, the term t™ = #(x“) must cancel
during this expansion. Hence there is some other monomial x¥ < x“ appearing
in f such that 7(v) = m(u). Also the polynomial f’ := f — x4 xV cannot be
written as a k-linear combination of binomials in 4. But since in-(f’) < in<(f),
this is a contradiction. m
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We next compute the dimension of the toric variety V(I4). We write Z.A for
the lattice spanned by A and dim(A) for the dimension of ZA.

Lemma 4.2. The Krull dimension of the residue ring k[x]/I4 is equal to dim{A).

Proof: The ring k[x]/ L4 is isomorphic to the subring k[t®',. .., t3] of k[til].' The
Krull dimension of this integral domain is the maximum nurr}ber of algebra.lcally
independent monomials t*. But a set of monomials is algebraically independent if
and only if their exponent vectors are linearly independent (by Lemma 4.1). m

Every vector u € Z™ can be written uniquely asu = 1{+ —u~ whgre ut an‘d u-
are non-negative and have disjoint support. (More precisely, the i-th coordinate
of ut equals u; if u; > 0 and it equals 0 otherwise.) We write _ker(ﬂ') for the
sublattice of Z" consisting of all vectors u such that m(u*) = 7(u™). Lemma 4.1

can be rephrased as follows.
Corollary 4.3. I4 = (x* —x" : u€ ker(m)).

Corollary 4.4. For every term order < there is a finite set of vectors G« E ker(jr)
. . . ou
such that the reduced Grobner basis of I 4 with respect to < is equal to { X" —x

Proof: By the Hilbert Basis Theorem we can select a finite subset of ker(?r) such
that the corresponding binomials generate 4. Apply the Bucht.)erger algorithm t.o
these binomials. The operations of reduction and forming S-pairs preserve the bi-
nomial structure. Any new polynomial occurring du{ing this run of the Buchberger
algorithm (and in particular its output) lies in {x* —x" : u € ker(m)} as well.
[

The Buchberger algorithm for toric ideals is a purely combinatorial process in-
volving lattice vectors. This is worked out in detail in (Thor{las 1994). Throughou.t
this book we frequently switch back and forth between lattice vectors u and their
associated binomials x*" —x¥" . In particular, we shall reff:er to the set of vectors
G as the reduced Grébner basis of A with respect to <. This set can be computed
“from scratch” as follows:

Algorithm 4.5. (Computing a first Grobner basis of a toric ideal)
1. Introduce n + d + 1 indeterminates tg,t1,...,tq, T1,Z2,..-,Tn. Let < be any
elimination term order with {¢;} > {z;}.
2. Compute the reduced Grébner basis G for the ideal

- - +
(tot1 - ta—1, T3 -t% — 21, ..., Tp - t2 — %), (4.4)

3. Output: The set G N k[x] is the reduced Grobner basis for 14 with respect
to <.

The correctness of Algorithm 4.5 is a special case of Theorem 2 in §3.3 of (ng,
Little & O’Shea 1992). Often the given lattice points a; will have non-negative
coordinates. In that case the variable to is unnecessary, and instead of (4.4) we can
use the ideal (z; —t% : i=1,...,n). Algorithm 4.5 is by no means pest pos§1ble.
Faster algorithms for finding generators and Grobner bases of toric ideals will be

given in Chapter 12.
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We define the universal Grébner basis U4 to be the union of all reduced
Grébner bases G of the toric ideal 4 as < runs over all term orders. Theo-
rem 1.2 and Corollary 4.4 imply that U 4 is a finite set consisting of binomials. We
can thus identify /{4 with a finite set of vectors in ker(r). Our goal is to find a
more precise description of the universal Grébner basis. A binomial x*' — x4 in
I 4 is called primitive if there exists no other binomial x*© — x¥~ e [ A such that
x¥" divides x"* and x¥ divides x"_.

Lemma 4.6. Every binomial x*' — x%™ in the universal Grobner basis U, is
primitive.

Proof: Let x"" —x" be any binomial in the reduced Grobner basis G, and let
ut > u~. Then x%' is a minimal generator of in<{I4) and x" is a standard
monomial. Suppose that x*" — x% is not primitive. Choose v € ker(n) with
v # u such that xV' divides x*' and x¥~ divides x* . If v+ >~ v~ then x*' is
not a minimal generator of in(I4), a contradiction. If v* < v~ then x"  is not
standard, a contradiction. m

The converse to Lemma 4.6 is not true. There may be primitive binomials
which do not appear in U,. For instance, take n = 3,d=1,A4={1,2,4}. Then
z3x9 — x3 is a primitive binomial in J 4 but it does not appear in U, = {z? -
T2, @ — 3, 25— z3}. In general, however, the set of primitive binomials is a pretty
good approximation to the universal Grobner basis. We shall prove the following
degree bound.

Theorem 4.7. Let dim(A) = d and D(A) := mazx {|det(a;,,...,a;,)| : 1 <
4, < -+ <1y < n}. The total degree of any primitive binomial in I A is less than
(d+1)(n - d)D(A).

We identify .A with the d x n-matrix (ay,...,a,). The hypothesis in Theorem
4.7 is that the matrix A has maximal rank d. If this hypothesis does not hold,
then one can delete some rows from 4 = (a;;) until it holds. For our proof of
Theorem 4.7 we need to introduce a distinguished subset of primitive elements. A
non-zero vector u in ker(r) is called a circuit if its support supp(u) is minimal with
respect to inclusion and the coordinates of u are relatively prime. (This definition
is consistent with the one given in Example 1.5.) Equivalently, a circuit is an
irreducible binomial x*" — x% in I .4 which has minimal support. It is easy to see
that every circuit is primitive.

Lemma 4.8. If u is a circuit in ker(n) then supp(u) has at most d + 1 elements.

Proof: ~ Suppose u € ker(r) has r > d + 2 non-zero coordinates. Let B be

the d x r-submatrix of A given by these column indices. The kernel of B is at

least 2-dimensional and hence contains a non-zero vector v/ with at least one Zero

coordinate. Extend v’ to a non-zero vector v € ker(x) by placing zeros in the other

n — r coordinates. Then supp(v) is a proper subset of supp(u), which shows that -
u is not a circuit. m

Lemma 4.9. Ifu= (u,...,u,) Is a circuit in ker(r) then |u;| < D(A) for all 5.

Proof:  Let supp(u) = {iy,...,4i,}. The d x r-matrix (ai;,...,a; ) has rank
7 — 1, by the same argument as in the proof of Lemma 4.8. Since A has rank
d, we can find column vectors a; . ,...,a;, +1 such that the d x (d + 1)-matrix
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B = (ai,,.--,@i,8i,,,,- -, 8iy,,) has rank d. Let e; denote the ¢-th unit vector
in Z¢. Using Cramer’s rule of elementary linear algebra, we see that the kernel of
B is spanned by the vector

d

+

1
(—1)] . det(ail, v ,aij_l,aijﬂ, . .,aid+1) 4 eij. (45)
1

<.
il

The restriction of u to {i1,...,2441} lies in the kernel of B and hence is a rational
multiple of (4.5). Now, since (4.5) is an integer vector, and since u is a circuit, we
conclude that (4.5) is an integer multiple of u. This proves the claim. m

Let u,v € Z". We say that u is conformal to v if supp(ut) C supp(v't) and
supp(u™) C supp(v™).

Lemma 4.10. Every vector v in ker(r) can be written as a non-negative rational
linear combination of n — d circuits each of which is conformal to v.

Proof: We fix d and proceed by induction on n. If n < d + 1 then the assertion is
trivial. Thus suppose n > d + 2, and let v be a non-circuit in ker(m). We may also
assume that supp(v) = {1,...,n}, because otherwise we could delete redundant
columns of A and use the induction hypothesis to write v as a conformal rational
linear combination of card(supp(v)) —d < n — d circuits. Let u = (uy,... ,Un) be
any circuit such that u;v; > 0. Among all positive coordinate ratios v;/u; let A
denote the minimum. Then v — Au is conformal to v and has zero i-th coordinate.
By the induction hypothesis, the vector v — Au can be written as a conformal
rational linear combination of n — d — 1 circuits. The identity v = Au+ (v — Au)
now completes the proof. m :

Proof of Theorem 4.7. Let v be a primitive vector in ker(m). If v is a circuit,
then we are done by Lemma 4.9. If not, then we apply Lemma 4.10 to find circuits
ui,...,u,_g, each conformal to v, and non-negative rationals Ay, ..., A,_q such
that

v =Au + -+ An—dUn—d. (46)

The fact that each u; is conformal to v means that vt =\ u1+ 4+ 4+ /\n_dufl_ d
and v~ = Ajuy +---+Ap_gu,_,. This implies that each ), is less than 1, because
otherwise v would not be primitive.

We may assume that the total degree of the binomial x¥" —x¥ equals ||vF]|1,
the coordinate sum of the positive part v*. Applying the norm inequality for the
1-norm to the positive part of (4.6), we get

n—d
Ivth < ;Aj'ﬂuﬂll < (4.7)

(n—d)-maz{lutlly : j=1,...,n—d} < (n=d)-(d+1)-D(A).

In the last step we used the inequality ||u]+||1 < (d + 1) - D(A), which follows
directly from Lemma 4.8 and Lemma 4.9. m
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The set of circuits in I 4 is denoted by C4. One method for computing C4 is to
evaluate Cramer’s determinantal formula (4.5) for all (d+1)-subsets {31,..., 3441} of
{1,...,n}. Obviously, such a computation must be organized in a clever m’anner to
be of practical use for larger values of n and d. We call the set of primitive binomials
the Graver basis of A and denote it by Gr 4. This name is in reference to the work
of Jack Graver on integer programming in (Graver 1975). The connection to integer
programming is discussed in Chapter 5. In Chapter 8 we present algorithms for
computing the Graver basis Gr 4 and the universal Grébner basis U 4.

Proposition 4.11. For every finite set A C Z? we have C4 C U4 C Gry.

Proof: The'z inc.lusion U C Gr4 was shown in Lemma 4.6. It remains to be shown
;c?hat each circuit lies in some reduced Grobner basis. Let u € ker(n) be a circuit
ix an elimination t ) 0 '
Fixan at I\INGI‘IIII 'order < ngcrh thS‘E {z;:1 &"supp(u)} > {z;:j € supp(u)}
z% > z% . We claim that x¥" —x" appears in the reduced Grébner basis G,
ot; {r A(.i.S}(lippOSﬁ _:lOt. Then 'there exists v € ker(m)\{0,u} such that z¥* > z¥~ and
x¥" divides x*". The choice of term order and the inclusion supp(v*) C supp(u)
1m.phes supp(v™) C supp(u), and hence supp(v) C supp(u). Since u is a circuit,
this implies that v is an integer multiple of u. In view of xv" dividing x"", this is
only possible if u=v. m ’

Example 4.12. (The inclusions in Proposition 4.11 may or may not be strict)
Ifn=3,d=1and the integers in A = {4, j, k} C N are pairwise relatively prime
then C4 = {] —z},z¥ — 4, 25 — z}. We consider the following three such cases:

o If A={1,2,3} then Uy = Gry = C4 U {23 — 7172, 7123 — 23}

o If A={1,2,4} then C4 = U4 and Gra\Us = {z3 —:L‘%:l:z}.

o If A= {1,2,5} then Uq\ Ca = {23 — 217}, 7123 — 2} and Gra\Uy =

{z3 — z}z,}.
But there are also plenty of sets A for which C4 = U4 = Gr4 holds. This is the
case for
A = {(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),

(0, 1, 1,0, 0)9 (Oa 1’ 0’ 150)7 (07 17 07 Oa 1)}

Here I 4 equals the ideal of 2 x2-minors of a 2x3-matrix of indeterminates (Example

1.4). The three 2 x 2-minors are the circuits of .4 and they are also the Graver
basis of A. m

We note the following general facts concerning elimination ideals of toric ideals.

Proposition 4.13. Let B be any subset of A and let k[B] := k{z; : a; € B]
Then 1 1 '

(a) the toric ideal of Bis I = I4 N k[B|;

(b) the circuits of B are Cg = C4 N k[B|;

(c) the universal Grobner basis of B is Ug = Uy N k[B];
(d) the Graver basis of B is Grg = Gra N k[B].

Proof: Left to the reader; see Exercise (3) below. m
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A typical feature of many sets A arising in practise is that their toric ideal
I 4 is homogeneous. Here “homogeneous” refers to the total degree grading given
by deg(z1) = --- = deg(z,) = 1. If I 4 is homogeneous then its zero set V(L4) in
projective space P"~ ! is a projective toric variety. Its dimension equals dim(A)—1
(by Lemma 4.2). The second most important invariant of a projective variety
(besides its dimension) is its degree. In the remainder of this chapter we determine
the degree of the projective toric variety V(I4).

Lemma 4.14. The ideal I, is homogeneous if and only if there exists a vector
w € Q% such that a;-w =1 fori=1,...,n.

Proof: A binomial x*" — x% s homogeneous if and only if the vector u =
ut — u~ has coordinate sum zero. In view of Corollary 4.3, 14 is homogeneous
if and only if all vectors u € ker(w) have zero coordinate sum. This holds if and
only if (1,1,...,1) lies in the subspace ker(m)t = image(x”) = image(w —
(a,-w,...,a, -w)) of R". m

We remark that in the homogeneous case the degree bound of Theorem 4.7
can easily be improved by a factor of 2.

Corollary 4.15. Let A be as in Lemma 4.14. Then the total degree of any primi-
tive binomial in the homogeneous toric ideal I 4 is less than %(d + 1)(n — d)D(A).

Proof: In the homogeneous case, each circuit u; satisfies ||u;'||1 = |lujlh <
1(d+1)D(A), by Lemmas 4.8 and 4.9. Now use the inequality (4.7) as in the proof
of Theorem 4.7. m

It is an interesting question whether the maximum degree of any Graver basis
element is always attained by a circuit. In other words, is

mazdeg(Gra) = mazdeg(Ca) for all sets A ?

The answer is “no”. A counterexample was contructed after this book had been
submitted to the publisher. It will appear in a future publication.

Lemma 4.14 states in geometric terms that 14 is homogeneous if and only if
the points of A lie on a common affine hyperplane in R<. Assuming that this is the
case, we introduce the polytope @ = conv(A). The normalized Ehrhart polynomial
of ) is the numerical function

Eg : N> N, r— card(ZANr-Q). (4.8)

It is known that Eg(t) is a polynomial of degree g := dim(Q) < d—1, see e.g. (Stan-
ley 1986). Hence we can write Eg(r) = Y.7_,¢:/i!-r'. The leading coefficient
¢q is denoted Vol(Q) and called the normalized volume of Q.,If g =d— 1 then
Vol(Q) equals the usual Euclidean volume of @ times ¢! times the order of the
finite abelian group Z?/Z.A.

Theorem 4.16. The degree of the projective toric variety defined by I4 equals
the normalized volume Vol(Q) of the polytope Q = conu(A).

Proof: The degree of the projective toric variety V(I 4) equals ¢! times the leading
coefficient of the Hilbert polynomial H4(r) of k[x|/I4. The Hilbert polynomial
is defined as follows: H(r) is the k-dimension of the r-th graded component of
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k[x]/I4 = k[t*:,...,t®] for r > 0. A basis for this vector space is given by the set
of all monomials t® such that b lies in the semigroup spanned by Aand b-w =1
where w € Q? is as in Lemma 4.14. In other words, Ha(r) = card(NAN r- Q)’
This implies the inequality H4(r) < Eg(r).

Consider the following finite set

C = ZAN{Y Xa :0<\<lfori=1,...,n}

i=1

Fix an integer R > 0 such that each b € C can be written as b = 7(u) for some

u = (u,...,u,) € Z" with u; > —R for all i. For any integer 7 > nR consider the
map

ZAN (r—nR)-Q - NAN7T-Q, b—b+R-(aj+---+a,) (4.9

To show that this map is well-defined, we must express b + R - (a1 +---+a,) as
a non-negative integer linear combination of \A. This can be done as follows: first
write b as a non-negative rational linear combination of A. If any of the rational
coefficients A; is > 1, then we subtract the corresponding a; from the representation
(this does not harm the conclusion). Repeating this process, we eventually reduce
to the case b € C. Now write b = > u;a; with integers u; > —R. Adding R times
the sum a; + --- + a,, to this representation, we obtain the desired conclusion.
Clearly, the map (4.9) is injective, and therefore

Eq(r—nR) < Ha(r) < Eg(r). (4.10)

This. shows that the polynomials Eg and H 4 have the same degree and the same
leading coefficient, and the proof is complete. =

Example 4.17. (The Segre variety P! x P! x P! in P7)

Let A be the set of vertices of a regular 3-dimensional cube, given in homogeneous
coordinates. For instance, A = {(1,0,1,0,1,0),(1,0,0,1,1,0), (1,0,1,0,0,1),
(1,0,0,1,0,1), (0,1,1,0,1,0), (0,1,0,1,1,0), (0,1,1,0,0,1), (0,1,0,1,0,1)}. The
normalized volume of the regular cube Q = conv(A) is six. Hence V(I,) is a

projective toric variety of dimension 3 and degree 6. It is the S i
B e T 73 egre embedding of

Exercises:

(1) Find a generating set for the ideal I4 of the Segre-threefold in Example 4.17.
Also compute the circuits C 4, the universal Grébner basis U A, and the Graver
basis Gr 4.

(2) For fixed integers d and r consider the set A = {(i1,is,...,ia) € N¢ :
iy + i3+ -4+ ig =r}. Show that I, has a reduced Grébner basis consisting
of quadratic binomials.

(3) Prove Proposition 4.13.

(4) F(?r the set A = {(1,0),(1,1),(1,5)} (graded with w = (1,0)) compute the
Hilbert polynomial H4 and the normalized Ehrhart polynomial Eg.
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(5) Does the hypothesis A = ZANQ imply the conclusion Hyq = Eg ? i
(6) Let .A be the set of all mxm-permutation mz?trices. (Here n = m! and d = m?).
(a) For m = 3 show that I4 is a principa.l ideal.
(b) For m = 4 compute any Grébner basis for I A ‘ N
(c) For m = 5 determine the degree of the projective toric varle.ty ) ( A)f. "
(d) For m = 6 give an upper bound on the degree and cardinality of the
universal Grobner basis U 4. .
(7) Prove the following sufficient condition for a toric ideal to be a cpmpl;zte in-
tersection: If the origin lies in the interior of the convex hu.ll of A in R<, thgn
I 4 is generated by n — d binomials. Does there always exist a Grobner basis
consisting of n — d binomials ? ‘
(8) Let A= {e;—e; : 1 <i<j<n} Show' that C4 = U4 = Grjx. Identify
this set of binomials with the circuits in a directed complete graph on n nodes.

Notes: o
Semigroup algebras and their presentation ideals (here called “toric ideals”) have

been studied by many researchers. The emphasis of most publications lies on co.rn}—1
mutative algebra issues, such as Cohen-Macaulayness and.local cohomology, wﬁ

the strongest results being typically available for monomial curves (d = 18)6. o n
early reference is (Herzog 1970), and three more recent ones are (Trung £ ldoa
1986), (Bresinsky 1988), and (Campillo & Pison 1993). The smgle—exponen ia fel>—
gree bound for Grébner bases of toric ideals in Theorem 4.7 appez?red in (Stu;m els
1991). The relation between volume and degree in Theorem 4.16 is a sta.ple ol t(;)rlc
geometry. For more detailed discussions in the contexts of commutatlveda §e3 ra
and algebraic geometry see Theorem 6.3.12 in (Bruns & Herzog 1993) and §5.3 in

(Fulton 1993) respectively.

CHAPTER 5

Enumeration, Sampling
and Integer Programming

In this chapter we present applications of toric ideals. We shall assume for
simplicity that A = {aj,...,a,} lies in N?\ {0}, i.., each a; is non-zero and
non-negative. This assumption implies the following property for the map 7 in
(4.1): for each b € N the set 7~}(b) = {u € N : 7(u) = b} is finite. We call
7~ 1(b) the fiber of A over b.

There are three natural families of problems associated with these fibers:

¢ Enumeration: Determine the cardinality of 7! (b). If this number is “not
too big”, then list all elements in the fiber n~1(b) explicitly.

If complete enumeration is infeasible, then the following questions are of interest.

e Sampling: Choose a point at random from n~1(b). For our purposes it suf-
fices to assume that “at random” refers to the uniform distribution on 7~ 1(b).

¢ Integer Programming: Given any “cost vector” w € R", find a point u in
7~ (b) which minimizes the value of the linear functional u — u - w.

Our objective is to apply toric ideals to model and solve these problems. We
start by illustrating the basic ideas with a simple but important example.

Example 5.1. (Contingency tables, transportation problems, and 2 x 2-minors)
Fix positive integers s and t. Let e, ..., e, be the unit vectors in N® and ef,...,e|
the unit vectors in N*. Let d = s+¢ and n = s-t. We identify N¢ with N°*®N?, and
we identify N™ with the set N**? of non-negative integer s x t-matrices u = (u;;).
We define A = {e;®e} :i=1,...,5,5=1,...,t} C N% The map 7 computes
the row and column sums of a given matrix:

t t s s
. sXt s+t .
m: NS*P — N+t uH(E ulj,...,E Ugj; E uil,...,g uit) (5.1)
j=1 j=1 i=1 i=1

Ifr=(ry...,rs) € N®* and c = (cy,...,c;) € N?, then the fiber 77 1(r;c) consists
of all non-negative integer s x ¢-matrices with row sums r and column sums c.

39
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Here is an example of a very small fiber of 3 X 3-matrices (s=t=3n=
9,d = 6):

1 00 100 010
7 1(1,1,21,1,2) = { o 10},{0o0 1],{1 0 0]},
0 0 2 011 0 0 2 52)
010 0 0 1 0 01 0 01
001,100,010,001}.
1 01 01 1 1 01 110

We now present somewhat more realistic instances for the thr.ee problems abov.e.
¢ Enumeration: Suppose we wish to find all non-negative 1nteg§r 3% 3-matr1c§s
having row sums (42,42, 5) and column sums (28,30,31). A typical such matrix

looks like 20 13 9
a = 6 16 20 |. (5.3)
2 1 2

It can be shown that m—1(42,42,5;28,30,31) has precisely 13,132 e?ements.
The enumeration problem is to efficiently generate these 13,132 matrices.

e Sampling: The following 4 X 4-matrix was used in (Di.ac9nis &.Sturmfels
1993) to illustrate the concept of contingency tables in ste‘Ltlstl'cs. This data set
classifies 592 people according to their eye color and their hair color.

Hair Color
Fiye Color Black Brunette Red Blonde Total
Brown’ 68 119 26 7 220
Blue 20 84 17 94 215 (5.4)
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

A natural question to ask about these data is whet‘he.r eye color and ha'lr
color are correlated ? One approach to answering t‘hls is to compare cerfca,m
features (e.g. the x?-statistic) of the table (5.4) with that .of a comparison
table selected at random among all tables with the same margl.nal dl.strl‘.butl'on.
In our notation above, the set of tables with the same marglnal. distribution
is m—1(220,215,93,64;108, 286, 71, 127). The samphng prqblfem 1s.to s§lect a
random element from this fiber. Complete enumeration 1s 1nfe351b_le in this
instance. In fact, it is a non-trivial problem to even count fibers like these.
Using the methods in (Mount 1995), it can be shown that

card(7r'1(220,215,93,64;108,286,71,127)) = 1,225,914, 276, 768,514.

¢ Integer Programming: The integer programming problem'a.ssociatedf with
the set A = {e;®e]} is called the transportatio? problem. Consider s = 4 a(;:téz
ries Fy, F», F3 and Fy which produce a respective supply of 220, 215,93 an .
units of an indivisible good. Consider also ¢ = 4 stores S1, 82,83 and S; which
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have respective demands of 108, 286, 71 and 127 units. There is a (non-negative
real) cost w;; associated with transporting one unit from factory F; to store S;.
The possible transportation plans for shipping all 592 units from the factories to
the stores are precisely the elements of 7~1(220,215,93, 64; 108, 286,71, 127).
The transportation problem is to find a matrix u = (u;;) in that fiber which

minimizes the total cost 3, ; ;4 uij-wi;. Here is an example of a cost matrix
and corresponding optimal transportation plan:

1 1 11 108 112 0 0O
{4 3 21 o 174 41 o). .
fw= 7 5 3 ] , then u = 0 0o 30 63 |1° optimal. (5.5)
10 7 4 1 0 0 0 64

Returning from Example 5.1 to the general case, we shall first discuss the sampling
problem. The basic idea is to do a random walk on the fiber 7=!(b). Let F be any
finite subset of ker(m). We define a graph denoted 7! (b) = as follows. The nodes of
this graph are the elements in 77! (b), and two nodes u and u’ are connected by an
edge ifu—u' € F or u'—u € F. The graph 77!(b)r may be connected, or it may
be disconnected if F is chosen too small. If it is connected, then the following simple
random walk defines a Markov chain which converges to the uniform distribution
on 7 1(b).
Algorithm 5.2. (Random walk on a fiber) :
Input: A finite set F C ker(m) of “moves”. An initial point u(® in a fiber 7~1(b).
Output: A “random” point u in 77!(b), provided the graph 7~!(b) s is connected.
1. Let u:=u®,
2. While (some termination condition is not yet satisfied) do
2.1. select v at random from the uniform distribution on F U —F.
2.2. if u + v is non-negative then replace u by u + v.
(if u + v has a negative coordinate, the walk stays at u.)

We here ignore the question of running time until stationarity and what the
“termination condition” should be. The main point for us is how to find a finite
set of moves F which is guaranteed to connect all fibers 7~!(b) simultaneously.

Theorem 5.3. Let F C ker(w). The graphs m~!(b)s are connected for all b €
NA if and only if the set {x"+ —x"Y : v € F} generates the toric ideal I 4.

Proof:  Let (F) denote the ideal generated by {x"" —xV" : v € F }. By

Corollary 4.3, we have (F) C I4. We must show that equality holds if and only

if all the graphs 7=!(b) s are connected. We begin with the “if”-direction. Given

any u € ker(m), we must show that x%" — x%" lies in (F). Let b := w(ut) =

m(u~). Since 7~!(b)r is a connected graph, there exists a connecting path in that

fiber: ut =u® u® w® W=D ul) =y~ This means that each binomial
u _ xu Jies in (F). Hence so does their sum

,
xU _xuT = Z(x“(hl)—x“m) € (F).
i=1

For the “only-if” direction we assume that (F) = I4. Let u and u’ be any two



42 B. STURMFELS

lattice points in the same fiber 7=1(b). There exists a representation

(¥ —xV7), (5.6)

%
[~
|
%
=\
||'Mz

where each v; = v — v, is a vector in F, possibly occurring more than once in
(5.6). If N = 1 then (5.6) is equivalent to u —u’ € ¥, and u and u’ are connected
by an edge in 77 !(b)s. For N > 1 we wish to show that u and u’ are connected
by a path. We shall proceed by induction on N. The monomial x" is equal to
one of the terms x™ix¥: or xWixVi appearing in the expansion of the right hand
side of (5.6). After relabeling the sum we may assume that u = wj + v{. This
implies that u and w; +v; ™ are connected by an edge in 7' (b) . By deleting the
first summand in (5.6), we get an expression for xV1+V1T — x¥ which has length
N — 1. By induction, w; +v;~ and u’ are connected by a path in 77 !(b) £, and
hence u and u’ are connected as well. =

Example 5.1. (continued)

The toric ideal I 4 is minimally generated by the 2 x 2-minors of an s x t- matrix of

indeterminates. We shall prove this in Proposition 5.4 below. The projective toric
variety V(I 4) is the Segre embedding of P"~! x P*~! into P™*~'.
For s =t = 3 the connecting moves corresponding to the 2 x 2-minors are:

+1 -1 0 +1 0 -1 0 +1 -1
F= -1 41 0}, | -1 0 +1),{0 -1 +1]|,
0 0 O 0 0 O 0 0 0
+1 -1 0 +1 0 -1 0 +1 -1
6 o0 o){o o off{o o o],
-1 +1 0 -1 0 +1 0 -1 +1
0 0 0 0 0 0 0 0 0
+1 -1 0}, | +1 0 -1}, [0 +1 -1
-1 41 0 -1 0 +1 0 -1 +1

We invite the reader to draw the graph 77!(1,1,2;1,1,2) and to verify that
it is connected. Its node set is given in equation (5.2). Theorem 5.2 (together
with Proposition 5.4 below) implies that all graphs 7 !(r1,72,73;¢1,c2,¢3)F are
connected. Note that this property ceases to hold if any one of the nine moves is
omitted from F .

Proposition 5.4. The toric ideal I4 for A= {e; ® €} is the kernel of the map
7o k[T Tst) = kY1, ey Ysi 21,5 2t) s Tij > YiZse

With respect to a suitable term order “<” the reduced Grobner basis of 14 equals
G, = {m—zikzﬂ:15i<j§s,1§k<l§t}. (5.7)

Proof: Tt is easy to see that # is the lifting of the map 7 in (5.1), and that the
2 x 2-minors lie in I4. To show that they are a reduced Grobner basis, we choose
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the reverse lexicographic term order induced from the row-wise variable ordering
Z11 < T13 < -+ < Ts. This term order is called the diagonal term order. The initial
terms are underlined in (5.7). We proceed by induction on r+ s, the assertion being
obvious for r = s = 2. Let r+s > 5 and suppose that G is not the reduced Grobner
basis. Then there exists u € N*%*\ {0} such that neither x*" nor x*  is divisible
by any of the underlined monomials. Let (r,c) := n(ut) = n(u~). By induction,
our assertion holds for (s — 1) x ¢-matrices and for s x (t — 1)-matrices. Therefore
all coordinates of (r,c) are non-zero; in particular, we have r; > 1 and ¢; > 1.
Since x" is not divisible by any product zy;z;; with 5,1 > 2, it follows that xU" is
divisible by x1;. The same reasoning shows that also x¥~ is divisible by z7;. This
is a contradiction because ut and u~ have disjoint support. m

We next turn to the problem of integer programming. Let < be any term order
on N". We define a directed graph (short: digraph) m=1(b)x . as follows. The

underlying undirected graph is 77!(b)£. An edge (u,u’) is directed from u to u’
if u' <u.

Theorem 5.5. Let G C ker(m) and < any term order on N™, The directed graph
(b)g < has a unique sink for every b € NA if and only if the set of binomials
{x —xY :v€G} isa Grobner basis for the toric ideal 14 with respect to <.

Proof: The directed edges in 7~ 1(b)g < are the possible monomial reductions with
respect to G. Suppose G is a Grobner basis. All monomials lying in the same fiber
n~1(b) have the same normal form x* modulo G. Then u is the unique sink in the
digraph 7~!(b)g <. For the converse suppose that G is not a Grobner basis. Then

there exists u € ker(m)\ {0} such that neither x*" nor x"~ can be further reduced
modulo G. Let b := 7r(u+) = m(u~). Our assumption implies that u* and u~ are
distinct sinks in the digraph 7= !(b)g <. m

Recall from Chapter 1 that each cost vector w € R™ can be refined to a term
order <. We allow w to have negative coordinates because I4 is homogeneous

(cf. Proposition 1.12) with respect to some positive grading (e.g., take deg(z;) =
the coordinate sum of a;).

Algorithm 5.6. (Integer programming for a fixed matrix and cost function)
Input: A d x n-matrix A as above and a cost function w € R™.
Output: An optimal point u € 7~*(b) with u - w minimal, for any given b € N.A.
1. Compute the reduced Grobner basis G« for I4 with respect to <,,.
2. For any given right hand side vector b € NA do:
2.1 Find any feasible solution v € 7=1(b).
2.2 Compute the normal form x“ of xV with respect to G, . Output u.

Step 2.1 is analogous to PHASE-I in the simplex algorithm for linear program-
ming. It can be done by computing any Grébner basis as in Algorithm 4.5, and then
reducing tP with respect to that Grobner basis. It is often the case that a feasible
solution v is given as part of the input, in which case step 2.1 can be omitted.

Example 5.1. (continued)

Let s =t = 4. The cost matrix w in (5.5) defines a term order <, which is
equivalent to the diagonal term order in Proposition 5.4. Hence G~ 1s just the set
of 2 x 2-minors. We consider the table in (5.4) as a given feasible solution. It is
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coded as a monomial:

v _ 68119267 .20 84 17,94 15, 54,14 10,5 .29 14 _16
X' = I1T13 T13T14 T21T22T23% 24 £31T32T33T34 L41T42T 43T 44 -

The normal form of x¥ with respect to the Grobner basis in Proposition 5.4 equals

u _ 108,112,174, 41 30,63, .64
XT = T) X33 Tap To3T33T34T44-

This is exactly how the optimal solution in (5.5) was found. =

The enumeration problem for fibers 7! (b) of moderate size can be solved as
follows.

Algorithm 5.7. (Enumeration of fibers using Grobner bases)
Input: A d X n-matrix .4 as above and a vector b in the semigroup NA.
Output: A list of all elements in the fiber 7~!(b).
1. Compute any Grébner basis G for 1 4.
2. Find any feasible solution u’ € 7~1(b).
3. By reducing x* modulo G, find the unique sink u” in the digraph 71 (b)g <.
4. Now run a backward search of the digraph =—!(b)g <, for instance as follows:
First initialize Active := {u”}. Passive:= the empty set.
5. While Active is non-empty do
5.1. Choose any element u € Active.
52 Forall v=vt —v~ € G (withvt > v™) do
52.1ifu—v~ >0 and u+ v ¢ Passive then Active := ActiveU
{u+v}
5.3. Active := Active \ {u}. Passive := Passive U {u}.
6. Qutput Passive.

One drawback of Algorithm 5.7 as presented is that the set Active can grow
very large during the computation. This problem can be resolved by applying the
“reverse search” technique of (Avis & Fukuda 1992). The reverse search variant
of Algorithm 5.7 requires no intermediate storage whatsoever, and it runs in linear
time in the size of the output.

Exercises:

(1) Compute the universal Grobner basis for the ideal of 2 x 2-minors in Example
5.1.

(2) Compute the degree of the Segre embedding of P"~! x P*~! using Theorem
4.16. Here @ = conv(A) is the product of a regular (r — 1)-simplex with a
regular (s — 1)-simplex.

(3) The convex hull of the seven matrices in (5.2) is a four-dimensional poly-
tope. Compute all faces of this polytope. How about the convex hull of
7=1(42,42,5;28,30,31) ?

(4) How many ways are there of expressing 10 dollars in terms of pennies, nickels,
dimes and quarters, using exactly 100 coins ? Use Algorithm 5.7 to list all
possibilities.
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(5) Run Algorithm 5.2 on the data set (5.4). Among all 4 x 4-matrices with the
same row and column sums, what is the average entry in the upper left hand
corner ?

(6) Often the solution to an integer programming problem is not unique, and one
might like to know all optimal solutions or all extreme optimal solutions.
6.1 Give an algorithm for computing all optimal solutions to an integer pro-
gramming problem. (Hint: Combine Algorithms 5.6 and 5.7).
6.2 Give an algorithm for computing the vertices of face,, (conv(m~1(b))).

(7) Consider the following map between two polynomial rings each having 27 vari-
ables:

P : k[x”t] - k[uTS’UTtvwstL Trst F= Uprg * Upg * Wst. (1 <rs,t< 3).

7.1. The kernel of & is a toric ideal 1 4. Determine the configuration 4 C Z2?7,

7.2. Explain the integer program and sampling problem associated with A.

7.3. Find a minimal generating set and a Grébner basis for I A-

7.4. Compute the facets and the normalized volume of the polytope @ =
conv(A).

Notes:

The method of using toric ideals for sampling from conditional distributions was
suggested in (Diaconis & Sturmfels 1993). Theorem 5.3 appears in that paper. Ideal
generation criteria in terms of graphs equivalent to Theorem 5.3 can also be found in
(Bresinsky 1988) and (Ollivier 1991). The application to integer programming has
its origin in (Conti & Traverso 1991). It was further developed in (Pottier 1994),
(Thomas 1994), (Sturmfels & Thomas 1994), (Sturmfels, Weismantel & Ziegler
1995), and (Urbaniak, Weismantel & Ziegler 1994). For the relations between
Grobner bases and existing methods in integer programming the reader may wish
to consult these four articles. A combination of Algorithms 5.6 and 5.7 is applied
in (Tayur, Thomas & Natraj 1995) to solve a class of stochastic integer programs
arising in manufacturing. The question of describing the cardinality of 7~ 1(b) as
a function of b is addressed in (Sturmfels 1994).



CHAPTER 6
Primitive Partition Identities

In what follows we investigate generalizations of the well-known identity 1+1 =
2. Fix a positive integer n. A partition identity is any identity of the form

aitax+az+---+ax = by+by+bs+---+b, (6.1)

where 0 < a;,b; < n and all parts integers (generally not distinct). The number
k + 1 is called its degree. We call (6.1) primitive if there is no proper subidentity

aj, +a;, +---+a;, = bj1+bj2+"'+bj (6.2)

s?

where 1 <r+s<k+[l—-1 Thus1+3+3+3=5+5is a primitive partition
identity of degree six and largest part equal to five.

To further illustrate our definition we list all primitive partition identities
(ppi’s) for n = 5. The ppi’s for all smaller values of n appear in the beginning.

141=2  242=1+43,2+242=3+3,142=3, 1+1+1=3,
34+43=2+4,3+3+3=1+4+4+4,3+4+3+3+3=4+4+4,2+3=1+4,
243+3=4+4,2+2=4, 1+3=4,3+3=1+1+4, 1+1+2=4,
141+1+1=4, 444=3+5 44+44+44=2+5+5,
44+4+4+4=1+45+5+5 44+4+4+4+4=5+5+5+5,

34+44=2+45 3+44+44=1+54+53+4+44+4=5+54+5 3+3=1+5,
3434+44=5+5 34+3+3=4453+3+3=2+2+5,34+3+3+3=2+5+5,
343+3+3+3=5+5+5 2+4=1+5, 2+4+4=5+5, 2+3=25,
24244=3+45 24+2+4+2=145,2+424+244=5+5242+2+2=3+5,
24+24+2+42+2=5+5 1+4=5 1+3+3=2+5 14+3+3+3=5+5,
444=142+45 1+242=5 3+4=1+1+5444+4=1+1+5+5,
14+1+3=5444=141+41+5 14+1+1+2=51+1+1+1+1=35.

Table 6-1. Primitive partition identities for n < 5.

Using the technique to be described in the next chapter (Example 7.4), we
extended this table up to n = 13. The results of these computations are summarized
by cardinality:

n 23 4 5 6 7 8 9 10 11 12 13
# of ppi’s 1 5 15 47 102 276 578 1261 2465 5362 9285 18900

Our first theorem concerns the maximum degree a ppi can have.

47
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Theorem 6.1. Any primitive partition identity (6.1) with largest part at most n
satisfies k + 1 < 2n — 1. This degree bound is sharp. The ppi

ntn4+nt+---+n = (a-1)+(n-1)+--+(n-1). (6.3)
n—ljtrerms nt;g

is the unique primitive partition identity with k +1 =2n — 1.

Proof: Suppose that (6.1) is primitive. We may assume that n does not appear
on the right hand side of (6.1). But it can appear on the left hand side. We run
the following algorithm, starting with z := 0 and the multisets P := {a1,...,ax}
and N = {bl,. ..,bl}:
While PUN is non-empty do
if >0
then select an element v €N, set z:=z—v and N =N\ {v}
else select an element m € P, set x:=z+m and P:=7P)\ {7}.

At each step in the while-loop the value of = is an integer between 1 — n
and n — 1. Thus the total number of possible values for z is 2n — 1. Since (6.1) is
primitive, no value can be attained more than once. Otherwise a proper subidentity
(6.2) is created whenever a value is reached for the second time. Therefore the total
number of iterations in our loop is at most 2n — 1, which proves the first part of
Theorem 6.1.

The maximum degree 2n — 1 can be attained only if all possible values for
z are attained in the above loop. We add the requirement that in each step the
largest element v in NV or 7 in P is to be selected. Then v = n — 1 in the first
step. Otherwise the value r = 1 — n will never be reached. The next time we enter
the “then”-case, we must jump from z = 41 with v = n — 1. Otherwise the value
z = 2 — n will never be reached. The next time we enter the “then”-case, we must
jump from z = +2 with v = n — 1. Otherwise the value £ = 3 — n will never be
reached. Iterating this argument, we see that by = by =---=b =n—-1and | = n.
This proves that (6.3) is the only primitive identity of maximum degree. m

The upper bound in Theorem 6.1 can be strengthened as follows:

Corollary 6.2. If (6.1) is a primitive partition identity, then
k+1 < maz{a; :i=1,...,k} + maz{b; : j=1,...,1}.

Proof: Let a;, be the maximum of the a;’s and let b;, be the maximum of the b;’s.
In our algorithm in the proof of Theorem 6.1 the value of z is always an integer
between —b;, and a;, — 1. So, the number of possible values for = equals a;, + by,
which is the right hand side of the claimed inequality. m

What does all of this have to do with toric ideals 7 The answer is simple:

Observation 6.3. Let d = 1 and A = {1,2,3,...,n}. Then x4 x4, - T4, —
Tb, Th, - -+ Ty, IS & primitive binomial in I 4 if and only if (6.1) is a primitive partition
identity.

Thus the ppi’s are precisely the elements in the Graver basis Gr 4 for the ideal
I4 = kernel(k[zy,...,x,] — k[t], z; — t*). The ppi’s in Table 6-1 are in binomial
notation

2 2 3 2 3 2 3 2
Il_$2’ .'1:2_3:11‘3, .’1:2_3:3, I]:L‘Q_:L'B, 11_1‘3, $3_$2$4, .'1:3—3:11‘4,...
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The toric variety V(I4) is the affine rational normal curve in k™. In algebraic
geometry it is more common to consider this curve in projective space. For the
Projective version we set d = 2 and A := {(1,1),(1,2),...,(1,n)}. The ideal I4
is homogeneous. The projective toric variety V(14) in P* 1 is the rational normal
curve of degree n — 1.

We say that the partition identity (6.1) is homogeneous if k = . 1t is homoge-
neous primitive if, in addition, no proper subidentity (6.2) with 7 = s exists. The
homogeneous primitive partition identities (6.1) correspond to the Graver basis ele-

ments T, -« Ta, =Ty, -« Tp, for A ={(1,1),...,(1,n)}. We list all homogeneous
primitive partition identities for n < 6:

242=1+3,
34+3=244,343+3=1+444,24+3=1+4, 24+2+2=1+1+4,

4+4 =345, 4+44+4=245+54+4+4+4=1+5+5+5,
3+4=2+45 3+4+44+4=14+5+5 24+2+2+2=1+1+1+5,
24+4=1+452+2+3=1+1+5 144+4=242+45 3+3+3=242+5,
34+3=1+45 5+5=4+6,5+5+5=3+6+6,5+5+5+5=2+6+6+6,
54+5+54545=14+6+6+6+6 4+5=3+6, 4+5+5=2+6+6,
44+5+54+5=1+6+6+6 4+4=2+6, 4+4+4+4=1+3+6+6,
4+4+4=3+3+6,4+4+4=1+45+6, 34+5=246, 3+5+5=146+6,
34+3+4=242+6,2+5+5=34+3+6,444+4+444=14+146+6-46
2+5=1+46,3+3+5=14+4+6,3+4=1+6,3+3+3+5=1+1+6+6,
3+3+3=1+2+6,3+3+3+3=2+2+2+6,3+3+3+3=1+41+4+6,
3+43+3+34+3=141+41+46+62+4+4=14+3+6,2+3+3=1+1+86,
24+4444+4=14+146+6,24+2+4=1+1+6,2+2+2+3=1+1+1+6,
2+2+424242=14141+41+461+5+5=243+6,14+4+5=2+2+6,
14+5+5+5=2+4+2+6+46,444+5=14+6+614+1+54+5=2+2+246.

Table 6-2. Homogeneous primitive partition identities for n < 6.

Note that homogeneous primitive partition identities need not be primitive in the
%nhomogeneous sense. The identity 1 +4+ 4 =2+ 2+ 5 shows this. Underlined
in Table 6-2 are the four identities of maximum degree 10 =2-6 — 2.

Theorem 6.4. Any primitive homogeneous partition identity (6.1) satisfies k =
Il <n—1. This is sharp since

1414 4+14n = 242+...42.
n—2 terms n-—1terms

There are exactly ¢(n — 1) (the Euler phi-function) such maximal identities. For
n 2> 5, there are n+2¢(n—1)+2¢(n—2) — 6 primitive identities withk = | = n—2.

Proof: We sort the left and right hand sides of (6.1) as follows:

a1 <azy<az <o Lag and by <by <b3<--- <.
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Consider the differences 6; := a; — b;, i = 1,..., k. In the equation
51+52+"‘+5k = 0 (64)

we separate the positive terms and the negative terms. The result is an inhomo-
geneous primitive partition identity of degree k. Let Ay = maz{$; : 6; > 0} and
A_ = maz{-§; : §; < 0}. By Corollary 6.2 applied to (6.4) we have k < A +A_.

We now choose indices i¢ and jq such that b;, —a;, = A_ and aj, —bj, = A4.
We distinguish two cases. If ig < jo then

1+A_Sai0+A,=bi0§bj0:aj0—A+Sn—A+. (65)
If ig > jo then

n—A_Zbio—A,:ai ZajOij0+A+Zl+A+. (66)

(1]
In either case we have A, + A_ < n—1, and therefore

degree of (6.1) = 2k < 2(A4+A40) 2n — 2. (6.7)

IA

This proves the first part of the claim.

To establish the second part of Theorem 6.4, we must characterize all primitive
identities of maximal degree 2n — 2. Let e, ez, ... denote the positive ;’s and let
f1, fa, ... denote the negated negative 6;’s. Thus (6.4) is written as e; +ez+--- =
fi + fo +---. This is a primitive partition identity. We apply the add-subtract
algorithm from the proof of Theorem 6.1. Since equality holds in (6.7), the variable
& must attain each integer value between —A_ and A} —1 exactly once. In fact, this
must be the case for every permutation of eq,ea, ... and of fi, fz,... respectively.

We claim that e; = e = -+ and f; = fo = ---. We assume the contrary,
say e; # ez. For our add-subtract algorithm we permute the e;’s so that ey is
last and e; is second to last. Between the addition step with m = e; and the
addition step with 7 = e, there may be several intermediate subtraction steps,
say v = f1, f2,..., ft. Let S > 0 be the z-value immediately after the addition of
m = ey. At this point the variable z has visited each integer between —A_ and 0
and each integer between S and A, — 1 exactly once, and it only has to run down
from S to 0. The last negative value visited in this run equals ¢ = § —ep. We
now change the positions of e; and e; in the permutation of the e;’s. Otherwise we
leave the permutations untouched. Running the algorithm again, after the addition
step with 7 = e, there is only one more negative value left to be visited. It is the
same one as before, namely, £ = S — e2. Therefore we have precisely the same

subtraction steps v = f1, fa,. .., f: between the addition of m = ez and the later
addition of m = e;. This implies e; = e; and the claim is proved.
The equations e; = e; = --- and f; = fo = --- imply that (6.1) has the form
o+ Fa+B++B = A+ +y+ I+ 46

where the number of a’s equals the number of +’s, the number of §'s equals the
number of §’s, and 1 < a < v < § < 8 < n— 1. The assumption that equality
holds in (6.7) translates into the equation e; + f; =y —a+ 3 —6 = n—1. This
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equation together with the previous chain of inequalities implies « = 1, v = 6, and
B=n-—1.

In summary, we conclude that every homogeneous primitive identity of maxi-
mum degree must have the form

l+1+--+1l+n+n+---+n = (L+1)+(l+1)+---+(£+1) (68)

- 7

=~

n—£—1 terms £ terms n—1 terms

for some integer £ between 1 and n — 1. The homogeneous identity (6.8) is seen to
be primitive if and only if ged(n — 1~ £,£) = 1 = ged(n — 1,£). The number of
integers £ with these properties equals ¢(n — 1), the value of the Euler phi-function.
A similar (but more complicated) argument applies to give the result we state for
degree 2n —4. m

In the next table we present a count by degree of all homogeneous primitive
partition identities for n < 13:

degree 4 6 8 10 12 14 16 18 20 22 24 total#
n=23 1 1
n=4 3 2 5
n=>5 7 7 2 16
n==~6 13 22 12 4 51
n=7| 22 54 36 13 2 127
n=2=8 34 118 110 54 18 6 340
n=29 50 230 276 155 60 23 4 798
n =10 70 418 646 406 182 78 24 6 1830
n=11 95 710 1374 965 462 207 74 25 4 3916
n=12 1 125 1150 2788 2260 1228 602 264 108 34 10 8569

n =13 \ 161 1783 5286 4696 2656 1343 628 278 98 35 4 16968

Table 6-3. Degree distribution of homogeneous primitive partition identities

To extend this table for n > 13 is a nice benchmark problem for implementations
of the Buchberger Algorithm for toric ideals. Our results have the following conse-
quence for the degrees of certain Grobner bases. By a monomial curve we mean the
projective toric variety defined by A4 = {(1,4;),(1,42),...,(1,%,)} for any integers
21,82, 0 n vy by

Corollary 6.5. The maximum degree in any reduced Grébner basis of the ideal
of a monomial curve X is bounded above by the degree of X.

Proof: We may assume that A = {(1,4;),(1,42),...,(1,%)} where 1 = i; <
i < -+ < 4, = n and the differences io — i1,i3 — ig...,4, — i, are relatively
prime integers. By Theorem 4.16, the degree of the curve X = V(I4) equals
i, —1; = n—1. Let x"+ —x"~ be any element in the universal Grobner basis for A.
Both x"+ and x“- have the same degree k. By Proposition 4.13 (c), the binomial
x"+ —x"~ appears in the universal Grébner basis for A’ = {(1,1),(1,2),...,(1,n)}.
By Lemma 4.6, it appears in the Graver basis for .4’. Theorem 6.4 now implies
k<n—-1=deg(X). m
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The integer programming problem associated with A4 = {1,2,...,n} is the
following knapsack problem. (For A = {(1,1),...,(1,n)} there is an analogous
version.)

n
Minimize E wj T

=1
n (6.9)
subject to Z j-xzj =B, x; integral and 0 <z; < d;
Jj=1
where w1, ...,wn,d1,...,d, and 3 are parameters ranging over the positive integers.

For details and other formulations of the knapsack problem see (Schrijver 1986,
Section 16.6).

A feasible solution (z1,...,z,) to (6.9) can be written as a pair of partitions:
inside the knapsack outside the knapsack ‘
5,1,...,122..,2 ...nmn...,n|1L..,12..,2. .. n..n (610)
N Nt —————— | N N e N——r

T T2 Ty di—z1 da—x2 dn—Tn

Each partition identity (6.1) gets directed by the cost functional (wy,...,w,) via

a,az,az,...,a — bl,bg,b;;,...,bl (6 11)
whenever w,, + -+ + Wa, > Wh, + - + Why, :

provided lexicographic tie breaking is used if a tie occurs. We say that (6.10) can be
improved along (6.11) if a1, ag, . . ., ax appear on the left side ( “inside the knapsack”)
and by, bs, . .., by appear on the right side (“outside the knapsack”). In this case the
feasible solution (6.10) can be improved by the exchange step (6.11). We claim that
the primitive partition identities are a universal test set for the general knapsack
problem (6.9).

Corollary 6.6. Let the w;,d; and 3 be arbitrary integers. A feasible solution
(6.7) to (6.6) is not optimal if and only if it can be improved along some primitive
partition identity.

Proof: This follows essentially from Lemma 4.6, Algorithm 5.6 and Observation
6.3. However, some care must be taken because the integer program associated
with the set A = {1,2,...,n} does not have the upper bound constraints z; < d; in
(6.9). To make the proof correct we take a sneak preview into Chapter 7. Consider
the Lawrence lifting A(A) defined in the first paragraph of Chapter 7. By adding
non-negative slack variables y;, so that z; + y; = d;, we pass from the coefficient
matrix A to the new matrix A(A). Since the Graver bases of A and A(A) coincide
by equation (7.2), we see that the presence of the additional constraints z; < d;
does not harm the validity of Corollary 6.6. m
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Exercises:
(1) Let d = 1,n = 4,A = {3,5,8,9}. Use Grobner methods to answer the
following;:
(a) Minimize 100z; + 10z, 4+ T3 subject to 3z, + 5zo + 8z3 + 94 = 47 and
z; € N.

(b) List all elements in the fiber w=1(47).
(c) The polytope conv(n~!(47)) is 3-dimensional. Draw its edge graph.

(2) (The Frobenius Problem) Let my,...,m, be relatively prime non-negative
integers. There exists a largest integer N which cannot be written as a sum of
the m;. Give an algorithm (using Grébner bases) for computing the number
N =N(my,...,m,).

(3) Describe the Grobner fan of the toric ideal I 4 for A= {1,2,...,n}. Compute
this fan explicitly for n = 3 and 4.

(4) Give lower and upper bounds for the number of primitive partition identities

with largest part at most n. What is the asymptotic behavior of this function
forn — o0 ?

(5) A primitive partition identity (6.1) is said to be square-free if the integers a;
and b; are all distinct. Compute all square-free ppi’s with largest part n = 15.

Explain how your output can be used to solve a certain class of 0 — 1-knapsack
problems.

Notes:

The material in this chapter is drawn from (Diaconis, Graham & Sturmfels 1995).
Grobner basis methods for the knapsack problem are also studied in (Urbaniak,
Weismantel & Ziegler 1994).



CHAPTER 7

Universal Grobner Bases

In this chapter we present techniques for computing the Graver basis Gr4
and the universal Grobner basis {4 of the given matrix A € Z%*". To this end
_ (A O
T\l 1
matrix and 0 is the d x n-zero matrix. The (d + n) x 2n-matrix A(A) is called the
Lawrence lifting of A. Any matrix of the form A(A) is said to be of Lawrence type.
This construction and terminology stems from the theory of oriented matroids (see
Section 9.3 in (Bjorner et.al. 1993)).

The matrices A and A(A) have isomorphic kernels: ker(A(A)) = {(u,—u) :
u € ker(A) }. The toric ideal I5(4) is the homogeneous prime ideal

we consider the enlarged matrix A(A) where 1 is the n x n-identity

In = (x¥y* = x*y"" : ueker(A)). (7.1)

in the polynomial ring k[x,y] = k[zl;. e s Ty Y1y - Yn)-

Theorem 7.1. For a Lawrence type matrix A(A) the following sets of binomials
coincide:
(i) the Graver basis of A(A),
(ii) the universal Grobner basis of A(A),
(iii) any reduced Grobner basis of Iy 4y,
(iv) any minimal generating set of I5(4) (up to scalar multiples).

Proof: A vector u in ker(.A) is primitive if and only if the corresponding vector
(u,—u) in ker(A(.A)) is primitive. Therefore the Graver bases of A and A(A) are
related as follows:

- at +

Graey = {x¥y* —x¥y""  x*" —x¥ € Gra}. (7.2)

Clearly, Grp (4 is a generating set of Ix(4), and it is a Grobner basis with respect to
every term order. We must show that Gr(4) is the unique minimal generating set
of Ix(4). Here “unique” means up to replacing the generators by scalar multiples.

Choose any element g := x% y* —x% y%' in Gra(a)- Let B be the set
of all binomials x¥ y¥ —x¥ y¥' in T A(A4) except g. Suppose that B generates
Ip(4)- Then g can be written as a polynomial linear combination of elements in
B. This implies that there is a binomial x¥'y¥~ —x" y¥' in B one of whose
terms divides x“+y“7. After replacing v by —v if necessary, we may assume that
x¥"y¥" divides x" y" . But this means that u is not primitive in ker(A), which
is a contradiction. Therefore some non-zero scalar multiple of ¢ must appear in any
minimal generating set of I5(4). ®
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Theorem 7.1 suggests the following algorithm for computing Graver bases:

Algorithm 7.2. (How to compute the Graver basis Gr 4 of an integer matrix A)
1. Choose any term order on k[x,y]. Compute the reduced Grobner basis G of
2. Substitute y1,...,yn — 1in G. The resulting subset of k[x] is the Graver basis

G’I‘_A.

The correctness of this algorithm is a corollary of Theorem 7.1. Algorithm 7.2
is extremely useful for explicit computations. The main point is that, in order to
compute the Graver basis of A, one only needs to compute a single reduced Grobner
basis for its Lawrence lifting A(A). Step 1 of Algorithm 7.2 can be executed by
applying Algorithm 4.5 to the Lawrence matrix A(A). If each vector in A =

{a1,as,...,a,} is non-negative, then it suffices to eliminate the variables t =
(t1,...,tq) from the binomial ideal
I = (z;—yt™, zo—yot®, - 2, —ynt®) C  K[t,x, Y] (7.3)

Any generating set of I Nk[x,y] = Ip(4) automatically contains the Graver basis.

Example 7.3. (How to compute all primitive partition identities (6.1)) '
Compute the minimal generators of the elimination ideal

<IL’1 et ylt, T2 — y2t2, Ty — y3t3, ey Iy —yntn> n k[$1,I2,... yTny Y1, Y2, - . .,yn],

and write them in the form z,,Zs, *** Tay Yo Yoo~ " Yby — Ya1Yaz ** Yar Ty Thy * +* Tty -
(]

The universal Grobner basis U 4 is a (generally proper) subset of the Graver
basis Gr 4. We next present a procedure for computing U4 from Gr 4. For the rest
of this chapter we shall assume that each a; is non-zero and non-negative. This
implies that the toric ideal 14 is positively graded and hence the Grébner region of
1, is all of R™ (Proposition 1.12).

We fix a tie breaking term order <. For w € R™ let G, denote the reduced
Grébner basis of I4 with respect to <,,. By varying w we get all possible reduced
Grobner bases of I4. This is guaranteed by Proposition 1.11. Hence in (7.4) below
G., runs over distinct reduced Grobner bases of 4. For u € ker(m) we define

Cilu] = {weR" : w-u>0 and x" — x" €G.}

and C_[u] = {weR" : w-u<0 and " —x" eg, )

The vector u (or its corresponding binomial) lies in the universal Grébner basis

Uy if and only if Cy[ujUC_[u] # @. For v € N" we introduce the open convex
polyhedral cone :

M) = {weR": w-v<w-wforall we i r(v)\{v}}. (7.5)

Note that the set of inequalities in (7.5) is finite because of our hypothesis that I4
is positively graded. Using the notation for normal cones in Chapter 2, we have
M(v) = —int Np(F), where F denotes the largest face of P := conv(n~(m(v))
containing v. In particular, the cone M(v) is empty unless v is a vertex of its fiber.
We note the following reformulation:

M) = {weR" : x" does not lie in the initial ideal in,(L4) }. (7.6)

(7.4)
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Lemma 7.4. The cone C[u] equals the intersection

M(u™) n ﬂ M(ut —e;).

i€supp(ut)

Proof: A cost vector w € R™ belongs to C'y[u] if and only if x*" — zu~ appears
. ey + .

with }nltlal term 1:“+ in the reduced Grébner basis G,,. This holds if and only if

x" s standard, x"  is non-standard, and every proper factor of x** is standard

(with respect to <,,). This is equivalent to w € M(u~) and w € M(ut — e;) for
all 7 € supp(u*). m '

C‘orollary 7.5. Theset o{ all cost vectors w which have a fixed binomial x*" —x"
with fixed initial term x“" in their reduced Grébner basis is an open convex cone
in R™.

The punch line is that the cones M(v) can be computed from the Graver basis:

M) = {weR": w-u>0f0rallx“+—x“_€GrA

such that x* divides xV}. 1)

This follows from (7.6) and the Grébner basis property:
n,(Ia) = (ing(f): f € Gra).

Algorithm 7.6 (How to compute the universal Grobner basis U 4)-
1. Compute the Graver basis Gr 4 using Algorithm 7.2.
2. For each binomial x*" — x%~ in Gr4 do:
2.1. Compute the cones C; [u] and C_|u] using Lemma 7.4 and formula (7.7).
2.2. The binomial x* — x* is in U, if and only if Cy[u] U C_[u] is non-
empty. '

Example 7.7.  Let d = 3,n = 6, A = {(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),
{0,0,2)}. The ideal 14 defines the Veronese surface in P°. Using Algorithm 7.2 we
find its Graver basis

— 2 2 2
Gry —{171174 Ty T1Xe — X3, T4Tg — Ty, T1x5 — T2X3, T4T3 — T2Ts,
_ 2 2 2 2 2
T2 T3T5, T3T5 — Tole, TaTy — Ty, Ty — $§$4, T1T4Tg — 1?21?315}.

We shall prove that

Gra\Ua = {z124%6 — Toz375 }. (7.8)

Using Lemma 4.8 and formula (4.5), it can be seen that the first nine binomials in
Gr 4 are precisely the circuits of .A. (Incidentally, finding these nine relations was
also the task of Exercise (3) in Chapter 1.) In view of the inclusion C4 C Uy in
Proposition 4.11, it suffices to show that the binomial zz4z¢ — ToX3Ts IS no—t inldy.
Consider its exponent vector u := (1,—1,-1,1,—1,1). By formula (7.7), we have
Mu™)={weR® : W +ws > wy +ws, wy +we > w3 + ws, w3 + wyg > wy +ws},
M(ut—er) ={w e R® : 2ws > ws+we}, M(ut—ey) = {w € R® : 2w3 > wy +we }
and M(u* —eg) = {w € R® : 2wy > w; +w,}. The intersection of these four cones
is easily seen to be empty, so that C, [u] = (). Reversing the roles of u* and u~ we
similarly find that C_[u] = §. This proves the claim (7.8). m
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Our next result is a geometric characterization of the universal Grobner basis.
We say that an integer vector u € Z™ is relatively prime if its coordinates are
relatively prime.

Theorem 7.8. A relatively prime vector u € ker(m) lies in the universal Grobner
basis U4 if and only if the line segment [ut,u~] is an edge of the polytope
conv(n~1(m(ut)).

Proof (if): Suppose u is relatively prime and [u*, u~] an edge of conv(n (7 (u")).
There exists w € R™ with

wu <w-ut<w-v forall vern Hm(ut))\{ut,u}. (7.9)

This implies w € M(u~). In view of Lemma 7.4, it suffices to show that w lies
i (Viesupp(ut) M(ut — e;). Suppose not, say, w € M(ut—e;). Then there exists
v € 7 (m(ut —e;))\{ut —e;} such that w-v < w - (u*—e;). This implies
w-(v+e) < w-u', and using (7.9) we conclude that v +e; = u™. This is a
contradiction to the fact that u™ and u~ have disjoint support. m

The argument just presented implies the following fact.

Corollary 7.9. For every binomial f = x%" — x%" in Uy there exist two term
orders such that f appears with different initial terms in the two reduced Grobner
bases of I 4. '

For the proof of the only-if direction of Theorem 7.8 we need the following
lemma.

Lemma 7.10. Let < be any term order, let x* be a minimal generator of the
initial ideal in(I4), and let v be an element in w~!(m(u)) such that u > v. Then
supp(u) N supp(v) = 0.

Proof: Suppose i € supp(u) N supp(v) and u > v and n(u) = n(v). Then u —e;
and v — e; are non-negative and in the same fiber, and u—e; > v—e,. This implies
that x"~® = x"/x; lies in the initial ideal in<(I4). This is a contradiction to our
assumption that x" is a minimal generator. m

Proof of Theorem 7.8 (only-if): Suppose that x"" —xY appears with initial term
x"" in the reduced Grobner basis of 14 with respect to <. Clearly, u must be a
relatively prime lattice vector. )

We had assumed that I4 is positively graded. This implies that both u* and
u~ are non-zero vectors. We must show that conv{u*,u~} is an edge of its fiber.
Let w € R™ be a non-negative weight vector representing <. After replacing w by
a nearby vector if necessary, we may assume that every coordinate of w is positive
and that the linear functional v — w-v separates the points in 7! (m(u*)). These
two hypotheses are crucial in what follows.

Let ' be the restriction of w to the complement of supp(ut), that is, w, =0
if u; > 0 and w! = w; if u; < 0. Our hypotheses imply

0= -ut < u =wu < w-uh
We define the weight vector
W' o= (weu)rW = (W) w,
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which has the property w”u* = w”u~. Note that all coordinates of w” are positive,
because w-u > 0 and w’ - u < 0. In order to prove that conv{u*,u~} is an edge,
it suffices to show that w"u* < w”v for all v.€ N"\{u~,u*} with n(v) = n(ut).

We distinguish two cases. First suppose that wv < wu*. Then supp(u*) and
supp(v) are disjoint by Lemma 7.10, and hence wv = w'v. This implies

W'v = (wu—wu) wv > (wu-wu) wuT = WU = W'ut.
Next consider the case wv > wu'. Then we have
w'v > (wu)-w'v - (Wu) - wut > —(W'u) wut = W'ut.
This completes the proof. m

Theorem 7.8 gives rise to an alternative algorithm for computing the universal
Grobner basis from the Graver basis Gr 4. Namely, for each binomial in Gr 4 check
whether it is an edge of its fiber, which amounts to solving a linear programming
problem. This approach is particularly useful as a tool for proving that a Graver
basis element does not lie in U 4.

Example 7.7. (continued) The fiber of the binomial z z4z¢ — zoz3z5 € Grg
contains precisely five lattice points. They form the vertices of a 3-dimensional
bipyramid (see Figure 7-1). The line segment conv{(1,0,0,1,0,1), (0,1,1,0,1,0)}
is the diagonal of this bipyramidal fiber. This proves that this binomial is not in
the universal Grébner basis Uy m

T)Z4Zq

T,z T3T,

TyT3Ts

Figure 7-1. Bipyramidal fiber.

Example 7.11. (A Graver degree which is not a Grobner degree)

Let d =1,n =4, and A = {15,20,23,24}. The degree of a monomial z}'z}y*zy°ry*
is defined to be 15u;+20u;+23us+24u,. The ideal 14 is homogeneous with respect
to this grading. An integer m > 0 is called a Graver degree (resp. Grébner degree)
if there exists an element in Gr 4 (resp. in U 4) having degree m.

When computing the Graver basis using the method in Example 7.3, we find
that Gr4 contains a unique binomial of degree 138. This binomial is z3z3x} — z§.
Consider the following convex combination of elements in 771(138):

1 3

10,060+ 5(2302) = 3(5,2,1,0) + 3(1,5,1,0) + %(0,1,2,3).
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This shows that conv{(2,3,0,2),(0,0,6,0)}, the segment corresponding to our bi-
nomial, is not an edge of its fiber conv(m~!(138)). Using Theorem 7.8, we see that
z?z32% — 28 does not lie in U4. We conclude that 138 is a Graver degree but not
a Grobner degree. m

The concepts of Grobner degrees and Graver degrees extend naturally to any
A C N¢. A vector b € NA is called a Graver degree (resp. Grébner degree) if there
exists a binomial x** —x" in Gr4 (resp. in U4) such that m(ut) = 7(u”) =b.
If b is a Grobner degree, then we call the polytope conv(n~1(b)) a Grébner fiber.

There is a natural partial order on the semigroup N.4. Namely, for two ele-
ments b, b’ in NA, we set b’ < b if and only if b — b’ € N.A. This is well-defined
since it is assumed that N.A N —N.A = {0}. In this partial order on all fibers the
Grobner fibers are characterized as follows.

Corollary 7.12. A fiber conv(n~!(b)) is a Grébner fiber if and only if it has an
edge which is not parallel to any edge of a different fiber conv(r~!(b’)) withb’ < b.

Proof: We first prove the only-if direction. Let conv(n~!(b)) be a Grébner fiber.
By Theorem 7.8, it has a relatively prime edge of the form [u*,u~], corresponding
to an element of 4. Suppose this segment were parallel to an edge [vt,v7]
of a different fiber conv(n~!(b’)) with b’ < b. This implies that vt — v~ =
m - (ut —u~) for some non-zero integer m. After reversing the sign of v, we may
assume m > 1. We conclude that v = m-u* and therefore b’ = n(vt) =
m-m(ut) = m-b. This is a contradiction to the assumption b’ < b. The proof
of the if-direction is straightforward by reversing the argument, using the reverse
implication in Theorem 7.8. m

This proof shows that the condition b’ < b in Corollary 7.12 can be weakened
to ||b’|| < ||bl| for any norm || - ||.
We next note that Grobner fibers can have arbitrarily many vertices.

Example 7.13. (Grébner fibers with many vertices)

This example is based on Remark 18.1 in (Schrijver 1986). Let ¢, denote the
r-th Fibonacci number, which is defined recursively by ¢ := 0, ¢1 = 1, ¢ =
¢r_2+¢,_1. Consider the 1 x4-matrix A, = [@ar, 2r11, 1, ¢3,,;—1]. Consider
the fiber of A, over b, = ¢§T 41 — 1. This is a Grobner fiber because it is the fiber
of the circuit (0, 0, 1 —¢%.,,, 1). The set of points with last coordinate zero is a
facet of this fiber. It is a polygon isomorphic to the convex hull of all non-negative
lattice points (z,y) with ¢o - T + @2,41 -y < @3, — 1. This lattice polygon has
r + 3 vertices. We conclude that the b.-fiber of A, is a Grobner fiber with at least
r 4 4 vertices. m

The encoding of the lattice polygon as a facet of a 3-polytope in Example 7.13
is a special case of the following general construction.

Proposition 7.14. Every lattice polytope appears as a facet of some Grébner
fiber.

Proof:  Every (n — d)-dimensional lattice polytope can be written as a fiber
conv(n~!(b)) for some matrix A € N%*" of maximal row rank and some b € N<.
This polytope is isomorphic to the facet of points with zero last coordinate in
the b-fiber of the extended matrix (A,b) € N+l Moreover, the b-fiber of
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(A,b) is a Grébner fiber since @11 — 'z - .. 2% lies in Ua,b) for every vertex
u=(uy,...,u,) of conv(r~1(b)). m

We close with a geometric construction of the state polytope of a toric ideal.

}‘heorem 7.15. The Minkowski sum of all Grébner fibers is a state polytope for
A-

Proof: Let P =3, conv(r~!(b)), where the sum is over all Grébner degrees b.

I_iet’ w and ' be two generic vectors in R®. The following equivalences prove the
claim:

face_,(P) = face_,(P)
< face_y,(conv(n (b)) = face_,(conv(x~1(b)))
for every Grébner degree b
<~  ny,(Ia)b = iny,(Ia)p  for every Grobner degree b
— Ny (IA) = ing (IA).

Here we use the abbreviation in,/(I4)p to denote the k-linear span of {x" €
ing(I4) : 7(u) =b}. m

Corollary 7.16. Let B be any finite subset of N.A which contains all Grébner
degrees. Then 3,z conv(n~1(b)) is a state polytope for I 4.

Proof: In the last equivalence of the proof of Theorem 7.15 we can replace “for all
Grébner degrees b” by “for allb e B”. m

Example 7.17. (State polytope of the affine twisted cubic curve)

Let d = 1,n =3 and A = {1,2,3}. The corresponding toric variety X 4 is the
twisted cubic curve in affine 3-space. The universal Grébner basis of I A is listed
in the first row of Table 6-1. The Grébner fibers are precisely the fibers over the
scalars 2,3,4 and 6. For instance, n~1(4) = {(4,0,0),(2,1,0),(0,2,0), (1,0, 1}
and conu(n~!(4)) is a triangle (see Figure 7-2). By Theorem 7.15, the state poly-
tope equals the following Minkowski sum:

State(I4) = conv(r™1(2)) + conv(r71(3)) + conv(m(4)) + conv(m~1(6)).

The summands are one segment and three triangles. Their sum is a hexagon:
This shows that I4 = (z® — 2,22 — ) has six distinct initial ideals. They are

(a) (y,2%)

(b) (=%, zy,y?)

(c) (=%, zy,z2,4°)

(d) (z?, zy,z2, 22)

(e) (z?2)

(f) (y,2)
These ideals can be read off from Figure 7-2 as follows. Each vertex of the hexagon
State(I4) is uniquely a sum of vertices of the fibers. For instance, the vertex labeled
(a) is the sum of the upper-leftmost vertices x?, z, z and 22. The initial ideal in

question is generated by all monomials in Figure 7-2 not corresponding to the four
vertices. m

NN
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Figure 7-2. State polytope of the affine twisted
cubic curve.

Exercises.
(1) Show that all Grobner fibers of a Lawrence type matrix are one-dimensional.

(2) Show that the ratio of cardinalities card(Gr.a)/card(4) can be arbitrarily
large.

(3) Suppose that F is the face of P = conv(r~'(b)) supported by w € R™.
Express the normal cone Np(F) in terms of the Graver basis GT 4.

(4) Let d = 3,n = 10 and A = {(1,5,k) € N* : i+ j+k = 3}. Compute
the Graver basis Gr4 and the universal Grobner basis U4. (The toric variety
V(I14) is the Veronese surface of degree nine in P*.)

(5) Let A as in the previous exercise and A’ := A\ {(1,1,1)}. Show tha:c the
toric ideal I 4/ is generated by quadrics but it possesses no quadratic Grébner
basis.

(6) Consider all monomials x" with u not a vertex of its fiber conv(n~'(n(u))).

(a) Show that they are the monomials in a monomial ideal M 4.
(a) Give an algorithm for computing M 4.
(b) Compute M4 ford =1,n =4, A ={1,2,3,4}.

(7) Prove that the elements in the universal Grobner basis 44 are in bijection with
the edge directions of the state polytope State(l4).

(8) Compute the state polytope of the ideal of 2 x 2-minors of a 2 x 4-matrix of
indeterminates.

Notes:

The contents of this chapter is taken from (Sturmfels & Thomas 1994). A'more
general version of Theorem 7.8, valid for binomial ideals associated to arbitrary
lattices, can be found in (Sturmfels, Weismantel & Ziegler 1994).

CHAPTER §
Regular Triangulations

Let I be any ideal in k[x] = k[z1,...,7,] and let < be any term order. The
passage from I to its initial ideal in,(I) is a flat deformation (Eisenbud 1995,
Section 15.8). Here the zero set of I gets deformed into the zero set of the monomial
ideal tn<(I). The deformed zero set is a union of linear coordinate subspaces. It is
convenient to identify the zero set of in(I) with a simplicial complex.

The initial complex A (I) of I with respect to < is the simplicial complex on
the vertex set {1,2,...,n} defined by the following rule. A subset F C {1,..., n}is
a face of A(I) if there is no polynomial f € I whose initial monomial in<(f) has
support F. Equivalently, AL (I) is the simplicial complex whose Stanley-Reisner
ideal is the radical of in(I). As an example consider the principal ideal

I = <121122123 — II)Z)

The two initial complexes of I are given in Figure 8-1. The left picture corresponds
to the choice of initial term ;z2x; while the right picture corresponds to x3.

I3 I3

zy Iy 1 Iy

Figure 8-1. Two initial complexes of a toric
surface.

It is our objective in this chapter to generalize the geometry in this little
example. We shall determine the initial complexes of an arbitrary toric ideal I 4.

If o is a subset of A then we write pos(c) for the cone spanned by o. A
triangulation of A is a collection A of subsets of .4 such that {pos(c) : o € A} is
the set of cones in a simplicial fan whese support equals pos(A). We shall identify
our given set of lattice points 4 = {a;,...,a,} C Z¢ with the index set {1,...,n}.

Example 8.1. (Triangulations associated with the twisted cubic curve)

Let d = 2,n = 4. The set A = {(3,0),(2,1),(1,2),(0,3)} has precisely four dis-
tinct triangulations: A!' = {{1,2}, {2,3},{3,4}}, A? = {{1,2},{2,4}}, A3 =
{{1,3},{3,4}}, and A* = {{1,4}}. =
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Every sufficiently generic vector w € R™ defines a triangulation A, as followsd:

A subset {i1,...,1,} is a face of A, if there exists a vector ¢ = (c1,...,cq) € R
such that ‘ ‘

a;-¢ = w; if j€ {iy,...,i} and

: : (8.1)
aj-Cc < wj if je {1,...,71}\{1,1,...,%,}.

A triangulation A of A is called regular (or coherent) if A = A, for some w € R™.
The regular triangulation A,, can also be constructed geometrically:

(a) Using the coordinates of w as “heights”, we lift the configuration A into the
next dimension. The result is the configuration A = {(aj,w1),-..,(an,wn)} C
Rd+1 .

(b) The “lower faces” of the cone pos(.;l\) form a d-dimensional polyhedral com-
plex. (A face is “lower” if it has a normal vector with negative last coordinate).
The triangulation A, is the image of this complex under projection onto the
first d coordinates.

Example 8.1. (continued) All four triangulations of A are regular:

Al = A1,0,0,1) A% = A(1,0,1,1) A = A1,0,0) At = A0,1,1,0)-

Example 8.2. (A non-regular triangulation)

Letd =3, n=6and A = {(4,0,0),(0,4,0),(0,0,4),(2,1,1),(1,2,1),(1,1,2)}.
The following collection of 3-sets defines a triangulation of A. Notice the Zs-
symietry.

A = {{1,2,5}, {1,3,4}, {1,4,5}, {2,3,6}, {2,5,6}, {3,4,6}, {4,5,6}}.

/\

Figure 8-2. A non-regular triangulation.

We shall prove that A is not regular. Suppose that A = A, for some w € RS.
Then we can choose ¢ € R? to satisfy (8.1) for {1,2,5}. Consider the linear
dependency
’ a, —a, —4-a4 +4-a5 = 0.

8. REGULAR TRIANGULATIONS 65

By taking the inner product of ¢ with each term in this identity, we find that

w; —wy —4-wg+4-ws < 0. (8.2)
The same reasoning applied to the equivalent triples {2,3,6} and {3, 1,4} yields
wy —wg —4-ws+4-wg < 0 and wyg —w; —4wsg +4-wy < 0. (83)

The sum of the three inequalities in (8.2) and (8.3) equals 0 < 0, a contradiction.
]

Theorem 8.3. The regular triangulations of A are the initial complexes of the
toric ideal I 4. More precisely, ifw € R™ represents < for I 4, then AL(Iq) = A,.

Proof: Let < be any term order and suppose w € R™ represents < in the sense that
in<(Ia) = in,(L4). For any b € R consider the linear programming problem

minimize u-w subjectto u€R", u>0 and uja; +--- +uya, = b. (8.4)
The linear program dual to (8.4) takes the form
maximize c¢-b subjectto c€R?, a;-c < wp,...,a, ¢ < w,. (8.5)

For any subset F of {1,2,...,n} the following statements are equivalent:
F is a face of A,
<= there exists a feasible solution ¢ of (8.5) such that F' = {j € {1,...,n} :
a; - ¢ = w;}
< 3beZ’: an optimal solution c of (8.5) satisfies F = {j : a;-c = w,}
< 3JbeZ": an optimal solution u of (8.4) satisfies supp(u) = F
<= 3JbeZ%: anoptimal solution u of (8.4) satisfies supp(u) = F and is integral
<= there exists x" such that F' = supp(x") and every power of x" is standard
<= Fisaface of A (I4).
The first and last equivalences in the chain above are translations of the definitions
of A, and A(I4) respectively. The second equivalence holds because every point
c in the feasible polyhedron of (8.5) lies in the relative interior of some face. The
integer vector b is chosen to be a support vector of that face. The third equiva-
lence holds because of complementary slackness; see §7.9 in (Schrijver 1986). For
the fourth equivalence replace b by a suitable integer multiple of b. In the fifth
equivalence we are using the fact that every power of x" is standard if and only if
every integer multiple of u solves its corresponding integer program (by Algorithm
5.6). The latter condition means that u is integral and solves its linear program
(8.4). This completes the proof of Theorem 8.3. m

Corollary 8.4. For generic w € R", the radical of the initial ideal of I 4 equals

Rad(in,(I4)) = (ziy&i, - s, : {i1,42,...,4s} is a minimal non-face of Ay)
= m (.117; 1 g 0').
gEA,

Proof: ~ The first equality follows from Theorem 8.3. The second equality is a
general formula for the prime decomposition of any square-free monomial ideal. »
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In the remainder of this chapter we assume that the set A spans an affine
hyperplane. By Lemma 4.14 this means that I4 is a homogeneous ideal of Krull
dimension d. Each d-subset of {1,...,n} corresponds to a (d — 1)-simplex in the
affine span of .A. We can thus consider A, as a regular triangulation of the polytope
Q@ = conv(A) with vertices in A. In paiticular, Theorem 8.3 and Corollary 8.4 give
rise to an algebraic algorithm for computing triangulations of polytopes. We present
some examples of polytopes of dimension d — 1 = 3.

Example 8.5. (Lexicographic triangulations of some 3-polytopes)

In each of the following cases we present the reduced Grébner basis G with respect
to the lexicographic term order defined by z; > z2 > --- > z,. The underlined
initial terms define the minimal non-faces of a regular triangulation A of the
polytope @ = conu(A).

(a) The regular octahedron: n =6, Vol(Q) = deg(14) = 4.

A = {(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)},
G = {zi26 — x324, ToT5 — T34},
Ar = {{1,2,3,4}, {1,5,3,4}, {2,6,3,4}, {5,6,3,4}}.
(b) The cyclic polytope with n = 5 vertices: Vol(Q) = deg(I4) = 8.
A = {1} x {(0,0,0),(1,1,1),(2,4,8), (3,9,27), (4, 16,64)}

Il

g
(c) The regular 3-cube: n =28, Vol(Q) = deg(l4) = 6 = # tetrahedra in A..

A ={1} x {(0,0,0),(0,0,1),(0,1,0), (0,1,1),
(1,0,0),(1,0,1),(1,1,0),(1,1,1)}

G ={z1x4 — T2T3, T1T6 — T2T5, T1T7 — T3T5, T1Tg — T4Ts, T2T7 — T4Ts,

{Ilil?girs — I%Ig }

Loy — T4Te, T3Te — Ty4T5, T3TE — T4l7, T5Tg — $6177}-

The triangulation A is given in the diagram below. Note that the minimal
non-faces of A_ are precisely the nine underlined monomials above.

4 8

Figure 8-3. Lexicographic triangulation of the
3-cube.
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(d) The permutohedron (a.k.a. the truncated octahedron):

Here n = 24 and A = {(m, g, m3,m4) : m permutation of {1,2,3,4}}. The
polytope @ = conv(.A) has normalized volume 96. The ideal I 4 is minimally
generated by 361 binomials, among which 99 have degree two and 262 have
degree three. The reduced Grobner basis G has 578 elements with maximum
occurring degree six. Replacing the initial ideal by its radical, and computing
its prime decomposition as in Corollary 8.4, we see that the regular triangula-
tion A consists of precisely 42 tetrahedra. m

The two most popular term orders for Grébner bases are the lexicographic
order <., and the reverse lexicographic order <,eyez. It comes as no surprise
that the corresponding triangulations are the two most popular triangulations of a
polytope. The lexicographic triangulation A, is known in combinatorics as the
placing triangulation, and the reverse lezicographic triangulation AL..... is known
as the pulling triangulation. This correspondence was established in (Sturmfels
1991). For a nice geometric discussion of these triangulations see (Lee 1991).

We shall give recursive description of the two triangulations A (.A) and
Arevies(A), where A = {a; >a; > --- > a,} is any totally ordered set of points in
R?. By a face (resp. facet) of .A we mean a totally ordered subset of the form F .4
where F is a face (resp. facet) of the polytope conv(A). The two triangulations
below are subsets of 24, the power set of .4, which are closed under taking subsets.
In our formulas we tacitly assume that the closure operation of adding subsets is
applied whenever needed to form a simplicial complex.

Proposition 8.6. If A is affinely independent, then Ay, (A) = A, cpiez(A) = {A}.
Else: '

Avesiez(A) = | J{{an} UG : G € Areniea(F) }, (8.6)
F
where the union is over all facets F of A not containing a,, and

Alea:(-A) = Alex(-A\{al}) U {{al} U G : G is face of Alea: (A\{al})

(8.7)
which is visible from a; }.
Proof: A subset F of A is a face of A, if and only if there exists a monomial
x" which has support F' and is not nilpotent modulo in.,(I4), and similarly for
Aveylez- We shall proceed by induction on n = card(A). The case where A is
affinely independent is obvious.
First consider the lexicographic term order. It has the property

inleI(IA) n k[:EQ, cee ,In] = inlex(IA\{al})‘

Equivalently, the standard monomial modulo I4 not containing z;, are precisely
the standard monomials modulo I4\(a,;. This implies that the faces of A, (.A)
not containing a; are precisely the faces of Aj.-(A\{a;}). The right hand union
in (8.7) is the unique completion of A, (A\{a;}) to a triangulation of A. It must
therefore be equal to Ay, (A).

Consider the reverse lexicographic term order. Let x" be a monomial which
is not nilpotent modulo in,eyier(I4) and H = supp(x"). We must show that H is
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a subset of one of the sets in the union in (8.6). First suppose that z, does not
appear in x". By the properties of reverse lexicographic order, no monomial in the
same fiber as x" contains the variable z,,. This means that H is contained in a
proper face of 4, and hence H C F for some facet F' of A not containing a,. By
the induction hypothesis, we have H € A ¢yiex(F). Next suppose that x,, appears
in x* with degree i > 1. Then the support of x"/z?, lies in A,eyer(F) for some
F as above. Hence H = {a,} U supp(x"/z’) appears in the union on the right
hand side of (8.6). m

Example 8.7. (Lexicographic versus reverse lexicographic triangulations)
Consider the cubic Veronese surface in P%. The set A = {(i1,42,43) € N3 : 4, +
ip +13 = 3} is labeled as indicated below, and the variables are ordered z, = 5 >
= Ty

Fon'
S

Figure 8-4. Lexicographic and reverse lexico-
graphic triangulation.

The lexicographic triangulation is shown on the left and the reverse lexicographic
triangulation is shown on the right. From these pictures we can determine the
radicals of the initial ideals:

Rad(inlez(IA)) = (.’1,‘1.’1,‘2,:1,‘111,‘3,.’1,‘1.’1:5,112111,‘6,11,‘111,‘7,.’1,‘1.’1,‘3,1‘111,‘9,11,‘211510,11,‘211,‘3,11,‘211,‘4,
L2Z5,T2T8, L2L9, T3L10, T3L4, T3T6, L3T7, 3T, LgT5, T4T6,
1124.’1,‘3,:1,‘4.’1,‘9,1125.’126,11:5.’1'7,11251128,11:611:10,.’1,‘6.’1:8,:1:71119.’1,‘10> and

Rad(inreviex(14)) = (T122, 7123, T1T9, T2T3, T3T7, T4, T3, Te, T7Tg, Tg)-

The generators of these two ideals are the minimal non-faces in the two triangula-
tions. Note that the left triangulation is unimodular, i.e., every triangle has unit
area. By Corollary 8.9 this implies that in;..(14) is equal to its radical listed above.
[

Let I 4 be a homogeneous toric ideal. The degree of any initial ideal in<(I4) is
equal to the normalized volume Vol{Q) of the polytope Q = conv(A). This follows
from Theorem 4.16 and the fact that the degree of a homogeneous ideal is preserved
under passing to the initial ideal. We shall prove the following stronger result. It
implies Theorem 4.16 because the volume of () equals the sum of the volumes of
the (d — 1)-simplices in any triangulation of @), and the degree of a monomial ideal
is the sum of the multiplicities of all associated primes of maximal dimension.
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Theorem 8.8. Let o be any (d — 1)-simplex in the regular triangulation A (I4).
The normalized volume of ¢ equals the multiplicity of the prime ideal (z; : 1€ o)
in ini(14).

Proof: The multiplicity M of (z;:4 & o) in in(I4) can be computed as follows.
Let ¢ : k[x] — k[z; : i € 0] be the homomorphism which maps zjtolforjeo
and z; to z; for i ¢ 0. Then ¢(in.(I4)) is a zero-dimensional ideal and M equals
the k-dimension of k[x; : i € 0]/¢(in<(14)). It follows from (8.1) that < can be
represented by a weight vector w € R™ such that w; = 0 for j € ¢ and w; > 0 for
i ¢ 0. This representation implies

$(in<(10) = inu($(L0))- (8.8)

Hence M is the k-dimension of k[x; : i & 0]/¢(14). Let £ denote the image of
ker(A) under the homomorphism Z™ — Z"~<%74(%) which deletes all coordinates
in . Then

o) = (x*" —x* iu=ut-u"eL) (8.9)

To compute the normalized volume of the (d — 1)-simplex o, we shall assume that
the d x n-matrix A has rank d and that the d x d-minors of A are relatively prime.
Then Vol(o) = +det(A,), the determinant of the d X d-minor with column indices
o. Let B be any integer (n — d) X n-matrix whose rows constitute a Z-basis for
ker(A). 1t is a basic fact of linear algebra that complementary minors of A and B
are equal up to a sign:

Vol(o) = [det(A;)] = |[det(B(,. np\o)l- (8.10)

The (n—d) x (n—d)-minor on the right hand side equals the index of the sublattice
L in Z"~°e749). 1t is to be shown in Exercise (1) below that [Z"~<ard(®) ; £] equals
the k-dimension of k[z; : j ¢ o] modulo the ideal in (8.9). This completes the
proof. m .

A triangulation A of A is unimodular if Vol(a) = 1 for every maximal simplex
oin A. '

Corollary 8.9. The initial ideal in(I4) is square-free if and only if the corre-
sponding regular triangulation A, of A is unimodular.

Proof: The only-if-direction follows directly from Theorem 8.8. To prove the if-
direction, suppose that A is unimodular but in<(I4) is not square-free. Choose
a standard monomial x" such that x®" is not standard. Let b = w(u) and let o
be a (d — 1)-simplex in A . whose positive span in R? contains b. Represent < by
a weight vector w € R™ such that w; =0 for j € ¢ and w; > 0 for i ¢ o. The linear
system of equations

> xa; = b

i€o
has a unique rational solution (\; : i € o). Our choice of o means that \; > 0
for all i € g. Moreover, all ); are integers because Vol(0) = [ZA : Z{a; : i € a}]
is equal to one. The monomial [Lico zf‘ has w-weight zero, and it is congruent
modulo I 4 to the standard monomial x“. Therefore x“ = Hie7 :1:3"', and hence
xM = [, 22 & Rad(in< (I A))- This is a contradiction to our assumption that
x?Y is a non-standard monomial. m



70 B. STURMFELS

The matrix A is called unimodular if all triangulations of 4 are unimodular.
If rank(A) = d, then A is unimodular if and only if all non-zero d x d-minors of
A have the same absolute value. See (Schrijver 1986; Theorem 19.2) for another
characterization.

Remark 8.10. A matrix A is unimodular if and only if all initial ideals of the
toric ideal I 4 are square-free.

Proof: This follows directly from Corollary 8.9. m
Unimodular matrices have the following important property.

Proposition 8.11. If A is a unimodular matrix, then the set of circuits C 4 equals
the Graver basis Gr 4.

Proof: By Lemma 4.9 and unimodularity, every circuit v of A has its coordinates
in {0,—1,+1}. Let x"" — x% be any element in the Graver basis of I4. By
Lemma 4.10, there exists a circuit x¥' — x¥~ such that supp(v*) C supp(u*)
and supp(v™) C supp(u~). The monomials x¥+ and x¥ are square-free, by the
remark above. This implies that x¥" divides x*" and x¥_ divides x*~ . Siuce u was
assumed to lie in Gr 4, this implies u = v € C4. The reverse inclusion C4 C Gr4
was established in Proposition 4.11. w

A prototypical example of a unimodular matrix is the (s + ¢) x (st)-matrix
in (5.1). The corresponding polytope Q@ = conv(A) equals the product of sim-
plices Ag_; x A;—;. The reader is asked in Exercise (9) below to prove that this
configuration is unimodular.

Example 8.12. (The staircase triangulation of the product of two simplices)
The set of variablesis X = {z;; : 1 <i<s,1<5< t}. We define a partial order
on X by setting zi < z;; whenever ¢ < j and k£ < I. Consider the reduced Grobner
basis G« given in Proposition 5.4. The underlined initial monomials in (5.7) are
precisely the incomparable pairs in our poset, and by Theorem 8.3, they define the
minimal non-faces in a triangulation A~ of A,_; x A;_;. The maximal simplices in
A~ are the maximal chains in the poset. In the matrix they form the “staircases”
from the upper left corner x; to the lower right corner xs;. Therefore A is called
the staircase triangulation of A,_1 x Ay_1. We note that the staircase triangulation
is both lexicographic and reverse lexicographic with respect to the usual row-wise
variable ordering z17 > 12 >~ -+ > Ts;. B

Example 8.13. (A non-regular triangulation of the product of two tetrahedra)
For a long time it was unknown whether all triangulations of a product of sim-
plices are regular. The following solution to this problem for s = ¢t = 4 was given
by De Loera (1995). To simplify the presentation, we write the 4 x 4-matrix of
indeterminates as

a b ¢ d
N = e f g h
() = i ok I
m n o p
Consider the following square-free monomial ideal:
J = (af,ag, ah, al, an, ao, ap, bi, bl, bp, cf, ch, ci, cj, cl, cn, cp, df, dgj,

el, en, eo, ep, fi, fk, fl, fo, fp, gi, gl, ho, in, io, ip, jo, jp, lo)

8. REGULAR TRIANGULATIONS 71

Its associated simplicial complex A(J) is a triangulation of Az x As. One verifies
this by checking that the ideal J has the same Hilbert series in the fine N4 x N<-
grading as the staircase initial ideal in.(I4) in Example 8.12 (see Exercise (2)
below). If the triangulation A(J) were regular, then there would exist weights
w=(A,B,C, ..., P) € R such that J = in,(L4). The underlined generators of
J impose the following six inequalities on the weights:

A+G > C+E
B+I>A+J
C+N>B+0
E+L>H+1T
H+0O >G+P
J+P > L+ N

These inequalities are inconsistent, because the sum of the right hand sides equals

the sum of the left hand sides. This proves that the triangulation A(J) is not
regular. m

With every regular triangulation A of a set A we associate the polyhedral cone
Ca = {wER” : AL‘,:A}. (8.11)

The cone Ca consists of all lifting functions which induce the triangulation A. The
collection of these cones together with their faces is a polyhedral fan. We state

Evitho;lt proof the following theorem due to Gel'fand, Kapranov and Zelevinsky
1994).

Theorem 8.14. There exists an (n — d)-dimensional polytope Y(A), such the
normal cones at the vertices of £(A) are precisely the cones Ca.

The polytope L.(A) is called the secondary polytope, and its normal fan
N(2(A)) = {Ca : Aregular triangulation of A}

is called the secondary fan.

Proposition 8.15.
(a) The Grébner fan of the toric ideal I4 is a refinement of the secondary fan
N(Z(A)). If A is unimodular, then the two fans coincide.

(b) The secondary polytope %(A) is a Minkowski summand of the state polytope
State(Ia). If A is unimodular, then the two polytopes coincide.

Proof: Tt suffices to prove statement (a) since (b) is just a reformulation. Theorem
8.3 tells us that in,(I4) = in, (I4) implies A, = A,.. This shows that each
Grobner cone lies entirely in a secondary cone C,. The reverse implication holds if
A is unimodular, by Remark 8.10. m
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Example 8.16. It is possible that the state polytope equals the secondary
polytope, even if A is not unimodular. An example with this property (for d =
6,n = 8) is the Lawrence lifting A = A(A’) of

, (1 =210
A‘<1—101)'

The matrix A’ is not unimodular, and this implies that A = A(A’) is not unimod-
ular. An explicit computation shows that State(I4) = X(A) is planar octagon.
n

Exercises.
(1) Let £ be an n-dimensional sublattice of Z"™ and consider the ideal

I, = (x‘i+—x“_:u€£).

Show that k[x]/I. is a k-vector space of dimension [Z™ : L].
(2) Let J = (x",...,x%) be a square-free monomial ideal in k[x|, and let # as

in (4.1). Its Hilbert function in the d-variate grading defined by deg(z;) = a; -

is the rational generating function

Zug{l,...,s}(_l)lyt ’ fr(la’n({xu.’i : J € V}))
H?:l(]‘ - tai)
Here “lem” denotes the least common multiple of a set of monomials in k[x].

Show that the simplicial complex defined by J is a triangulation of A if and
only if

H(J;t) =

H(J;t) = D {t?P:beNA}

(3) Let .A be the set of vertices of a planar n-gon in convex position. Show that
every triangulation of A is lexicographic (and hence regular). Give an example
of a triangulation of a hexagon which is not reverse lexicographic.

(4) Find a regular triangulation that is neither lexicographic nor reverse lexico-
graphic.

(5) Prove: If the secondary polytope of A equals the state polytope of 14, then
the set of circuits C4 equals the universal Grobner basis U 4. Does the converse
hold ?

(6) Compute all eight initial ideals of the toric ideal in Example 8.16.

(7) Compute the secondary polytope and the state polytope for the twisted cubic
curve in Example 8.1.

(8) Let I be an arbitrary ideal in k[x] and A([) its initial complex with respect
to any term order <. Show that the Krull dimension of k[x]/I is equal to
dim(AL(I)) + 1.

(9) Show that the set A = {e; —e; : 1 <i <j <d} is unimodular (cf. Exercise
(8) in Chapter 4). Deduce that the product of simplices A;_y x A;_; is uni-
modular. (Hint: Consider the complete bipartite graph K, as a subgraph of
the complete graph K, ;.)
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Notes:

Initial complexes were studied in (Kalkbrener & Sturmfels 1992) for general prime
ideals. The connection between regular triangulations and initial ideals of toric
ideals was introduced in (Sturmfels 1991). An extension of Theorem 8.3 to ideals
of lattices can be found in (Sturmfels, Weismantel & Ziegler 1995). Theorem 8.8
was proved in (Kapranov, Sturmfels & Zelevinsky 1992). Connections to sparse
elimination theory are also explored in (Sturmfels 1993b). The construction of the
secondary polytope 3(A) is due to Gel’fand, Kapranov & Zelevinsky (1994). An
alternative proof of Theorem 8.14 appears in (Billera, Sturmfels & Filliman 1990).



CHAPTER 9
The Second Hypersimplex

We now apply our theory to a specific family of polytopes. Let A; = {e; +e;:
1 < ¢ < j < d}. This is the set of column vectors of the vertex-edge incidence matrix
of the complete graph K;. The convex hull of A, is called the second hypersimplex
of order d and is denoted A(2,d). The second hypersimplex is a {(d — 1)-dimensional
polytope in R¢, with n = (g) vertices. Its toric ideal 14, is the kernel of the map

P k[(IIi]‘ 1<i<y < d] - k[tl,...,td], T tit]’. (91)
The variables x;; are indexed by the edges in the complete graph K.

This chapter is organized as follows. We first describe a quadratic, square-free
Grobner basis for 14, and the associated regular triangulation of A(2,d) into unit
simplices. We then compare the state polytope of I 4, with the secondary polytope
of A4, and we describe the universal Grébner basis of A, for d < 8. Finally, we shall
discuss the integer programming problem and the sampling problem associated with
Ag.

We identify the vertices of K4 with the vertices of a regular d-gon in the plane
labeled clockwise from 1 to d. Between any two vertices of K there are two paths
that use only edges of the d-gon. We define the circular distance between two
vertices to be the length of the shorter path. For example, vertices 1 and d are at
circular distance 1 inside Ky and the pair {1, 6} has distance 3 inside Kg.

In what follows we use the term- edge for the closed line segment joining any two
vertices in the convex d-gon. We define the weight of the variable z;; as the number
of edges of K; which do not meet the edge (i,7). For instance, if d = 5, then the
variables T2, T23, T34, T45, 15 have weight 3, and the variables 13, T4, T35, £14, L25
have weight 1. Let > denote any term order that refines the partial order on
monomials specified by these weights. Given any pair of non-intersecting edges
(4,4), (k,1) of K4, one of the pairs (i, k), (4,1) or (4,1), (j, k) meets in a point. With
the disjoint edges (4,7), (k,I), we associate the binomial w;;zx — Zyt;r where
(4,1), (4, k) is the intersecting pair. We denote by C the set of all binomials obtained
in this fashion and by in, (C) the set of their initial monomials. For instance, if
d = 5 then the set C equals

{37123734 — T13%24, T14%23 — T13T24, £12%35 — T13T25, T15%23 — T13T25,
T12T45 — T14T25, L15T24 — T14T25, L13%45 — T14T35, T15T34 — L1435, 9.2)
T23T45 — T24X35, T25L34 — z24x35}.
Here the initial monomials with respect to < are underlined.
Theorem 9.1. The set C is the reduced Grébner basis of I 4, with respect to ».

The reduction relation defined by this Grébner basis amounts to replacing
non-crossing edges by crossing edges. This is illustrated in the following diagram:

75
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7 7 l J
* —=0
—_—
k l k I
o —
i 7 i J
—_—
k l
k l

Figure 9-1. Reduction via the Grébner basis in
Theorem 9.1.

Proof of Theorem 9.1: For each binomial z;;zx — Tyx;x in C, the initial term
with respect to = corresponds to the disjoint edges. This follows from the convex
embedding of Ky and the definition of the weights. The integral vectors in the
kernel of A4 are in bijection with even closed walks in the complete graph Ky,
and hence so are the binomials of I4,. More precisely, with an even closed walk
I = (i1, 12,...,%25—1, 42k, 41) We associate the binomial

za—

k
br = Tigy 1,421 — Hmi217i21+1
=1

o~

1

Clearly, the walk I' can be recovered from its binomial br. By Corollary 4.4, the
(infinite) set of binomials associated with all even closed walks in K4 contains every
reduced Groébner basis of I 4,. Therefore in order to prove that C is a Grébner basis,
it is enough to prove that the initial monomial of any binomial br is divisible by
some monomial z;;xx; where (i, ), (k,1) is a pair of disjoint edges:

Suppose on the contrary there exists a binomial br € I4, that contradicts our
assertion. This implies that each pair of edges appearing in the initial monomial
of br intersects. We may assume that by is a minimal counterexample in the sense
that d is minimal and that br has minimal weight. Here the weight of a binomial
is the sum of weights of its two terms. The walk I' is spanning in K4 by the
minimality of d. Every edge of I' gets a label “even” or “odd” according to its
position in the walk. If an edge is visited more than once, then it cannot be labeled
both odd and even, since otherwise the variable associated with an odd-even edge
can be factored out from br. This would contradict the minimality of weight.
Moreover, if by = x" —x" and in, (br) = x", then we can assume that each pair
of edges appearing in the trailing monomial xV intersects. Otherwise if (4, 5), (k, )
is a non-intersecting pair of edges then we can reduce x¥ modulo C to obtain a
counterexample of smaller weight.

Let (s,t) be an edge of the walk ' such that the circular distance between
s and t is smallest possible. The edge (s,t) separates the vertices of Ky ex-
cept s and t into two disjoint sets P and @ where |P| > |Q|. Let us start
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I' at (s,t) = (41,72). The walk is then a sequence of vertices and edges T' =
(i1, (41,12), %2, (42,13), -, (f2k—1,%2k), G2k, (12k,%1)). Bach pair of odd (resp. even)
edges intersects. The odd edges are of type (i3,_1,12,) and the even edges of type
(427, %2r41). Since the circular distance of 41,4, is minimal, the vertex i3 cannot be
in Q. Otherwise the edge (i2,43) would have smaller circular distance. We claim
that if P contains an odd vertex i2,_1, then it also contains the subsequent odd
vertices igr41,%2743,.--,92k—1. The edge (i1,i2) is the common boundary of the
two regions P and Q. Any odd edge intersects it (at least by having an end in
{i1,42}) and thus 9, is in Q U {i1,i2}. Since any even edge must intersect (i2,13),
the vertex ig,4, lies in P U {i2}. To complete the proof of the claim we show that
tor+1 # 2. The equality i2,4.1 = 75 would imply either 75, = i; or 79, € Q. If
i2r = ¢ then (41,15) is both odd and even. On the other hand if i5, € Q then
(42r,12) has smaller circular distance than (1,43). Thus g9, belongs to P. The
claim is proved by repeating this argument.

Since i3 was shown to be in P, it follows that all odd vertices except 3 lie in P
and the even vertices lie in QU {i1,72}. The final vertex iy, is thus in Q. The even
edge (i2x,%1) must be a closed line segment contained in the region Q of the d-gon.
Therefore (i,43) and (i2,%1) are two even edges that do not intersect, which is a
contradiction. This proves that C is a Grébner basis of I 4, with respect to ».

By construction, no monomial in an element of C is divisible by the initial term
of an element in C. Hence C is the reduced Grébner basis of I 4 . With respect to >.
[

We remark that the Grébner basis C in Theorem 9.1 is actually lexicographic.

Remark 9.2. The set C is the reduced Grébner basis for 14 with respect to the
purely lexicographic term order induced by the following variable ordering:

z;; < Tk ifandonlyif i<k or (i=kandj>1).

Proof: For any ordered quadruple 1 < ¢ < j <k <! < d, the intersecting pair of
edges is {(4, k), (j,1)}. We must show that the monomial z;;z;; is smaller than both
ZijTk; and Ty, in the given term order. But this holds since zx; > Tjk = Tjp >
Tij >- Tip > Ti. W

We apply Theorem 9.1 to give an explicit triangulation and determine the
normalized volume of A(2,d). By Theorem 8.3, the square-free monomial ideal
(ins (C)) = iny(I4,) is the Stanley-Reisner ideal of a regular triangulation A, of
A(2,d). The simplices in A, are the supports of the standard monomials. All max-
imal simplices in A, have unit normalized volume (by Corollary 8.9). We observed
before that the elements of in, (C), i.e., the minimally non-standard monomials,
are supported on pairs of disjoint edges.

Corollary 9.3. The simplices of A, are the subgraphs of K4 with the property
that any pair of edges intersects in the given convex embedding of the graph.

Here we identify subgraphs of Ky with subpolytopes of A(2,d): a subgraph H
is identified with the convex hull of the column vectors of its vertex-edge incidence
matrix.

Theorem 9.4. The maximal simplices in the triangulation A, are spanning sub-
graphs on d edges with the property that any pair of edges intersects. Every such
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subgraph is connected and contains a unique odd cycle. The number of such sub-
graphs and hence the normalized volume of the second hypersimplex A(2,d) is
2¢-1 ¢,

Lemma 9.5. A subpolytope o of A(2,d) is a (d — 1)-dimensional simplex if and
only if the corresponding subgraph H satisfies the following properties:
(i) H is a spanning subgraph with d edges,
(ii} all cycles in H are odd,
(iii) every component contains at least one odd cycle.

In this case the normalized volume of the simplex o is 29~ where q(H) is the
number of disjoint cycles in H.

Proof of Lemma 9.5: Suppose H supports a (d — 1)-simplex. Let My be the {0, 1}-
incidence matrix of H. This matrix is non-singular which implies properties (i} and
(ii). Suppose there exists a component C of H with no odd cycles. By property
(ii), C is a tree. By induction on the number of edges in the tree one can prove
that My is singular.

For the converse suppose that (i), (ii) and (iii) hold for H. Then the vertex-
edge incidence matrix My is square. We shall prove that the absolute value of the
determinant of My is equal to 29U If all vertices of H have degree two, then
H is a disjoint union of odd cycles C; and the matrix My (up to permutation of
columns) is the direct sum of the matrices M¢,. The determinant of My is the
product of the determinants of the matrices M¢,. The determinant of the incidence
matrix of an odd cycle is 2 or —2. Therefore the absolute value of the determinant
of My is 29D If the set of vertices with degree distinct from two is non-empty,
then there is a vertex v of H of degree one. The row associated with v has 1 in
some column and O elsewhere. Therefore the absolute values of the determinants
of My and Mpy_, are equal. Using this repeatedly we can reduce to the first case.
The g.c.d. of det(My) where H ranges over all subgraphs of the specified kind is
two. Hence the normalized volume of a simplex o is 2¢(0-1, m

Proof of Theorem 9.4: The characteristics of the subgraphs follow from Corollary 9.3
and Lemma 9.5. Since the normalized volume of a maximal simplex in the triangu-
lation A, is one, we conclude that there is a unique odd cycle in the corresponding
subgraph. Recall that the vertices of the graph are the vertices of a regular d-gon
numbered in a clockwise manner and the edges are closed line segments joining two
vertices. Consider an odd cycle C in K; with 2k — 1 edges, k € {2,...,[d/2]}.
We assume C is drawn such that each pair of edges in C intersect. There are
l = d — (2k — 1) vertices that are not in C. We need to introduce [ new edges in
order to obtain a spanning subgraph. Let v be a vertex outside C. Due to the
convex embedding of K and the requirement that the new edge should intersect
all existing edges, there exists a unique vertex w in C such that (v, w) is one of the
new edges. Therefore there is exactly one way to complete an odd cycle to a graph
with the above properties. There are (2 1) odd cycles for each k € {2,...,[d/2]}

and hence the total number of such graphs is Z[ /2] (2:_1) =2¢"1_gd. =m

The graphs appearing as simplices in A, are known as thrackles in the combi-
natorics literature. The standard monomials modulo our Grébner basis are precisely

9. THE SECOND HYPERSIMPLEX 79

the multi-thrackles. In other words, a monomial x" does not lie in m>(I 4,) if and

only if supp(x") is a thrackle. This is equivalent to x* = z;, j1Tizjs =+ T4, . Where

<SS K1 <o <o <y 1 < Jny B2 < 2y en ey i < (93)
Note that x" is recovered from ®(x™) = t;,t;,---t; t;,
indices.

The following diagram shows all 11 = 2°~! — 5 maximal thrackles for d = 5.

These are the (maximal) supports of the standard monomials modulo the Grébner
basis in (9.2).

tj,---t;. by simply sorting

Figure 9-2. Maximal thrackles in a pentagon.

C?rollary 9.6. The Hilbert polynomial of 14, equals the Ehrhart polynomial of
A(2,d):

d—1 d—1

Proo_f sketch: 'We have shown that .44 has a triangulation into unit simplices. This
implies that the Ehrhart polynomial and the Hilbert polynomial are equal. (See
also Theorem 13.11 and Proposition 13.15). The right hand expression in (9.4)

equals the number of sequences (9.3) and hence the number of standard monomials
of degree r. m

Hau,(r) = card(r - A(2,d) N 2¢) = (d”’"_ 1) ~d- (d”_Z). (9.4)

We next compare the state polytope of I 4, with the secondary polytope of Aj.
Both polytopes lie in R™ and have dimension n — d, where n = (g) is the number
of edges in Kj.

Theorem 9.7. The state polytope of 14, and the secondary polytope of Ay coin-
cide for d < 5 and are distinct for d > 6.

Proof: Tt can be seen by inspection that the matrices A3, A4 and A5 are unimodular.

Proposition 8.15 (b) states that in these cases the secondary polytope equals the
state polytope.
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Before proceeding to d > 6, let us discuss the cases d = 4,5 in more detail.
The hypersimplex A(2,4) is a regular octahedron in R*. It has three distinct
regular triangulations. Therefore the secondary polytope, which is the same as
the state polytope, is a triangle in R®. The three distinct initial ideals of I 4, are
<$14$23,$13$24), <I13$24,$12$34) and <$14$23,$12$34)- The hypersimplex A(2,5)
has dimension four with 10 vertices and 10 facets (5 tetrahedra and 5 octahedra).
Its secondary polytope ¥(As) is five-dimensional and has 102 vertices, 255 edges,
240 two-faces, 105 three-faces and 20 facets. Under the natural Ss-action the 102
regular triangulations of A(2,5) fall into three distinct orbits.

Now let d = 6 and consider the following subconfiguration of As:

B = {ei+e; e1tes, extes, ext+eq, e3teq, e3+es, eqtes, es+eg }- (9.5)
Using Algorithm 7.2, we find that the Graver basis of B equals

Grg = { T23T56 — £26T35, T12T56L34 — T16T23T45, (9 6)

2 2
T12ZT56%34 — T16X26T35T45, T12T26T35T34 — T16T237T45 }"

The first two binomials suffice to generate the toric ideal I, which is therefore a
complete intersection. Let w be the weight vector which assigns the weight 1 to the
variables z23 and z5¢ and weight 0 to the other six variables. We can read off the
initial ideal from (9.6):

. 2 2
in,(Ig) = ( T23T56, T12T56T34 — T16T23T45, L12T56T34, 331627233345)- (9.7

This is not a monomial ideal, and we see that (9.7) has precisely two distinct
initial ideals in, (in,(Ig)) = (T23Ts6, T12T56T34, T16T53%45) and in, (in,(Ig)) =
(T93T56, T16T23T45, T12T26T34). Both have the same radical

Rad(in,(Ip)) = (Z23Ts6, T12T56T34, T16T23%T45)-

This shows that the toric ideal I has two distinct initial ideals, namely in, _(I5)
and in, (Ig) which have the same radical and therefore define the same trian-
gulation AL, = AL,  of B. We conclude that the secondary polytope XL (B) is
not equal to the state polytope State(Ip); see also Exercise (3) below.

We next show the same result for the second hypersimplex, that is, ¥(Ag) #
St(IAG)- Let X := {Ilz, T16,T23,T26, T34, T35, .’L‘45,I56}, the set of variables of IB.
Let v € R(3) be the weight vector that assigns the weight 0 to the eight variables in
X and generic positive weights to the other seven variables. This choice of weights
has the elimination property:

in,(Ia,) N k[X] = Ip. (9.8)
Let w be the weight vector which assigns the weight 1 to the variables 23

and 5 and weight 0 to the other 13 variables. Let us now consider the weight
vector v + € - w where € is a very small positive real number. This weight vector
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is sufficiently generic to define a regular triangulation A, of Ag. Indeed, inside
the subpolytope conv(B) this subdivision agrees with the triangulation A, above,
and outside of conv(B) each cell is a simplex, by the genericity of the non-zero
coordinates of v.

To show that X(Ag) # St(I4,), it suffices to show that the ideal in, e, (la,)
is not a monomial ideal. If it were a monomial ideal, then also its elimination ideal

inv+€w(IA6) n k[X] = inv+5w(IA6 n k[X])

= in, (in,(Ias) Nk[X]) = in, (Ig) (99)
would be a monomial ideal. This contradicts our result in (9.7), and it hence
completes the proof for Kg. In (9.9) the first equation follows from the elimination
property of v+ ew, the second equation follows from Proposition 1.13, and the third
equation from (9.8).

Finally, to establish the assertion for d > 6, we use the exact same technique,
which is to write I 4, as an elimination ideal of I4,. This completes the proof of
Theorem 9.7. m

We next describe the Graver basis of the ideals 14, for d < 8. Recall that
the binomials in I 4, are identified with even walks in the complete graph K4. The
even walks of minimal support are the circuits.

Lemma 9.8. The circuits of A4 are the following two types of even walks in K :
even cycles and pairs of disjoint odd cycles joined by a path.

Proof: This can be derived from the characterization of column bases of A4 in
Lemma 9.5. See Exercise (4) below. m

Theorem 9.9. The circuits form a universal Grobner basis of I 4, for d <7. The
same statement is not true for d > 8.

Proof: The proof is by explicit computation using Algorithm 7.2. The elements of
the Graver basis are (up to a relabeling using the natural S-action) presented in
the table below. The numbers give the cardinality of the Si-orbit of each binomial.

Types of binomials d=5 d=6 d=7 d=8
(a) T12X34 — T13T24 15 45 105 210
(b) T12X34T35 — T23T45T13 15 90 315 840
(C) I12.’L':234.’L'56 — T13T23T45T46 0 90 630 2520
(d) T12X34T56 — T23T45T16 0 60 420 1680
(e) T12X34T56L37 — T23T45T67T13 0 0 1260 10080
(f) .’1112.’1,'%4.’1157.’1156 - $23IZ5.’IJ67$13 0 0 630 2520
(8) Z12%34T56T78 — T23Ty5Te718 0 0 0 2520
(h) $12$§4Ig6$78 - x23I4215$67$68$13 0 0 0 5040
(i) $12I§4I56$78 — T93T45T67T48L13 - 0 0 0 10080
(3)  T12T34T56T57T38 — T23Ta5T67T58T13 0 0 0 2520
(k) T12T34T56T47T38 — T23Ta5T46T78T13 0 0 0 5040

TOTAL 30 285 3360 45570
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The types (a), (d),(g) are even cycles and hence they are circuits. The types
(b),(c),(e),(f), (h), (i) are pairs of odd cycles joined by a path and hence they are
circuits. Using Proposition 4.11, this proves that for d < 7 the circuits, the universal
Grobner basis and the Graver basis coincide. For d = 8 there are two additional
types (j) and (k) of binomials appearing in the Graver basis. To show that they lie
in the universal Grobner basis, we use Theorem 7.8. Indeed, it is easy to show that
the binomials (j) and (k) correspond to edges in their respective fibers. If not, then
there would exist another lattice point in the same fiber whose support is contained
in the 10 appearing variables. But this is impossible as can be seen by inspecting
the corresponding graphs with 10 edges and 8 nodes. m

The following diagram shows the two graphs, which correspond to the non-
circuits (j) and (k) in the universal Grébner basis of I 4,.

1 4 6
. @. o
~ ~
~ ~ ]
~ ~
~ ~ |
S 3 N I
~ ~
. ~ ~, |
() e P |
- - |
- -
- -
P - I
- -
- -
- -
2 8 7
8 7
1 5
N
N -
- -
- -
- -
~ -
- -
~ -
(k) > g
- ~
- ~
~
//’ 3 4 ~ .
- . ~
- ~
- ~
_
2 6

Figure 9-3. The graphs (j) and (k).

The toric ideals I 4, have the following interpretations in the domains of ap-
plication we discussed in Chapter 5. The sampling problem for A, is the task of
generating a random multigraph on d nodes with fixed degree at each node. Here
Algorithm 4.2 specializes to the following procedure: start with any legal multi-
graph and then perform a random walk with respect to a fixed finite set F of local
moves which alters multigraphs while maintaining the vertex degrees. The possible
moves are precisely the even walks, that is, binomials in the ideal I4,. It follows
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from Theorem 5.3 and Theorem 9.1 that the set of quadratic binomials is sufficient
to guarantee connectedness for all fibers.

The task of connecting all fibers becomes much harder if certain edges of K
are prohibited during the random walk. The algebraic counterpart is to find a
generating set for the ideal Iz, where B is any subset of .A;. This problem is solved
simultaneously for all subsets of A4 by finding a universal Grébner basis for I 4,; see
Exercise (2) in Chapter 1. The table in the proof of Theorem 9.9 gives a complete
answer for all graphs with d < 8 nodes. We remark that the subproblem for the
class of bipartite graphs is much easier: finding the relevant universal Grébner basis
is the content of Exercise (1) in Chapter 5.

The set of all multigraphs on d nodes with fixed vertex degrees is the set of
feasible solutions of a well-known problem of combinatorial optimization, namely,
the perfect f-matching problem. Let f be a positive integer valued function on the
d vertices of Ky such that f(i) specifies the degree of the vertex i. An assignment
of a non-negative integer u;; to each edge (i,7) is called a perfect f-matching if,
for every vertex i, we have 3., 1\ ;3 uij = f(i). Suppose in addition to the
degree of each vertex we are also given a cost w;; for each edge (i,5), and the
objective is to find a perfect f-matching on d nodes with minimum total cost. This
is the minimum weight perfect f-matching problem:

Minimize Zwij -u;; subject to
4J
> wy; = f(i), i=1,...,d, u; €N.
J€{1,-.m\{i}

(9.10)

The coefficient matrix of the above integer program is our matrix .4;. We can solve
the problem (9.10) using Algorithm 5.6, that is, by computing the reduced Grobner
basis for the toric ideal 14, with respect to a term order refining the cost vector
W = (wij).

Exercises:

(1) For d = 5, verify Theorem 9.1 by applying the Buchberger’s criterion to the
ten binomials in C. Compute the thrackle triangulation A explicitly in this
case.

(2) Compute the number of i-dimensional faces of the second hypersimplex A(2, d).

(3) Let B be the configuration in (9.5). Prove that %(B) is a pentagon and that
State(Ip) is a hexagon.

(4) Prove Lemma 9.8.

(5) Let F(d) denote the largest degree of a binomial in the universal Grébner basis

of I4,. Show that d—2 < F(d) < (J).

(6) List all 3-regular labeled multigraphs on six nodes. Use Algorithm 5.7.

(7) Does there exist a quadratic reverse lexicographic Grébner basis for the ideal

Ia,?
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(8) The r-th hypersimplez in R¢ is the convex hull A(r, d) of the configuration
A = {e,+ey+-+e, : 1< <ip<--<i<d}.
What is the normalized volume of A(r,d) ?

Notes:
The material in this chapter is drawn from (De Loera, Sturmfels, Thomas 1993).

The sampling problem of generating multigraphs with a given degree sequence is
analyzed in detail in (Sinclair 1993). For more information on the minimum weight
perfect f-matching problem — and graph theory in general — consult (Lovasz &
Plummer 1986).

CHAPTER 10

A-graded Algebras

What are the graded algebras that have the simplest possible Hilbert function ?
This question was raised and partially answered by Arnold (1989) and Korkina, Post
& Roelofs (1995). We consider the following multigraded variant of their underlying
definition. Let A = {aj,ay,...,a,} be a subset of N¢\ {0}, d = dim(A), and let
NA denote the sub-semigroup of N¢ spanned by A. An A-graded algebra is a
N¢-graded k-algebra R = P, Ry with homogeneous generators X, X,,..., X,, in
degrees a;,as,...,a, such that

. 1 fbeNA d
= for all b . 10.1
dlmk(Rb) {0 otherwise ora €N (10.1)

Every A-graded algebra R has a natural presentation as a quotient of a polynomial
ring:
0 —- I — k[x| =k[z,29,...,2,)] — R — 0.

The presentation ideal I = ker(z; — X;) is called A-graded as well. It is easy to see
that an A-graded ideal I is generated by polynomials with at most two terms, that
is, I is a binomial ideal. The paradigm of an A-graded algebra is the semigroup
algebra

KINA] = E[t2,t22, .. t*] = k[x]/La,

where I 4 is the toric ideal as before.

Two A-graded algebras R = k{x]/I and R’ = k[x]/I’ are considered isomorphic
if there exists a graded algebra isomorphism of degree 0. This holds if and only if,
for the corresponding ideals I and I’ in k[x], there exists A = (A1,...,\,) in (k*)"
such that

I' = X1 := {f(Mz1,...,20,) : fET} (10.2)
Grobner basis theory suggests to “pass to the toric limit” in (10.2) as follows:

Remark 10.1. If[ is an A-graded ideal in k[x] and w € Z", then the initial ideal
in, (I} is A-graded as well.

We call an A-graded algebra R = k[x]/I coherent if there exists w € Z™ such
that I is isomorphic to in,(14). A basic question is whether all A-graded algebras
are coherent. :

Theorem 10.2. (Arnold 1989; Korkina, Post & Roelofs 1995)
Ifd =1 and n = 3 then every A-graded algebra is coherent.

Theorem 10.2 can be reformulated as follows.

85
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Corollary 10.3. Ifd = 1 and n = 3 then the isomorphism classes of A-graded
algebras are in bijection with the faces of the state polytope of the toric ideal I 4.

We will present the proof of Theorem 10.2 in the end of this chapter. First,
however, we show that the analogous result does not hold for d = 1 and n > 4. We
also present two necessary geometric conditions for coherence, and we cgnstruct
examples of non-coherent algebras which violate these conditions. The main resu'lt
in this chapter is Theorem 10.10 which expresses the radicals of .A-graded ideals in
terms of polyhedral subdivisions.

An A-graded algebra R = k[x]/I is called monomial (or a mono-AGA) if its
ideal I is generated by monomials. The non-zero monomials of a mono-AGA R are
called standard. They constitute a k-vector space basis for R.

Theorem 10.4. Let d=1,n=4 and A=1{1,3,4,7}, and let k be an infinite field.
(a) There exists a monomial A-graded algebra which is not coherent.
(b) There exists an infinite family of pairwise non-isomorphic A-graded algebras.

Proof: 1In the polynomial ring k[z1, 2, Z3, T4] We consider the monorm%l ideal
2,2 4 3 .4
I = <$?’ T1Z2, $%, T2X3, T1T4, T1T3, T1T3; T2TLy, $4>. (103)

The quotient algebra R = k[z1,z2,3,z4]/] is A-graded. To Yerify this, one
must compute the Hilbert series of I with respect to the gradlng deg.(zl) =
1, deg(zz) = 3, deg(z3) = 4, deg(xz4) = 7. This can be done easily using the
command hilb-numer in the computer algebra system MACAULAY due to Bayer

& Stillman (1987b).
We list the standard monomials of low degree:

1 2 3 4 5 6 7 8 9 10 11 1% 133 13
I I 2 I3 Ir1x3 121’213 T4 IL'% .’121:11% IoX4 T3T4 I3 Ti1x3 Ty

15 16 17 18 19 20 21 22 23 24 25 26 27 28

2.2 4 6 3 3.2 .5 7
izs x3 wox? xax? 23z 25 2} 23xd zima 2§ waxi a3TE 7374 T3

The proof is by contradiction. Suppose R is coherent. Then there exists a non-
negative vector w = (w1, w2, ws,ws) such that I = inw(IA)..
(i) In degree 6 we have z3 € I but z2z5 ¢ I. This imphgs 2wy > 2w + ws.
(ii) In degree 17 we have z,x4 € I but zozi & I. T}.lis in}plms w1 +4ws > wo+2uwy.
(iii) In degree 28 we have z} € I but z§ & I. This implies 4wy > Tws.
Combining these three inequalities we get

(2w2) + 2+ (w1 + 4dws) + (dws) > (w1 +ws) + 2 (w2 +2wy) + (Tws). (10.4)

The left hand side and the right hand side are both equal to 2w, + 2w? + 8wz +4dwy.
This is a contradiction, and we conclude that R is not coherent. This proves part

(a).

To prove part (b) of Theorem 10.4 we consider the following family of ideals:

4 2 .7 4
<.’I%£L‘3 — clz%, T1T3 — C2Z2Ty, T3 — C3T4, (10 5)

3 .2 3
w:lia 12, T1ZL4, Lo, Lol4, T2T3, Z‘21"4>1
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where c1, ¢y, c3 are indeterminate parameters over k. For every value of ¢, ¢, c3
in k this is an A-graded ideal in k[zy, x5, x3,24). In other words, the given three-
dimensional family of ideals is flat over k3. To see this, we note that the given
generators in (10.5) are a Grébner basis with respect to the lexicographic term
order induced from x, > z, > x5 > z4. Note also that the three first generators in
(10.5) correspond to the three cases (i),(ii) and (iii) above. The ideal I in (10.3) is
obtained from (10.5) by a deformation of the form ¢;,c3 — oo, cg — 0.

Two ideals in this family define isomorphic .A-graded algebras if and only if
they can be mapped into each other by an element in the torus (k*)* (acting
naturally on the four variables). This is the case if and only if the invariant cies/ch
has constant value. We conclude that the ideals in (10.5) define a one-dimensional
family of non-isomorphic A-graded algebras. In particular, this family is infinite,
since k is infinite. m

The non-coherent mono-AGA in Theorem 10.4 was found through a systematic
search of A-graded monomial algebras. Our point of departure was the following
lemma restricting the degrees of minimal generators of an A-graded ideal. Recall
from Chapter 4 that a binomial x" — xV in the toric ideal I 4 is called primitive if
there are no proper monomial factors x* of x" and x¥' of x" such that x% —x"’ €
I 4. The set of all primitive binomials is the Graver basis Gr A- We say that a vector

b € NAis a Graver degree if there exists a binomial x* —xV in Gr 4 having degree
b = 7(u) = 7(v).

Lemma 10.5. The degree of every minimal generator of an A-graded ideal is a
Graver degree.

Proof: Let I be an A-graded ideal, let f be a homogeneous minimal generator
of I, and let b := deg(f) € NA. We must find a primitive binomial x" — xV
of degree b in I4. By the defining property (10.1), there exists a monomial x¥
of degree b which is non-zero modulo I. We may assume that f has a minimal
number of monomials distinet from x¥. Clearly, this number is at least one, that
is, f contains a monomial x" distinct from xV.

We claim that x" —xV is a primitive binomial in I 4. Suppose not, and let x%
be a proper factor of x" and x"' a proper factor of x¥ such that x%" and x¥' lie in
the same A-graded component of R = k[x|/I. Since x¥' is standard, there exists
c1 € k, such that x¥ — ax¥ €L By the same reasoning, there exists ¢, € k such
that x4~ ¥ — cx¥V' ¢ I. This implies x" — cjcox¥ € I. We may now replace
the occurrence of x" in f by cicoxY. This is a contradiction to our minimality
assumption, and we are done. m

Corollary 10.6. Let d =l and A = {a; < ap < -+ < an} C N. Then every
minimal generator of an A-graded ideal has degree at most a,_; - a,,.

Proof: This follows directly from Lemma 10.5 and Corollary 6.2. m

If a1 and a,, are relatively prime, then the bound a,_; - a, is best possible.
To see this note that the binomial zp"' — z;", appears in the reduced Grébner
basis of I 4 with respect to the lexicographic term order induced by, > - = z,.
The initial ideal of I 4 for this term order is an A-graded ideal which has a minimal
generator of degree a,_1 - ay,.
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The following table comprises a complete catalogue of all non-coherent mono-
AGA’s for A = {aj,a0,a3,a4} with 1 < a; < az < a3z < aq <9. We write the set
A as a bracket [ajazazas]. The three integers listed immediately after each bracket
are:

(i) the number of primitive binomials in 4,
(ii) the total number of all .A-graded monomial ideals,
(iii) the number of non-coherent A-graded monomial ideals.
If a quadruple does not appear in this list, then all mono-AGA’s are coherent for
that A.

[1347] 27 53 2 [1349] 23 38 2 [1456] 26 51 2
[1459] 37 90 10 [1567] 35 79 6 (1568] 27 58 4
[1578] 33 79 2 [1678] 41 112 18 [1689] 32 82 6
[1780] 52 174 42 [2357) 30 75 6 (2358] 31 83 10
[2359] 24 58 8 [2379] 31 82 6 [2567] 30 67 2
[2579] 45 168 42 [2678] 27 53 2 [2680] 23 38 2
[2789] 41 113 10 [3459] 30 63 2 [3479] 31 "64 2
(3578] 35 88 2 [3580] 33 81 8 (4560] 32 84 6
[4579] 40 120 6 [5678] 35 90 2 [5789] 40 113 2
[6789] 37 94 6

Table 10-1. Non-coherent one-dimensional mono-AGA’s
with n = 4 and degrees < 9.

These computational results raise the question whether there exist structural
features of coherent AGA’s which are not shared by all AGA’s. In Propositions
10.8 and 10.9 we shall identify two such features: standard monomials and degrees
of minimal generators are subject to certain geometric restrictions in the coherent
case.

Observation 10.7. Every standard monomial x* of a coherent mono-AGA cor-
responds to a vertex u of its fiber conv(m~!(w(u))).

Proof: Let x* be standard in k[x|/in,,(I4). Then u is the unique point in 7~ (mw(u))
at which the linear functional w attains its minimum. Hence u is a vertex of its
fiber. m

The theory of A-graded algebras provides an abstract setting for the study
of integer programming problems with respect to a fixed matrix. In this abstract
setting we select one lattice point from each fiber. This lattice point is considered
“optimal”. We say that such a selection rule is an abstract integer program if it
satisfies the following natural axiom: If u is the optimal point in its fiber and
v < u componentwise, then v is the optimal point in its fiber. An abstract integer
program is coherent if it is induced by a linear functional w, that is, if it truly
corresponds to a family of integer programs as in Chapter 5.

This notion of an abstract integer program is identical to the notion of a
monomial A-graded algebra, as defined above. Indeed, a mono-AGA can be thought
of as a rule which selects one lattice point (called standard monomial) from each
fiber, subject to the one axiom that the set of standard monomials is closed under
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divisibility. Clearly, an abstract integer program is coherent if and only if the
corresponding mono-AGA is coherent.

Does there exist a (non-coherent) mono-AGA which has a standard monomial
that is not a vertex of its own fiber ? The answer was found to be “no” for all 218
non-coherent mono-AGA’s listed in Table 10-1. We do not know the answer for

d=1and n =4 in general. For d = 1 and n = 5 we can show that the answer is
13 " .
yes”.

Proposition 10.8. Let d = 1,n =5 and A = {3,4,5,13,14}. There exists a
monomial A-graded algebra which has a standard monomial x* such that u is not
a vertex of its fiber conv(r~1(n(u))).

Proof. In the polynomial ring k(z;, Z9, 3, Z4, 5] we consider the ideal
_ 3,2 .2 2
I - <:1"17 Ty, Ty, T1T5, T2T5, T3T5, Ty >

This ideal is A-graded. Indeed, an easy MAPLE or MACAULAY computation
shows that R = k[x]/I has the correct Hilbert series, namely,

1
I—_t—t—t2 = Yy tm

meNA

The monomial z%r,z3 does not lie in I: it is a standard monomial of degree
15. The corresponding fiber consists of precisely four monomials: 771(15) =
{3, 2123, 22xox3, 3 }. The convex hull of 71(15) is the triangle

conv {(5,0,0,0,0), (1,3,0,0,0), (0,0, 3,0,0)}.

The point (2,1,1,0,0) lies in the relative interior of this triangle. m

We recall that an element b of N A is a Grobner degree if a binomial of degree
b appears in some reduced Grébner basis of I4. These degrees were characterized
geometrically in terms of edges of fibers in Corollary 7.12. Clearly, the degree of
every minimal generator of a coherent .A-graded ideal is a Grobner degree. The
following example shows that this does not hold in general. Note that the number
n = 145 is certainly not best possible.

Proposition 10.9. For d = 1 and n = 145 there exists an A-graded ideal I which
has a minimal generator whose degree is not a Grébner degree.

Proof: Let A" = {15,20,23,24,107,109}. Let S’ be a polynomial ring in six
variables 15, T20, T2s, 24, Z107, L109- We grade S’ by setting deg(z;) = i. Let M’
be the ideal generated by the six variables, and let M.,y be the ideal generated
by all monomials of degree > 139 in §’. Let I be the binomial ideal generated by

4 .2 3 3 2 3 3 4
Ti5, T30T23, T15T23, T15T24, T24T33, T15T33, T20Ta4, T15T30, x%5x20x%3, ’

5 2 2
T34, T15T93, T15T109, T24T109, Ti5T107, and TisTagTs, — Tog.

The binomial z%,z3,z%, — z5; has degree 138. This degree is Graver but not
Grébner, by Example 7.11 and Proposition 4.13 (c),(d). The ideal I is constructed
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to have the following property: the Artinian ring S’/(I + MY ,4) is A-graded up to
degree 138. In other words, its Hilbert series equals > { ¢° :be NAand b< 138}.
Let A" = {139,140,...,277} and introduce the corresponding polynomial
ring S” = klz139,Z140,- - ., To77]. We write M” for the ideal generated by all 139
variables in S”, and we let J” be any .A"-graded ideal in S”.
Finally, we set A := A’ U A", and we introduce the corresponding 145-variate
polynomial ring S := S’ ®; S”. In this ring we form the ideal

J o= (MM + (T4 M) + (J7).

By construction, the ideal J is A-graded in S. It has the primitive binomial
T3.1373, — 7§, among its minimal generators. However, its degree 138 is not
a Grobner degree for 4. This completes the proof. m

We now present a polyhedral construction for the radical of an arbitrary A4-

graded ideal. If o is any subset of A, then we identify its toric ideal [, with the-

prime ideal I, + (z; : a; € o) in k[x]. A polyhedral subdivision of A is a collection
A of subsets of A such that {pos(c) : ¢ € A} is a polyhedral fan with support
equal to the cone pos(.A). In Chapter 8 we considered the special case where each
o € A has cardinality d = dim(.A), in which case A is a triangulation of 4. A basic
construction due to Stanley (1987) associates to any integral polyhedral complex a
radical binomial ideal. If A is a polyhedral subdivision of A, then its Stanley ideal
is In = Nyca Io- We remark that R = k[x]/Ia is also graded by the semigroup
NA, but it is generally not A4-graded. The reason is that for some b € N.A, the
graded component Ry, may be zero. Finally, we say that two arbitrary ideals I and
I' in k[x] are torus isomorphic if there exists A € (k*)™ such that (10.2) holds.

Theorem 10.10. IfI is any A-graded ideal, then there exists a polyhedral subdi-
vision A of A such that Rad(I) = () ., Jo where each component J, is a prime
ideal torus isomorphic to I,.

Before presenting the proof of this theorem let us make two remarks. First,
as a special case of Theorem 10.10, we can recover Theorem 8.3 and Corollary 8.4.
Namely, this is the special case where the given ideal I is a coherent mono-AGA.
Our second remark is to explain the mysterious appearance of the ideals J,. What
is the point of replacing I, by a torus isomorphic ideal J,, for each maximal cell &
of A 7 The answer is that the Stanley ideal In = [, Io itself is generally not
torus isomorphic to the radical of I.

Example 10.11. An A-graded ideal I with Rad(I) not torus isomorphic to I.
Let d = 3,n = 6 and A = {(4,0,0), (0,4,0),(0,0,4),(2,1,1),(1,2,1),(1,1,2)} as
in Example 8.2. For every choice of constants ¢y, c2,c3 € k*, the following ideal is
A-graded:

2 2 2
Icl,C2.03 = (zlezBa T1T5T6, T2T4T6, T3T4T5, T1T2Tg, T1T3T5, T2T3Ty,

4 4 4 4 4 4
T1T5 — C1ToX,, Tolg — CoT3Ts, L3Ly — C3T1Tg )-
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/\

5

2 3

Figure 10-1. The subdivision underlying Exam-
ple 10.11.

The underlying subdivision A of A consists of three quadrangular cones and
one triangular cone. This can be seen from the prime decomposition

Rad(IChCz,Ca) = <11’IZ’13> N <-Tl"1:451 - clz?ziaz3a16>

4 4 4 4
N (Ta2Tg — CoT3Ty, T1,24) N (T3T; — C3T1Te, Ta, Ts).

From this decomposition we see that Rad(l, ¢, c,) is torus isomorphic to the Stan-
ley ideal Ia if and only if the invariant ¢icycs attains the value 1. The reader will
not fail to note a certain analogy between this example and the three-dimensional
family in (10.5).

The deeper reason for the phenomenon in Example 10.11 is the existence of
moduli (infinite families) of isomorphism classes of A-graded algebras. These mod-
uli stem from “extraneous components” in the parameter space of AGA’s. The
structure of this parameter space will be studied in a future publication.

For the proof of Theorem 10.10 we need the following lemma.

Lemma 10.12. Let I C k[x] be an A-graded ideal which contains no monomials.
Then I is torus isomorphic to the toric ideal I 4.

Proof: For every vector u € ker(m) there exists a unique non-zero constant -, € k*
such that x*" — Yu-Xx" lies in the ideal I. The fact that I contains no monomials
implies that y_y = ;' and Yu4v = Yu - Yv for all u,v € ker(r). In other
words, the map ker(m) — k*, u — 4, is a homomorphism of abelian groups.
The abelian group ker(w) is a direct summand of Z". Therefore there exists a
homomorphism v : Z™ — k* such that y(u) =+, for all u € ker(n). Now define
A= (A1;..5,A) € (k*)™ by A; := v(e;), the image of the -th unit vector. Then
M-I = I, as desired. m

Proof of Theorem 10.10:  The polynomial ring S = k[z1,...,x,] is graded by
the semigroup NA via deg(zr;) = a;. For any b € N.A we define the subalgebra
Sb) = €D;,_o Smb. This algebra is generated by a finite set of monomials. Inside
it we consider the binomial ideal [y := 1IN S(b)- The corresponding subalgebra
Ry == S)/I(b) of our given A-graded algebra R = S/I is a finitely generated k-
algebra of Krull dimension 1. It is not possible that all elements in such an algebra



92 B. STURMFELS

are nilpotent. We conclude that there exists a monomial x" in Sy which is not
nilpotent modulo /().

Let x* and xV be two such non-nilpotent monomials in R(,). We claim that
their product x"x" € R(y,) is not nilpotent either. To see this, we choose integers
m, and ms such that ™" and ™2V have the same degree. There exists a non-zero
constant ¢ € k* such that x™" = ¢-x™2V in R(). This implies (x™Ux™2¥)™ =
cM(xV)?mme = ¢~™(x%)?™™ £ () in R for all m > 0, and consequently (x"x¥)™ #
0 in R, for all m > 0. We have shown that the set of non-nilpotent monomials in
R() is multiplicatively closed.

This multiplicativity property allows us to synthesize the polyhedral subdivi-
sion A. The support of a monomial is defined as supp(x“) := {a; € A : u; # 0}.
Clearly, we have supp(x"x") = supp(x“) U supp(x”). This implies that the set of
supports of non-nilpotent monomials in Ry has a unique maximal element. This
subset of 4 is denoted cell(b). We define A to be the collection of all subsets
cell(b) as b ranges over NA. ,

We shall prove that A is indeed a polyhedral subdivision of .A. Let 7 be
any face of o = cell(b) (possibly 7 = o), and let b’ be any lattice point in the-
relative interior of pos(7). It suffices to show that cell(b’}) = 7. By the property
of being a face, 7 is the unique maximal subset of ¢ which is the support of any
monomial x* in Sy Such a monomial xY is not nilpotent modulo I since there
exists a monomial x" in S,y whose support equals ¢ O 7 = supp(x“’). Suppose

there exists a non-nilpotent monomial x*” in Ry whose support p := supp(x*")

properly contains 7. Then p\o = p\7 # . Choose integers m;, mo and a non-zero/

constant ¢ € k* such that x™% —c.x™2¥" ¢ I. Let the degree of this binomial be
mg-b’. Choose an integer m, > 0 such that m4-b—b’ lies in the relative interior
of pos{(c), and let x* be a monomial having degree my - b — b’ and support 0. We
conclude that xmsWmiu’ _ o ymswimeu” Jieg in the degree mym, - b component
of the ideal I. The first monomial x™*¥+m1%" is not nilpotent modulo I since it
has support ¢. The second monomial xmawtm2u” ig nilpotent modulo I since its
support o U p strictly contains o. This is a contradiction, and we conclude that
cell(b’} = 7. This completes the proof that A is a polyhedral subdivision of A.
We next compute the radical of I. Let o be a maximal cell in A. By construc-
tion, the elimination ideal I Nk[x; : i € o] is a o-graded ideal which contains no
monomials. Lemma 10.12 implies that its natural embedding into k[x],

Jo == (INklx;:i€0]) + (z; : j o),

is torus isomorphic to the toric prime I,. We claim that Rad(I) = Noea Jo-

We first show the inclusion I C (), Jo- (This automatically implies Rad(I)
C NyeaJo because the right hand side is radical.) If x" is any monomial not
contained in (\ ca{z; : j & 0), then supp(x") C o for some o € A, and hence
x" is not nilpotent modulo I. This shows that all monomials which are nilpotent
modulo [ lie in () .5 J>. Consider any binomial f := x" —c-x" in I with both
terms not nilpotent modulo I. Let b = deg(x") = deg(x"). Fix 0 € A. If cell(b)
is a face of o, then f € Iip)NEkl[x;:i € o] C J,. If cell(b) is not a face of o, then
the supports of x" and xV are not subsets of 0. Therefore both x" and xV lie in
(z; :j ¢ o), and hence f € J,.

For the reverse inclusion (),ca J» € Rad(I) we use the Nullstellensatz: it
suffices to prove that the variety V(I)} is contained in U,V(J,). Let u € k™ be any
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zero of I, where k is the algebraic closure of k. Abbreviate p := supp(u). Consider
the monomial [T, ,L: and let b be its degree. Let ¢ be any maximal cell of A which
has cell(b) as a face. By construction, no power of ILic , Ti vanishes at u. Hence
the monomial [],. , Li is not nilpotent modulo I, and its support p is a subset of
cell(b) C 0. In other words, u is a zero of the ideal (z;: j ¢ o). Therefore u is a
zero of J,. This completes the proof. m

The natural question arises whether the converse to Theorem 10.10 holds, i.e.,
whether every polyhedral subdivision of a set .4 appears as the reduced scheme of
some .4-graded algebra. This question was answered to the negative in March 1995
by Irena Peeva.

Theorem 10.13. (Peeva, personal communication)

Let d = 4 and n = 7. There exists a (non-regular) triangulation A of the set
A = {(1,0,0,1), (0,1,0,1),(0,0,1,1), (2,0,0,1), (0,2,0, 1), (0,0,2,1), (1,1,1,1)}
such that the Stanley ideal I is not the radical of any A-graded ideal.

Proof: The polytope Q = conv(.A) is a capped triangular prism. Its vertex set
equals A. In (Lee 1991) we find the following non-regular triangulation:

A = {1237, 1257, 1347, 1457, 2367, 2567, 3467).

The Stanley ideal of A equals In = (z,x¢, zoz4, T3z5, Z4Z5%6). Suppose there
exists an A-graded ideal I such that Rad(I) = In. We may assume that I is
a monomial ideal; if not, replace I by any of its initial ideals. This is legal be-
cause Rad(in<(I)) = Rad (in<(Rad(I))) = Rad(in (I5)) = Ia. Consider the
following three relations:

2 2 2 2 2 2
T1Te — T3T4, THT4 — T1Ts, T3Ts —T3Tg € 4.

The non-underlined terms do not lie in o and hence they do not lie in . Since I
is a monomial ideal, we conclude that the three underlined terms lie in I. The fiber
over b = (2,2,2,5) consists of precisely three monomials: oizex?, x3x,473, and
zjzsri. All three of them lie in . This is a contradiction to dimg(k[x]/I)p = 1.
=

However, the converse to Theorem 10.10 does hold in one important special
case, namely, when A is unimodular and A is a triangulation.

Lemma 10.14. If A is unimodular, then the map A +— I5 defines a bijection
between the set of triangulations of A and the set of A-graded monomial ideals.

Moreover, the triangulation A is regular if and only if the corresponding A-graded
ideal I is coherent.

Proof: Let A be any triangulation of A and In = Noealz; : j & o) its Stanley
ideal in k[x]. We will show that I is .A-graded. Let b € N.A. There exists a
unique cone o in A which contains b. We can write b = Ziea A;a;, where \; are
positive rationals. Since .4 is unimodular, the coefficients \; are in fact integers.
We conclude that ], z}* is the unique monomial of degree b which does not lie
in Ia. This proves that I is A-graded.

We have shown that A - I is an injective map from the set of triangulations
of A into the set of .4-graded monomial ideals. To see that it is surjective, let T
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be any .A-graded monomial ideal. By Theorem 10.10, there exists a triangulation
A of A such that Rad(I) = In. By the previous paragraph, the ideal I is A-
graded. Hence I C I is an inclusion of two ideals with the same Hilbert function.
This implies I = Ia, as desired. The second assertion in Lemma 10.14 follows
immediately from Theorem 8.3. m

An application of Lemma 10.14 is the study of triangulations of the product
of two simplices. Here A is the configuration in Example 5.1 and the toric ideal
I4 is generated by the 2 x 2-minors of an r x s-matrix of indeterminates. This
configuration A is known to be unimodular, by Exercise 9 in Chapter 8.

Theorem 10.15. The product of two simp]icés A,_1 X A;_) possesses a non-
regular triangulation if and only if (r — 2)(s —2) > 4.

Proof: If s = 2 then all triangulations are regular by (Gel'fand, Kapranov &
Zelevinsky 1994; Chapter 7, Proposition 3.10 (b)). We may therefore assume r >
s > 3. We shall make use of the fact that if there is a non-regular triangulation
for (r,s) then there are non-regular triangulations for (r + 1,s) and for (r,s +

1). (Reason: every triangulation of one face of a polytope can be extended to a-

triangulation of the whole polytope.)

For the only-if direction, let (r —2)(s — 2) < 4. This is equivalent to (r,s) €
{(3,3),(4,3),(5,3)}. It suffices to show that all triangulations are reégular when
(r,s) = (5,3). Using a modification of the MAPLE program which generated Table
10-1, we computed all mono-AGA'’s for this case (See Exercise (4)). Modulo the
natural S5 x Ss-symmetry (by permuting rows and columns of the 5 x 3-matrix
(z:;)), we found precisely 530 A-graded monomial ideals. Lemma 10.14 implies
that there are 530 symmetry classes of triangulations of A4 x Ag. All of them were
shown to be regular by De Loera (1995a).

For the proof of the if-direction it suffices to consider the cases (r,s) = (4,4)
and (r,s) = (6,3). The first case is taken care of by De Loera’s non-regular tri-
angulation of the product of two tetrahedra in Example 8.13. What remains is to
construct a non-regular triangulation of As x Az. The A-grading of the toric ideal
Iqg = (T —wazy; 0 1<i<j<6,1<k<i< 3) is given by deg(z;;) = yiz;-
We fix the weight matrix

5 -38 -13

7 -6 19

B 13 -30 -2
vo= 17 4 2
11 -5 23

19 3 1

The initial ideal of I4 with respect to these weights equals in,,(I4) =
( T11T32 — T31%12, L6113 — T11T63, T12T23 — T13T22,
T21T53 — T51723, T41T22 — T21T42, L3143 — T41T33,
T33T52 — T32X53, T42T63 — T43T62, TL51T62 — T61T52,
T11Z22, T11Z23; T11T33, T11T42, T11T43, T11252; T11T53, T11T62, L12T33,
T12T53; T13T42, T13T62, T22T33, T22X53, T23T42, T23T62; L31L22, L31L23,
T31X42, T31T52, T31T53, T31T62; T33L42, T33T62, L41T23, T41T53, T42T53, T51L22,

L51%42, T53T62, Te1T22, T61T23, T61T33, T61T42; T61L43, L61T53, L13L41T52 >
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Clearly, this (non-monomial) ideal is A-graded. We now define J to be the ideal
generated by the nine underlined monomials together with the 37 other monomials
(36 quadrics and one cubic). The passage from in,(I4) to J does not alter the
Hilbert function. (This needs to be checked by computer.) Therefore J is an
A-graded monomial ideal. By direct inspection we see that J is not coherent: the
above nine binomials have the property that the product of the underlined terms
is equal to the product of the non-underlined trailing terms. Thus there is no term
order which selects the underlined terms as initial terms. By Lemma 10.14, the
ideal J defines a non-regular triangulation of A5 x A,. m

We remark that the previous example was derived from the Pappus configura-
tion:

==

Figure 10-2. The Pappus configuration.

We shall explain this derivation. To this end let us assign homogeneous coor-
dinates (1:0:0) to the point 7, (0:1:0) to the point 8, (0: 0: 1) to the point 9,
and generic coordinates (z;; : Z;2 : ;3) to the points ¢ = 1,2,3,4,5,6. The nine
collinearities in the Pappus configuration translate precisely into the vanishing of
the nine binomials in in,, (I 4). For instance, the requirement that the points 1, 3
and 9 are collinear translates into the identity 1235 — z3,2,2 = 0. Therefore the
combinatorial structure of the nine binomials in in,,(I4) mirrors the combinatorial
structure of the Pappus configuration.

Example 8.13 can be derived in a similar manner from the Vamos matroid.
For details on configurations and matroids see e.g. (Bjorner et al. 1993).

‘We shall now present the proof of the Arnold-Korkina-Post-Roelofs-Theorem.

Proof of Theorem 10.2: Let A = {(11,(12,(13} C N and I any A-graded ideal
in k[z1,z2,23]. By the degree of a monomial z}'z5?7% we shall always mean the
integer t1a; + 205 + izas.

Case 1: I is generated by monomials. We may assume that z; is a non-zerodivisor

modulo I. We will show that I = in,,(I4) for the weight vector w € N* which is
defined as follows:

w1 =0, we=min{r:zz€(:27)}, ws:=min{s:z5e(l:z°)}

Let D be the largest degree (with respect to the .4-grading) of a minimal generator

of I. Our weights have the property that a monomial 'z (resp. z°'z5*) of
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degree > D lies in I if and only if a2 > w3 (resp. B3 > w). Consider any vector
u € ker(A) such that x* ¢ I (and hence xtt eI ). It suffices to prove that
w-u > 0. We can assume that x* = 7' xs? and x* = xf1x3 , after swapping

the roles of x2 and z3 if necessary.

Subcase 1.1: degree(u™) = a3 + a3fs is greater than D. In this case we have
a9 > w3 and B3 < wy. This immediately implies w - u = woay — w3f3 > 0.
Subcase 1.2: degree(u™) is arbitrary. We assume that, on the contrary, waas <
w3f3. By Subcase 1.1 this implies that z11+D o2 and wBI+D B3 both lie in 1.
There exists a unique standard monomial of the same degree say ) z?e] ¢ I
Since z7'z §3 is the unique standard monomial of its degree, it follows that v; <
D. This implies asys + azys > maz{asas,azfB3}. The following drawing of the
points (az,0), (0, 3s), (72,73) and the linear functionals (az, az), (w2,w3s) shows that
woy2 + ways > min{waae,w3B3} = woare. This is a contradiction to the conclusion
of Subcase 1.1.

(wy, w3) o
) A
(0, ﬁ3)"::,\‘"--.__"’ / (a, ag)
S T )
(ay 0)

Figure 10-3. A triangle in the proof of Theo-
rem 10.2.

Case 2: I has precisely one minimal generator which is not a mor+10m1'al._ Af-
ter scaling the variables, we may assume that this generator is x* — x" . Let
xV1,...,x"™ be the other (monomial) minimal generators of I. By Case 1, there
exist vectors wq,wy € R3 such that

(x“Jr xV, . L,xYm) Coing, (1a) and (x* ,xV, ., xV) Cing,(La).

Moreover, we may assume that in, (I4) = in,,(I) for j = 1,2. Let x° denote

the unique monomial not in in,,, (I4) such that xV: — x4 € I4, fori=1,...,m
and j =1,2.
Subcase 2.1: ¢y = ¢ fori =1,...,m. Wedefine w := (wiu)-wz—(wou)-w;. Then

w-ut =w-u" and w-v; > w- ¢y for all i. This implies that I C in,,(I4). Since
both ideals have the same Hilbert function, we may conclude that I = in,(f4).

Subcase 2.2: There exists i such that c;; # ci;2. Then x* lies in in,,,(I4) but not
in I. This implies that xV¢ and x%i! are relatively prime: otherwise we could factor
out a variable from the binomial xV¢ — x%! € I 4 and find a proper factor of x"
lying in in,, (I4) = in,, (I). This is impossible because x"¢ is a minimal generator
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of I, and the reduced Grébner basis of I with respect to w; consists of monomials
and one binomial x%*' — x¥~

Let G5 be the reduced Grobner basis of I with respect to we. The only non-
monomial in Gy is x" —x" u" . Since x° reduces to a multiple of x%2 modulo G,
we have that x"* divides x®!. We conclude that x¥¢ and x*  are relatively prime.
Applying the same reasoning to the monomial x%*, we conclude that x¥: and x“
are relatively prime.

The three monomials x¥¢, x*~ and x* are pairwise relatively prime. Since
there are only three variables in the ambient polynomial ring, we can write xVi =
z', x" =12, and x* = z3. Note that the integers i, and i3 are relatively prime.
We observe that zox3 is a non-zerodivisor modulo I. If not, then :1:;"”:1:5"13 €
I for some m > 0, and hence (zi!,z2™?2 ¢2m2) < I, which would imply that
k[zy,zo, z3]/1 is artinian.

We will prove that I = in(;0)(I4). By A-gradedness, it suffices to show
that every minimal generator f of in(1,0,0y(14) lies in I. If f is a binomial, then
f=2% —2a% €I If f is a monomial, then f = x** for u = ut — u- ¢ ker(A)
with 1 € supp(u™). The relation supp(u~) C {2,3} implies x*~ ¢ I. There exists
a unique constant ¢ € k such that x*" —c.x*" € I. If ¢ were non-zero, then
(x* )" would lie in I, in contradiction to the fact that zoz3 is a non-zerodivisor
modulo I. Therefore ¢ = 0 and we are done.

Case 3: I has at least two minimal generators which are not monomials.  After
scaling the variables, we can assume that these generators are x® o' _x2" and xP' —

xP", where a and b are linearly independent vectors in ker(A) ~ Z2. If I contains
no monomials, then I is torus isomorphic to I4 by Lemma 10.12. Therefore let
x¥ € I, and suppose that no proper factor of x¥ lies in I. Choose a monomial x¥ ¢
I such that xV —xV € I4. Clearly, x¥ and xV' are relatively prime. Otherwise, if
; is a common factor, then xV'/z;—c-x¥/z; € I for some ¢ € k, and this implies
xV el.

Suppose there exists a binomial x* —x“" in I such that x* divides xV . By
the same reasoning as in the end of the previous paragraph, we find that x¥' —4~ +“
is not in I and is therefore relatively prime from x¥ € I. We conclude that x¥, x“
and x" are pairwise relatively prime. This means we are in the situation of Subcase
2.2, which has been taken care of already. Therefore we may assume that no such
binomial exists.

This assumption implies x¥' ¢ in(I) for every term order <. Note that we
always have xV € in_(I). We select term orders <;, <g, <3, <4 such that

+

x*" xP" ¢ ing, (I), x* ,x® ging, (I).
x* xP € ing, (I), x* ,x?" ¢ ing, (I),
x* xP" ¢ in<, (I), xa+,xb_ g ing, (I),
and x* ,x® €in_, (I), x“+,ber &in, (I).

By Case 1, there exist w; € R® such that in, (I) = in,, (I4) for i = 1,2,3,4. This
implies

wica>0,w-a>0, w3-a<0 and wy-a<0,

wi-b>0, uJQ'b<0, ws-b >0 and wy-b <0,
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Since {a,b} is a basis for the two-dimensional vector space kerr(.A), there exist
positive reals A; > 0 such that A\jw; + Aows + Asws + Aswy is orthogonal to ker(A).
In particular, it is orthogonal to v — v/, which shows that w;-v < w;-v’ for at least
one i. This implies that x¥' lies in in, (I) = in., (I4), which is a contradiction. m

Exercises:

(1) Let n = d+ 1 where d = dim(A). Show that there are precisely three isomor-
phism types of A-graded algebras and that all three are coherent.

(2) List all A-graded ideals for A = {1,2,3}.

(3) List all A-graded monomial ideals for A = {1,3,4,7}.

(4) Give an algorithm for constructing all A-graded monomial ideals, for an arbi-
trary configuration A C N4\ {0}.

(5) List all polyhedral subdivisions of the configuration in Example 10.11. Does
each of them correspond to an 4-graded ideal 7

(6) Does there exist a non-coherent A-graded algebra in the case where A is the~

vertex set of a regular d-dimensional cube 7

(7) Extend Lemma 10.14 to include all polyhedral subdivisions (not just triangu-
lations) of a unimodular configuration.

Notes:

Arnold (1989) expressed the number of isomorphism classes of A-graded algebras
for A = {1,p2,ps3} in terms of the continued fraction expansion for the rational
number p3/ps. The extension to the case A = {p1,p2,p3} was given in (Korkina,
Post & Roelofs 1995). Our proof of Theorem 10.2 is based on this article.

All results in this chapter are new and not published elsewhere (with the ex-
ception of Theorem 10.2, of course). The first example of an infinite family of
pairwise non-isomorphic AGA’s was constructed by D. Eisenbud (unpublished) for
d=1,n=7. The n = 4 example in Theorem 10.4 was found afterwards. Peeva’s
Theorem 10.13 constitutes a counterexample to a conjecture which I stated after
Theorem 10.10 had been found. Theorem 10.15 is an extension of the results in
(De Loera 1995a).

CHAPTER 11
Canonical Subalgebra Bases

Toric ideals arise naturally in the study of canonical subalgebra bases. It is
the objective of this chapter to explain this connection and to develop an intrinsic
Grobner basis theory for subalgebras of the polynomial ring. The basic idea is to
degenerate the algebra generators into monomials and thereby the algebra relations
to binomials. Geometrically speaking, we wish to deform an arbitrary parametri-
cally presented variety X into a toric variety. As an application we shall see how
this can be accomplished if X is a Grassmann variety.

Let R be a finitely generated subalgebra of the polynomial ring k[t] =
k[t1,...,ts). Fix a term order < on k[t]. The initial algebra in(R) is the k-vector
space spanned by {in<(f) : f € R}. A canonical basis is a subset C of R such that
in<(R) is generated as a k-algebra by the set of monomials {in(f) : f € C}.
Canonical bases for subalgebras are similar to Grobner bases with regard to their
reduction properties.

Algorithm 11.1. (The subduction algorithm for a canonical basis C)

Input: A canonical basis C for a subalgebra R C k[t]. A polynomial f € k[t].

Output: An expression of f as a polynomial in the elements of C, provided f € R.
While f is not a constant in k do

1. Find fi, fo,..., fr € C, exponents 1,145, ...,i, € N and ¢ € k* such that
in<(f) = coing(fi)" - ing(fo)® - ing(fr) (11.1)

2. If no representation (11.1) exists, then output “f does not lie in R” and
STOP. ‘
3. Otherwise, output p = c- f{' f2*--- fir, and replace f by f — p.
Output the constant f.

A nice example of a canonical subalgebra basis is the set, of elementary symmetric

polynomials o1,...,04 in ty,...,t4. Indeed, the familiar algorithm for expressing
symmetric polynomials in terms of o4,...,04 is precisely Algorithm 11.1 in this
case.

The main difference between Grébner bases for ideals and canonical bases for
subalgebras is that the initial algebra in_(R) need not be finitely generated. If
in(R) is not finitely generated, then there is no finite canonical basis for R with
respect to <. The following example appears in (Gobel 1995).

Example 11.2. (The invariants of the alternating group have an infinite canonical
basis) Let d = 3 and let R = k[t,t2,¢3]4* be the subalgebra of polynomials which
are invariant under the cyclic permutation t; — ty,ty — £3, t3 — t1. It has four
minimal generators:

R = k[ti+tz+ts, tita + trtg +tats, titats, (t1 — t2)(t1 ~ t3)(t2 — t3) |.

99
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Let < be the lexicographic term order with t; > t2 > t3. If f is any invariant
in R and in(f) = tilt?t?, then it is easy to see that either #; > iy > i3 or
i1 > i3 > ig. Suppose that in(R) is finitely generated. Among the generators
consider the subset {t‘fltg‘,t'llztgz, .- -,t‘fstgs} of those generators which do not
contain the variable ¢t;. There exists a constant C' > 1 such that a; > C - b; for
1 =1,...,s. Choose any integer d > ﬁ, so that d +1 < C - d. We consider the
As-invariant polynomial

g = u#lg gt +ugT € R

The underlined initial term must lie in the semigroup generated by the t*t5'. This
implies that the vector (d+1,d) lies in the planar convex cone spanned by the vec-
tors (a;,b;). Hence it also satisfies the linear inequality d+1 > C'd, a contradiction.
This shows that in(R) is not finitely generated. m

It is an important open problem to find good criteria which guarantee finite
generation for in(R). In what follows we consider mainly the case where in«(R)

is finitely generated. (Most of our discussion about canonical bases, however, would ..

extend to the infinite case.)

Fix a set of polynomials F = {fi, f2,..., fa} in k[t] = k[t1,...,t4], let R =
k[F] be the subalgebra they generate, and fix a term order < on k[t]. Suppose
in<(fi) = t* and let A = {a;,az,...,a,} C N% We shall give a criterion for
deciding whether F is a canonical basis for R with respect to <. To this end we
introduce the new polynomial ring k[x] = k[z1,Z2,...,x,]. Consider the k-algebra
epimorphism from k[x] onto R defined by x; — f;, and let I denote its kernel.
Similarly, consider the map from k[x] onto in<(R) defined by z; — in(fi;) = t%.
The kernel of this map is the toric ideal I4.

Let w € R? be any weight vector which represents the term order < for the
polynomials in F. If we consider A as a d x n-matrix, with transpose AT, then
ATw is a vector in R™. We can use it as the weight vector for forming an initial
ideal of I C k[x]. However, the initial ideal in4r,(I) is usually not a monomial
ideal. This is explained by the fact that the vector AT w is not a generic vector in
R", even if w is generic in R?.

Lemma 11.3. For any set F C k[t], the initial ideal in 47, (I) is contained in the
toric ideal 14.

Proof. Let p(x) = Y cyx" be an element of the ideal I. This means that

p(fl(t)v"'afn(t)) = Zcufl(t)ul"'fn(t)un (S k[t]

is the zero polynomial. When expanding this sum, the terms of highest w-order
must cancel. The w-order of f;(t)“ --- f,(t)*" equals the w-order of

ing (f1)(£)%1 - - -ing, (fn) (£)¥r = t“1%1 .. gunan

which is the inner product of ATw with u = (u1,...,u,). Therefore the sum of the
highest terms in the expansion Y cuf1(t)*! --- fo(t)*~ equals

[ina7, ()] (17w (1), - -, inw(fr)) = [inaru(®)] (t,...,t7) = 0. (11.2)

We conclude that in 47, (p) liesin I4. m
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The reverse inclusion to Lemma 11.3 is our criterion for canonical bases.

}I‘heorem 11.4. The set F C k[t] is a canonical basis if and only if inar,(I) =
A-

Proof: We ﬁr.st show the “only-if” direction. Suppose F is a canonical basis, and

let ¢ be any binomial in I4. We consider the polynomial q(f1,..., fn) in k[t]. By

tie ca?jcc)mcal basis property and using Algorithm 11.1, we can find r € k[x] such

that q(f1,..., fa) =r(f1,..., fn) and ¢ = in47_(q — r). This j

a5 desivel. A w(q ) proves q € Zn.ATw(I)
The p?oof of the “if” direction is by contradiction. Suppose that in at,(I) =

T4 but F is not a canonical basis. Then there exists p € k[x] such that

i (p(f1,. -, f2)) & k[inw(fl),...,inw(fn)]. (11.3)

Wﬁ may assume that p is minimal with respect to the partial term order defined by
A’w. In order for (11.3) to hold, it must be the case that the terms t* of highest
order in the expansion of p(fi(t),..., fo(t)) all cancel. As in the proof of Lemma
11.3, this implies (11.2) and therefore in 47, (p) € I4 = in a7, (I). There exists
a .polynomial q € I such that in4r,(p) = inyr,(g). The initial form of p—q
with respect to ATw is therefore smaller than that of p- However, since g € I, we
have p(fi,...,fn) = 0= q)(f1,.-., fn), so that p — q shares the property (1’1.3)

with p. This is a contradiction to the minimality in our choice of p, and the proof
is complete. m

In order to apply the criterion in Theorem 11.4 one has to compute generators

ic;rlthe toric ideal I 4, but one need not do this for I. Instead one uses Algorithm

Corol'lary 11_.5.. Let {p1,...,ps} be generators of the toric ideal I A- Then F is a
canonical basis if and only if Algorithm 11.1 reduces pi(fi,..., fa) to a constant
forallie {1,...,s}. ’

Proof: The only-if direction is obvious: if Algorithm 11.1 gets stuck with a non-
con§tant polynomial while reducing p;(fi,..., f,), then F fails to be a canonical
basis. For the if-direction we assume that Algorithm 11.1 does reduce p;(fi,..., f )
to a constant. The output generated by that reduction gives a polynomial ¢; (;c)nz

t .
Y o1 ¢ix™ whose terms form a strictly descending sequence in the partial term
order > defined by ATw on k[x]:

ngry(pi) > X" = xU2 - o xUe (11.4)

By construction,'we .have pi(fl,....,fn) = ¢i(f1,.--,fn), and hence p; — ¢; € I.
Property (11.4) 1mphes Pi = ing7,(pi — ¢;) € inyr,(I). This holds for all
i€ {1,...,s}, and, in view of Lemma 11.3, we conclude

I.A = <P1»P2,---aps> = in.ATw(I)'

Using Theorem 11.4, this completes the proof. m
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The initial ideal in 4z, (I) occurring in Theorem 11.4 is not a monomial ideal
(yet). It is natural to ask how its different Groébner bases enter the overall picture.

Corollary 11.6. Using notation as above, suppose that F is a canonical basis.

(1) Every reduced Grobner basis G of L4 lifts to a reduced Grébner basis H of
I, i.e., the elements of G are the initial forms (with respect to ATw) of the
elements of H.

(2) Every regular triangulation of A is an initial complex of the ideal I.

(3) The state polytope of I 4 is a face of the state polytope of the homogenization
of I.

Proof: Let G be the reduced Grébner basis of 14 with respect to a term order <,
and let H be the reduced Grobner basis of I with respect to < 47, By Proposition
1.8, we have

in<(la) = inc(ingro(l)) = in . (I). (11.5)

This implies in(inr,(H)) = in<(G). Since all trailing terms of elements in H
are <-standard, we conclude that in 47, (H) = G. This proves (1). v

Part (2) follows directly from (11.5) and Theorem 8.3. Let Inomog denote the
homogenization of I. We extend ATw to a partial term order for Ipomog by making
the homogenizing variable reverse lexicographically smallest. For part (3) we use
the following consequence of Lemma 2.6:

State(IA) = State(inATw(Ihomog)) = faceyr, (State(Ihomog))'

Here we had to replace I by Ihomog because the Grébner fan of I need not be

complete (in which case the polytope State(I) is not defined). However, the toric -

ideal I4 is positively graded since the columns of A are non-zero non-negative
vectors, so that State(I4) is always a well-defined polytope. m

Corollary 11.5 gives rise to a simple completion algorithm for computing a
canonical basis from any finite generating set F, provided in(k[F]) is finitely
generated. Namely, if there exists a minimal generator p; of I 4 such that Algorithm
11.1 reduces p;(f1, . - -, f») to a non-constant polynomial q:(f1,---, fn), then simply
add ¢;(f1,. .., fn) to the set F and proceed. Just as in the case of the Buchberger
algorithm for ideals, this completion procedure can be made more efficient by auto-
reductions and other more clever strategies.

Example 11.7. (The algebra generated by the 2 x 2-minors of a generic 3 x 3-
matrix) Consider a 3 x 3-matrix of indeterminates (¢;) and let F be the set of its
2 X 2-minors,

f1 = titas — tioter, fo = tutes — tistar, fs = tiatos — titon,
f4 = titsy —tiotsr, f5 = tutss —tistar, fo = tiatss —tistaz, (11.6)
fr = totsy — tasts1, fs = taitss —teatsr, fo = toatss — tastan.

We fix a term order < which selects the main diagonal term to be the initial term,

for each minor of (¢;;). The ideal of algebraic relations among the underlined initial
terms has only two generators:

I4 = (z4r8 — T5T7, T2%6 — L3T5 )-
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Under the substitution z; — f;(t) we get
fio = fafs—fsfr = ta1-det(ts;) and fui = fafe— fafs = tiz-det(t;),

where det(t;;) is the determinant of the given 3 x 3-matrix. Neither of the initial
terms

ins(fio) = tiitootaitss or ing(fi1) = titistoatss

lies in the subalgebra generated by the nine underlined monomials in (11.6). We

enlarge the generating set to 7' := F U {fi0, fi1}. The corresponding toric ideal
remains unchanged:

Iy = <3341‘8 — T5T7, T2Tg — T35 >,

since the variable t3; (resp. t13) occurs only in in<(fio) (resp. in.(f11)) but in

no other initial term. This implies that F’ is a canonical basis for its subal
it r its subalgebra

.Example 11.7 stands in a certain contrast to the next result which concerns
maximal minors. Consider a matrix of indeterminates (¢;;) of format r x s, where
7 < s. Let R be the subalgebra of k[t] = k[t11,...,t,] generated by the  x 7-minors
of (ti;). Its projective spectrum Proj(R) is the Grassmann variety Grass,  of r-
dimensional linear subspaces in an s-dimensional vector space, presented in it’s usual
Plicker embedding. A term order on k[t] is called diagonal if the main diagonal
term is the initial term for each r x r-minor.

Theorem 11.8. The set of r x r-minors of an r x s-matrix of indeterminates is a

canonical basis for the subalgebra they generate, with respect to any diagonal term
order on klt].

Proof: See Theorem 3.2.9 in (Sturmfels 1993a). m

' We associate a new variable [i13; - - - ,] to the r x r-minor with column indices
i1 <iy<::-< ;. Thus the polynomial ring k[x] is generated by these () brackets.
Let 1},5 denote the ideal in k[x] = k[- RN [ SEREE S A ] generated by t}:e algebraic

relations among the r X r-minors. The ideal I, s is called the Grassmann-Pliicker

;deal. Theorem 11.8 is a consequence of the classical straightening algorithm for
r,8*

Let e;; denote the unit vector in N”** corresponding to the variable t;;. The

vector configuration associated with the diagonal initial monomials t;, tg;, - - - £
equals s "
Ans = {ey, tew,+Fey  1<ii<ia<--<i,<s}.  (11.7)

The toric ideal I 4, , is the kernel of the map

k[a[ZIZQZT]a] d k[tllatl27"'atrs]7 [111211] — tlithiz "'tri,-' (118)

Example 1.1.9. (The Grassmann variety of lines in projective 4-space)
In the special case r = 2 and s = 5 we shall prove Theorem 11.8 by applying
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the criterion in Theorem 11.4. The algebra of interest is generated by the ten
2 x 2-minors of the matrix

¢t = t1n tiz tiz tia tls)
- ta1 tap taz toa s

A diagonal term order is given, for instance, by the following weight matrix
1 2 3 4 5
Yo (1491625)'
The ten diagonal initial terms generate the toric algebra of the configuration (11.7):
k[Az5] = k[t11t22, ti1ts, tiitaa, tiites, tiatos, ti2taa, tiatos, tislaa, tistas, tiatas |-

We consider the map (11.8) from the free polynomial ring

klx] = k[[12],[13],[14],[15],[23],[24],[25],[34],[35],[45]]

“

onto k[Azs]. Its kernel is the toric ideal 14, ,. This ideal is generated by the five
binomials .

[14][23] — [13}[24], [15][23] — [13][25], [15][24] — [14][25],
- [15][34] - [14][35], [25][34] — [24][35].

To establish Theorem 11.8, we must verify the inclusion I4 C in 47, (I25). ’I“}'le
induced weight vector ATw has the entry i + j2 in the coordinate indexed by [ij].
Each of the following five Pliicker relations lies in the kernel I 5 of the canonical
epimorphism k[x] — R:

[24][23] — [13]24] + [12](34),

[15][23] — [13][25] + [12][35],

[15][24] — [14][25] + [12][45], (11.9)

[15][34] — [14][35] + [13][43],

[25][34] — [24][35] + [23][45].

The underlined initial forms selected by the weight ATw coincide with the genera-
tors. This completes the proof of Theorem 11.8 in the special case r = 2 and s = 3.
[

Theorem 11.8 and Corollary 11.6 have the following geometric implications. By a
toric deformation we mean a flat deformation using a one-parameter subgroup of
the torus (k*)™.

Proposition 11.10. .

(a) There exists a toric deformation taking the Grassmann variety Grassy s into
the projective toric variety defined by the configuration A, ;.

(b) Every initial ideal of the toric ideal 14, , is an initial ideal of the Grassmann-
Pliicker ideal I ;.
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(c) Every regular triangulation of A, is an initial complex of the Grassmann
variety.

(d) The state polytope of A, 4 is a face of the state polytope of the Grassmann
variety.

Remark 11.11. (Digression into algebraic combinatorics)

The classical straightening algorithm for the Grassmann-Pliicker ideal is a special
case of the Grobner bases arising from Proposition 11.10 (b). The best route to
seeing this is the following detour through the land of algebraic combinatorics: The
set A, ; is (affinely isomorphic to) the vertex set of the order polytope of the product
of two chains [r] x [s —r]. The distributive lattice £ = J([r] x [s—r]) is (isomorphic
to) the poset of brackets in the coordinatewise order. We depict this lattice for
r=2,s =5 (Example 11.9):

Figure 11-1. The distributive lattice J([2] x [3]).

The toric ideal 14 is generated by the binomials z -y — (z Vy) - (x Ay) where
x,y € L stand for brackets and V and A are the lattice operations. We define a term
order on k[x] = k[L] as follows: first sort the variables by any linear extension of £
and then sort monomials by the reverse lexicographic order. The initial ideal of I A
coincides with the initial ideal of the Grassmann-Pliicker ideal I, ;. It is generated
by all products z -y of incomparable elements in £. The initial complex is the chain
complez of L, which is known to be a regular triangulation of the order polytope of
[Pl x[s—7]. m

Not every Grobner bases of I, arises from a Grobner basis of 14, ,, i.e., the
converse of Proposition 11.10 (b) does not hold. We will demonstrate this in the
case r = 2.

Corollary 11.12. The toric ideal 14, , has the following properties:
(a) The set of circuits equals the universal Grébner basis:
[E1][3272]) - -~ [iu ] = (2] [i3g2] - - - [ir40],
(il,iz < jl and 1,13 < jz and ... and Ty, < ],,)

(b) All initial ideals of I 4, , are square-free.
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Proof: The configuration {ej; +e; : 1<14,j <s} isisomorphic to the vertex
set of the product of simplices A,_; x As;_1; see Example 5.1. It is unimodular by
Exercise (9) in Chapter 8. Therefore its subset Ay, = {ej;+ey; : 1<i<j<s}
is unimodular as well. Using Remark 8.10 this proves the assertion (b). To prove
(a) we note that the circuits of A;_; x As_; are identified with the circuits in the
complete bipartite graph K ;. What is listed in (a) is the subset of circuits whose
support lies in Az ;. To complete the proof we use Proposition 8.11. m

The Grassmann-Pliicker ideal I ¢ has initial ideals which are not square-free.
For example, choose the weight vector

w = (9, 56, 82, 40, 86, 95, 55, 85, 88, 88, 39, 46, 10, 26, 62)

for the (3) = 15 brackets [i5] in the usual lexicographic order. We get an initial
monomial ideal in,(I26) among whose minimal generators there is [15](23]2[46].
By Corollary 11.12 (b), the monomial ideal in,(I5) is not an initial ideal of I4, .

We also remark that statement (b) does not hold for » > 3; for instance,
As ¢ contains the vertices of a regular 3-cube as a subset, hence it has a regular-
triangulation one of whose simplices does not have unit volume, hence it has an
initial ideal that is not square-free.

Here is an open problem: What is the maximum degree F(r,s) appearing in
any reduced Grébner basis for the Grassmann-Pliicker ideal I s 7 In view of
Proposition 11.10 (b) and Proposition 4.11, the number F(r,s) is bounded below
by the maximum degree of any circuit of the configuration A, . For instance,
Corollary 11.12 (a) implies

F(2,s) > s—2. (11.10)
For an explicit proof of this inequality we may consider the degree s — 2 circuit
[13][24][35] - - - [s — 2, 8] — [23][34][45]---[1, 8] (11.11)

To construct an initial ideal of the Grassmann-Pliicker ideal which has one of the
monomials in (11.11) as a minimal generator, start with the Vandermonde weights
[i5] = i+ j? and break ties using an elimination order for the variables appearing
n (11.11).

Returning to our general discussion, we assume that 7 = {f1,...,fn} C
k[t1,...,tq) is a canonical basis with respect to w € R¢. We shall present an
intrinsic Grébner basis theory for the “canonically presented” subalgebra k[F]. Let
J be any ideal in k[F]. The initial ideal of J is the following ideal in the initial
algebra k[A] = in, (k[F]) = k[in, (F)):

ing(J) = (iny(f): feJ). (11.12)

An important difference from “classical” Grobner basis theory is this: the original
ideal J lies in k[F], but the initial ideal in,(J) lies in a different ring, namely, it
lies in the toric ring k[A4]. A subset G of J is a Grébner basis with respect to w if
in,(J) is generated by {in,(g) : g € G}. If this set minimally generates in.,(J),
then G is a minimal Grobner basis. From now on we shall always assume that w is a
term order for J, that is, in,(J) is generated by monomials t¢, where ¢ € NA. A
minimal Grobner basis G of J is reduced if none of the trailing terms tP appearing
in any g € G are contained in in,(J).
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Lemma 11.13. Every ideal J C k[F] possesses a unique finite reduced Grébner
basis.

Proof:  We first show uniqueness. Suppose G and G’ are two distinct reduced
Grobner bases of J. There exist g € G and ¢’ € G’ such that g # ¢/ but in,, (9) =
in,(g’). The polynomial g — ¢’ lies in J\{0} but none of its terms lies in ing(J).
This is a contradiction.

We next show existence. Since k[A] is Noetherian and positively graded, the
monomial ideal in,,(J) has a unique finite minimal generating set of the form
{te1,t%2,...,t}. For each i € {1,...,7} there exists an element g; € J such
that in,(g:;) = t°. The set {g1,g2,...,9-} is a minimal Grébner basis. To re-
place it by the reduced Grobner basis, we successively reduce each element g; by
the complementary set {gi,...,9;_1,9;+1,--.,9-} using Subroutine 11.14 below.
This reduction process terminates because w defines a Noetherian order on the
monomials { t® : b € NA} C k[t]. =

Subroutine 11.14. (Reduction inside a canonically presented subalgebra k[F])
Input: A polynomial p € k[¥], a finite subset G C k[F], a term order w on klt].
Output: A normal form for p modulo G with respect to w.
While the polynomial p contains a term t® which lies in the ideal (in,,(G)) do:
1. Let g € G such that t® lies in the principal ideal generated by in,(g) = td.
2. Find an integral vector A = (A1,...,\,) in the fiber n~1(b — d).
3. Replace p by p — g- [, f.

The vector A chosen in Step 2 has the property

n

inw(ﬁfi)‘i) = ﬁlnw fz Htaz = tw(/\) = tb_d.
=1 i=1

Therefore the subtraction in Step 3 does indeed cancel the term tP from p. The
main difficulty of Subroutine 11.14 lies in the fact that testing membership in a
monomial ideal of k[.A] amounts to solving a disjunction of integer programming
feasibility problems. Incidentally, we encounter a similar difficulty already in Step
1 of Algorithm 11.1.

Remark 11.15. In the toric ring k[A] we have
tP € (t,...,to) if and only if U7r b-c¢) # 0.

To generalize Buchberger’s criterion, we introduce the module of syzygies
Syz(t, ..., t%) = {(h1,... he) €K[A]" ¢ Byt -+ Rt =0}, (11.13)

Theorem 11.16. Let G = {g1,...,9-} C k[F], and let H be any subset of k|F]"
such that {(in,(h1),...,inu(h.)) : (h1,...,h,) € H} generates the k[A]-module
Syz(inw(g1),- .., inw(gr)). Then G is a Grébner basis for the ideal (G) with respect
tow if and only if, for every h = (hy,..., h,) € H, the polynomial h1g, +- - -+ h,.g,
reduces to zero modulo G via Subroutine 11.14.

Proof: See Theorem 4.9 in (Miller 1994). w
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Algorithm 11.17. (Intrinsic Buchberger for a canonically presentegl subalgebra)
Input: A generating set S of an ideal J C k[F], a term order w € Re.
Output: The reduced Grobner basis G of J with respect to w.
1. Let S = {s1,...,8,} where in,(s;) = t°. ‘
2. Compute a finite generating set M for Syz(t°*,...,t°") C k[A]" (Subroutine
11.18).
3. Set newguys := 0.
4. For eachm = (my,...,m,) € M do: ‘
4.1. Find h = (hy,...,h,) € k[F]" such that in,(h;) =m; forj=1,.. ST
4.2. Compute the normal form h of hysi+---+ hps, modulo S (Subroutmg
11.14). B
4.3. newguys := newguys U {h}.
5. If newguys # {0} then set S := S U newguys\{0}, and return to Step 1.
6. If newguys = {0} then
6.1. Compute the auto-reduction G of & ,
(by applying Subroutine 11.14 to reduce s modulo S\{s}, for all s € S).
6.2. Output G. . o

This leaves us with the problem of how to compute generators for the Syzygy
module (11.13). We shall present two subroutines (11.18 and 11.21) for performing
this task. We write e; for the standard basis vectors in the free module k[A]".

Subroutine 11.18. (Computing the syzygies on some monomials in a toric ring)
Input: A vector of monomials (t°,...,t") € k[A]".
Output: A finite generating set for Syz(t°,...,t") C k[A]".

1. Find w; € 7~ (c;) fori=1,...,r. ‘ .

2. Let S C k[x|" be any generating set for the syzygies on (x41,...,x ,r)’ for
instance, the usual S-pairs. Apply the toric homomorphism z; — t* to S
and output the result. ‘ '

3. Compute a reduced Grobner basis (in the ordinary sense) for the ideal inter-
section

(xU,..,x")y N Ix in k[x] = k21,30 (11.14)

4. For each element g = g(x) in the reduced Grébner basis of ( 1114) do:
4.1. Write g in the form g(x) = x¥ -x“ — x% .-x%, where,j € {1,...,7}.
4.2. Output the syzygy t™) -e; — t™ W) ;.

Example 11.19. Here is a simple example of a syzygy module which is not
generated by S-pairs. Take d = 2,n = 3 and A = {(2,0), (g,l),(O,'2)},.sc'> that
k[A] = k[t3, t:t2, 3] = k[z1, T2, 23]/ (123 —23). Then Syz(tl,tl.tz) is minimally
generated by (t1t, —t2) and (3, —t1t2). The first syzygy is found in Step 2 and the
second is found in Step 4.2. m

The correctness of Subroutine 11.18 is the content of Proposition 4.10 in (Miller
1994). In Step 3.1 we are making implicitly the claim that every reduced Grébper
basis of (11.14) consists of binomials xV - x" — x™ - x". To prove this clz?,lm,
we recall the standard algorithm for computing ideal intersections (Cox, thtle
& O’Shea 1992; §4.3, Theorem 11): Introduce a new variable z, form the ideal
B = ((1—-2z)-x",...,(1—2) x%) + z- L4 in k[x,2], and then compute the
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elimination ideal B N k[x]. Our claim follows because B is a binomial ideal and
the Buchberger algorithm is “binomial-friendly”. See Corollary 1.7 in (Eisenbud &
Sturmfels 1994) for a more general result.

These considerations imply the following toric generalization of the familiar

fact that S-pairs suffice to generate all syzygies (Cox, Little & O’Shea 1992; §4.3,
Proposition 8).

Corollary 11.20. Syzygies on monomials in k[A] are generated by pairwise syzy-
gies:
Syz(Ztci-ei) = Z Syz (t% -e; + t% -e;).

i=1 1<i<j<r

Corollary 11.20 reduces the computation of the syzygy module (11.13) to the

special case r = 2. Hence we could also use the following subroutine for Step 2 in
Algorithm 11.17.

Subroutine 11.21. ( Computing‘ syzygies on a pair of monomials in a toric ring)
Input: Two monomials t© and t9 in k[A].
Output: A finite generating set for Syz(t¢,t) C k[AJ%.

1. Form the toric ideal I4,(c-ay C kl[z1,...,Zn, 2], where 2 is mapped to t¢~9.
2. Compute the reduced Grobner basis G for 1 Au{c—d} With respect to any elim-
ination order z > {z1,...,z,}.

3. For each binomial in G which contains z linearly, such as x" - z — x¥, output
the corresponding syzygy (t™(, —t™(V)),

Proof of correctness: It follows immediately from the construction that each output
pair (t7(W, —t7() is a syzygy of (t¢,t9). Conversely, every minimal syzygy can
be written as a pair (£, —t™™)) such that x% -z —x¥" lies in Tauge—ay- The
Grobner basis property of G implies that there exists a binomial x¥ -z — x¥ € ¢
such that x¥ divides x* and x¥ —x¥*%'~Y liesin J A- The given syzygy therefore
equals t7(W' =W . (¢7(W) _¢n(V)) g

Example 11.22. The minimal number of generators of Syz(t°,t4) cannot be
bounded by a function in n,d and A. Let d=3,n=7 and

k[A] = k[titats, t2s, t1t2, t3ts, t1t2, t2t5, tot2)].
It can be shown that the minimal generators of Syz(t3't3't3, t372¢,43' ) include
2¢ + 2 syzygies of total degree i+ 1, fori > 1. m

Any bound must therefore involve the degrees of ¢ and d. Here is such a
bound.

Theorem 11.23. Let D(-) be defined as in Theorem 4.7. Then the total degree
(in k[x]") of any minimal generators of the syzygy module (11.13) is bounded above
by

MAT1<icj<r (d+ ].) . (TL +1-— d) . D(A U {Ci — Cj}).

Proof: This follows from Corollary 11.20, Subroutine 11.21 and Theorem 4.7. =
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One disadvantage of the intrinsic Buchberger Algorithm 11.17 is that — gt
present — it is not available in any computer algebra system.. However, th.ere is
an “extrinsic” method for simulating Algorithm 11.17, which is easy to run in the
currently available Grébner bases programs.

Algorithm 11.24. (Extrinsic computation of intrinsic Grébner bases)
Input: Generators for an ideal J in k[F] and a term order w on kft].
Output: A Grobner basis for J with respect to w. .
1. Let I denote the kernel of the canonical epimorphism
¢ : k[x] — k[F], z, — fi(t). _ '
2. For each generator of J choose a preimage, and let J C k[x] be the ideal they
generate. . _
3. Compute the reduced Grobner basis G of the ideal I + J with respect to any
term order refining the weight vector ATw.
4. Output its image ¢(G) = {¢(g) : g€ G} in k[F].

Proof of correctness: Clearly, ¢(G) C J. The fact that the Grobner k:asis Gis

reduced implies
nu(6(9)) = inaru(9)(t™,....t%)  forall g€g. - (1115

We must show that {in4r,(g)(t®,...,t*) : g € G} generates in,(J). p(zt
h € J C k[F]. By the canonical basis property of F = {f1,... ,a]fn}, thir"e ex1sos
p € k[x] such that h = p(fy,..., f.) and inf‘,(h‘) = Z@ATw(p)-(t RN / ) f ]
Since p € I + J, its initial form in 47, (p) l1e;s in the ideal (in 4r,(G)) in k[x].
This implies that in, (k) lies in (11.15), as desired. m

We discuss a geometric example in the Grassmann variety of lines in projective
4-space.
Example 11.25. Consider the canonical basis in Theorem 11.8 for r = 2,5 = 5.

Here F = {[12],[13],...,[45]} is the set of 2 x 2-minors of a 2 x S-matrix of
indeterminates (t;;), and w is the weight with coordinates w;; = j*. Consider the

ideal J = (g1,92), where

g1 = ([12]-[23])-([23] - [34]) and go = ([13]+[14]+[15])- ([15] + [25] + [35]).
The corresponding subvariety of the Grassmann variety consists of all lines in P*
which meet the following two pairs of codimension 2 subspaces: {z; =z +z3 =
0} U{zz=2zo4+24=0} and {1 =23 +x4+25 =0} U {25 =21 + 22+ 23 = 0}.

We wish to compute the Grobner basis of J intrinsically in k[F]. The initial terms
of the generators are

. 2
ing(g1) = tiztistastzsa and iny(g2) = tiitistys.

Using Subroutine 11.18 or 11.21, we compute the following minimal generating set
for the syzygy module Syz(tiot13testas,ti1t13tss):

2 2
{ (t11t13tss, —t1otastistos) (t1t35, —tuitastiatea) , (tuitiztss, _t12t23t24)}'
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Following Step 4.1 of Algorithm 11.17 we express each of these six monomials as

an initial form; for instance, tiitistss = in,([15][35]). In Step 4.2 we form the
corresponding linear combinations in .J:

93 = [15][35] - g1 — [23][34] - gy,
9s = [15]°-g; — [13][24] - go,
gs = [15][25] g1 — [23][24] cga.

The polynomial g3 reduces to zero modulo {91,92}. The initial terms of g4 and
g5 are in normal form modulo {91,92}. Another run through Algorithm 11.17
confirms that {g,, g2, g4, 9gs} is a minimal Grébner basis for J. However, to arrive
at the reduced Grébner basis we must further reduce 91 and g5 modulo {g,, g,} in
Step 6.1.

We remark that already for this small example the extrinsic computation is

quite redundant: the reduced Grobner basis in Step 3 of Algorithm 11.24 contains
15 elements.

Exercises:

(1) Give an example of a subalgebra k[F] of k[x] and two term orders ~<1 and

<2 such that in, (k[F]) is finitely generated but in<, (k[F]) is not finitely
generated.

(2) Let d=5,n=6 and let F be the set of 2 x 2-minors of the matrix

t1 to t3 ty
ta t3 tg ts)°
Compute a canonical basis for the subalgebra k[F].

(3) Compute the state polytope of the Grassmann variety Grass,s. Show that
the converse of Proposition 11.12 (b) holds for r = 2, s = 5. every initial ideal
of the Grassmann-Pliicker ideal I 5 is an initial ideal of the toric ideal I Ags-

(4) Compute the universal Grobner basis of the toric ideal 14, ;. Use your answer
to give a lower bound on F(3,6).

(5) Show that the intersection of two principal ideals (t°) and (t°) in a toric ring
k[A] can have arbitrarily many minimal generators.

(6) The ring of symmetric polynomials kfz;,...,z,]% is canonically presented by
the set F of elementary symmetric functions. Implement Algorithm 11.17 in
this case.

Notes:

The concept of canonical bases was introduced independently by Kapur & Madlener
(1989) and Robbiano & Sweedler (1990). Further properties and applications of
canonical bases were studied in (Ollivier 1991). Ollivier’s results include some
remarkable connections between the algebraic operation of taking integral closure
and convexity properties of the initial algebra. Miller (1994) extends the theory of
canonical bases to polynomial rings over general base rings. While Theorem 11.8
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appears in (Sturmfels 1993a, §3.2), the point of view presented in Example 11.9 and
Proposition 11.10 is new. Toric varieties arising from lattices (as in Remark 11.11)
are studied in (Wagner 1995). Our discussion of Grobner bases inside canonically
presented subalgebras is derived from results in (Ollivier 1991) and (Miller 1994).
An intrinsic Grébner basis theory for flag varieties in generic coordinates can be
found in (Rippel 1994).

CHAPTER 12
Generators, Betti Numbers and Localizations

This chapter is organized into four sections. Their general theme is “advanced
techniques” for computing with toric ideals. We present two algorithms for finding
generators and Grobner bases of 14, and we introduce truncated Grébner bases
with respect to the grading by the semigroup N.A. The generators and higher
syzygies of toric ideals are characterized in terms of certain simplicial complexes,
and, finally, the technique of localization in integer programming is discussed.

12.A. Computing generators and Grébner bases
A familiar method for computing generators and Grobner bases of the toric ideal I 4
is Algorithm 4.5. Unfortunately, that algorithm is too slow. It cannot handle non-
trivial problems from the domains of application discussed in Chapter 5. In view
of the sensitivity of Buchberger’s algorithm to the number of variables involved, it
is much better to use an algorithm which operates entirely in k{z1,...,z,] rather
than in the auxiliary polynomial ring k[tg,%1,...,¢4, Z1,.-.,Zn|. In what follows
we present two such algorithms. These two algorithms appear to be of comparable
efficiency.

We recall the definition of ideal quotients. If f is a polynomial in k[x] and
J C k[x] is an ideal, then the following two subsets of k[x] are again ideals:

(U:f) = {gckb:fge ), o)

(J:f*) = {gekx]: ffgeJ for somer e N }. '
A basic formula involving ideal quotients is (I : fg) = ((I : f) : g). A general
method for computing Grébner bases of the ideals in (12.1) from generators of J
can be found in Section 4.4 of (Cox, Little & O’Shea 1992). If J is a homogeneous
ideal and f is one of the variables, say, f = x,, then the algorithm of choice is
furnished by the following lemma.

Lemma 12.1. Fix the graded reverse lexicographic term order induced by x; >
-+« > x,, and let G be the reduced Grébner basis of a homogeneous ideal J C k[x].
Then the set

G = {f€G:z,doesnotdividef} U {f/z, : f€G andz, divides f }

is a Grébner basis of (J : z,,). A Grdbner basis of (J : ) is obtained by dividing
each element f € G by the highest power of x,, that divides f.

Proof: We will show that G’ is a Grébuer basis for (J : z,,). The proof of the second
assertion about (J : £2°) is analogous. Let g € (J : z,,). Then in(z, g) = z,-in(g)
is divisible by in(f) for some f € G. Our choice of term order guarantees that x,

113
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divides f if and only if z,, divides in(f). If this is the case, then f/zn llies in Q’ .and
in(f/z,) divides in(g). If z,, does not divide f, then f lies in G’ and in(f) dlYIdeS
in(g). In either case in(g) lies in the ideal generated by the initial terms of G'. m

The term order used in Lemma 12.1 makes sense whenever the ideal J is ho—
mogeneous with respect to some positive grading deg(x;) = d; > 0. By iterat.lng
the Grobner basis computation n times with respect to different reverse lexico-
graphic term orders, that is, by applying Lemma 12.1 one variable at a time, one
can compute the ideal quotient

(J: (miz2z)™) = ((-(J:27):2) ) ). (12.2)

This ideal consists of all polynomials f € k[x] such that f-m € J for some monomial

m. ‘ .

In what follows we assume that 4 = {a),...,a,} is a subset of N*\{0}, so
that the toric ideal I4 is positively graded and has the Grobner region R". Let
ker(A) C Z" denote the integer kernel of the d x n-matrix With column vectors a;.
With any subset C of the lattice ker(.A) we associate a subideal of I4:

Jo = (x"+—xv~ :vel). . (12.3)

Clearly, this ideal is endowed with the same N.A-grading as 4.
Lemma 12.2. A subset C spans the lattice ker(A) if and only if

(JC : (zl"'zn)oo) = I.A~

Proof: It suffices to show this for a finite subset C = {vy,...,v,} C ker(ft). For
the only-if direction suppose that u € ker(A) can be written as u = Yo Aivs
with ); integers. This implies the following identity of rational functions:

r

ut xv.Jr)\_
X 1 = H( ) -1

u- v,
X i=1 X"t

By clearing denominators we get an identity in k[x] which shows that a rilonomial
multiple of x"" — x% lies in Jo. For the converse suppose that x® - (x“ —x" 1
lies in Jo. By the proof of Theorem 5.3, we can connect the lattice points a —I- u
and a + u~ by a sequence of moves from C. Hence the vector u = ut —u” is an
integer linear combination of C. m

The two lemmas stated give rise to the following algorithm.

Algorithm 12.3. (Computing a Grébner basis of a toric ideal)

1. Find any lattice basis B for ker(A). . '

2. (Optional) Replace B by a lattice basis Brcq Which is reduced in the sense of
Lovasz.

3. Let Jy := (x% —x"- : u € Breq)- . .

4. For i=1,2,...,n: Compute J; := (J;—1 :z5°) using Lemma 12.1, that is,
by making z; the reverse lexicographically cheapest variable..

5. Compute the reduced Grobner basis of J, = I 4 for the desired term order.
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A few comments are in place. The computation of a lattice basis for ker(.A)
can be done using the Hermite normal form algorithm for integer matrices. For

_details see (Schrijver 1986, §5.3). The reduced lattice basis Byoq in Step 2 consists of

vectors with relatively small integer entries. An implementation of basis reduction
is available in MAPLE under the command lattice. The underlying theory is
explained in (Schrijver 1986, §6.2).

Computational experience with Algorithm 12.3 using the system GRIN is re-
ported in (Hosten & Sturmfels 1995). The subroutines called upon in Steps 1 and
2 are polynomial time algorithms. Their running time is negligible relative to the
subsequent Grobner basis computations in Steps 4 and 5. Step 4 involves n Grobner
basis computations. But these are relatively short and easy calculations, especially
when compared with Algorithm 4.5.

We next present a different algorithm, due to Di Biase and Urbanke (1995),
for computing a generating set of the toric ideal I4. It is based on Lemma 12.4
and Proposition 12.5 below. In these two assertions we no longer assume that I4
is positively graded.

Lemma 12.4. Let C be a spanning set for the lattice ker(A) such that one of the
vectors u € C has all coordinates positive. Then the ideal Jc is equal to the toric
ideal I4.

Proof: The binomial x" — 1 lies in J¢. It shows that all variables z; are invertible
modulo Jg. This is equivalent to Jp = (JC (zyzn - -zn)"o). Now apply Lemma
122. =

Let A; denote the configuration .4 with a; replaced by its negative —a;. In
what follows we use x“, xV, x“% xVs to denote monomials which do not contain the
variable z;. Then a binomial 7x" — x" lies in I 4, if and only if x* — x¥&7 lies in
I4. Let < be any term order on k[x] which eliminates z;, that is, all monomials
containing z; are higher than those not containing x;.

Proposition 12.5. Let G; = {z’x" —x"7 : j = 1,2,...,m} be a Grébner basis
for I 4, with respect to <. Then G = {x% —z:j x¥7 :j=1,2,...,m} Is a generating
set for I 4.

Proof: Let x" — z]x" be a binomial in I 4. Clearly, I 4 is generated by binomials
of this form. Then z]x" — xV lies in 14, and therefore reduces to zero modulo the
Grébner basis G;. Let f1,..., fm be the polynomial coefficients picked up in this
zero reduction:

x" —x¥ = ij(zl, ey Tp) - (T XM — xVi), (12.4)
i=1

The elimination property of the term order < implies that the variable z; occurs
with degree at most r —r; in f;. (In particular, we have f; = 0 whenever r < T5.)
Now replace z; by 1/z; in (12.4) and thereafter multiply both sides by z}. We
obtain the identity

m
s 1 )
x" —ix¥ = Zx: e fi@y e e, ;,xiﬂ,...,xn) S(x™ =z xY).
j=1 t
This identity shows that the left hand side is a polynomial linear combination of
the elements in G. We conclude that T4 = (G), as desired. m
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Algorithm 12.6. (Computing a generating set of a toric ideal)
1. Choose a subset {ii,...,4,} of {1,...,n} such that the kernel of the matrix

Aiyigin = (- (Ai; )iy -+ +)s, contains a strictly positive vector.
2. Find a lattice basis B for ker(A;,i,....,) which contains a strictly positive
vector.

3. Theideal I, ,, ., is generated by {x"+ — x"- :u € B} (by Lemma 12.4).
. Let £:=r.
5. While £ > 1 do
5.1. Choose a term order which eliminates the variable z;,.
5.2. Compute a Grobner basis G, i,..i, fOr 14, ,,. ., -
5.3. Flip the variable z;, as in Proposition 12.5 to get generators for /4
54. £:=£—-1
6. Output the resulting generating set for I4.

=

ipig-ig_q”

The number of Grobner basis computations in Step 5 is the cardinality of the
set {iy,...,i,}. Therefore it would be best to use a smallest such “inversion set”.
The problem of how to find one is best studied in the context of oriented matroids
(Bjérner et.al. 1993). In Step 2 it is advantageous to use a reduced basis, just as in
Algorithm 12.3.

Example 12.7. Let d = 4,n = 8 and consider the matrix

12340145
4 - |23ar a5
= 34124501
4123501 4

Each column of A has the same sum, namely 10. This implies that the toric ideal
I, is homogeneous in the usual grading. The reduced Grobner basis of 14 with
respect to the lexicographic term order given by 1 > 2> T3 >4 > 5> T > T7 > T3
equals

3 2 .2 2 2 .3 .3 2
G = {2} — z328, zizr — T5ws, T1T3 — TsT7, T1T7 — T3, TH — T4, (12.5)

2 2 2 .3 .4 3 .4 3
T3zs — T2x6, Ty — Tels, T2TE — T3, T§ — T5T5, Ty — TeTy }-

The first eight of these ten binomials are a minimal generating set of 4. From
the initial terms in G we infer that the projective variety Y4 C P7 is a threefold of
degree 16. We compare the derivations of this Grobner basis using Algorithms 4.5,
12.3 and 12.6.

e In Algorithm 4.5 we form the auxiliary ideal

J = (m — 83388, xo — 33t 3t,, 3 — t3t5tat], 14 — titat5t],

T5 — tgtgtg, e — tltgtg, T — télltgt4, rg — t?t3ti >

Let < be the purely lexicographic term order given by t; >t >t3>1t4>x1 >
<.+ > zg. The reduced Grobner basis G of J in this order has 207 elements,
which is more than twenty times the cardinality of G = G N k[x]. If we choose
a more clever block elimination order instead, then the reduced Grobner basis
of J has 200 elements.
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e In steps 1 and 2 of Algorithm 12.3 we compute a reduced lattice basis for

ker(A):
60 1 0 1 0 -1 0 -1
S = ot (01 03 20 0
2 0 -2 0 -1 0 1 o0
In Step 3 we form the binomial ideal associated with B,..g:
Jo = (%2m4—x6Ts, Toxf — 13, T173 — 2577, TP07 — Tizs5 ).

Entering the loop in Step 4, we first compute the reduced Grébner basis for Jo
with respect to reverse lexicographic order given by z; <zp < .-+ < zg. The
result is

— _ 3 2 2
gg = {.’L‘sIg 2Ty, Ty — T2Tg, T5T7 — T123, T35 — :17%.’1)7, .’L‘l.’L‘g — mfzg}

Dividing the last binomial in Gy by z;, we obtain five generators for J; =
(Jo : 1) = (Jo : 3°). Continuing with x5 as the smallest variable, we find
that x5 is a non-zerodivisor already, i.e., J, = (J1 : 22} = J;. In the third step
we compute

J3 = (Jl : I3) = (Jl : .’L‘go)

= (zox} — z3, e, — T3Ts, TeTs — Tols, TuTy — 173, (12.6)
2
€137 — 23, 3 — 2322, 2lrams — 326, T2 — rirl).

We remove the common factors z, and z?l from the last two binomials to get
a generating set for J;. In the remaining four iterations of Step 4 we find
that zs,2¢,z7 and zg are non-zerodivisors modulo J;. This implies J; = I 4.
The reader may wish to compare (12.6) with the first eight binomials in ( 12.5).
Step 5 of Algorithm 12.3 now transforms these eight binomials into the Grébner
basis (12.5).
In Step 1 of Algorithm 12.6 we select the “inversion set” f1,...,i3={5,6,7,8).
In Steps 2 and 3 we select a suitable lattice basis B for the kernel of Asgrs, say,

11 1 111 1 1
01 0 -3 00 0 -2
B = f
WOl 0 1 010 1 o)
2 0 -2 01 0 -1 0
and we form the associated toric ideal:
Tayss = { Z1Z2X374T5TeT7T8—1, mimg—xg, T1T3T5x7—1, z%x5—m§z7 )

The loop in Step 5 has four iterations. In the first we compute the reduced
Grobner basis of 14, for the lexicographic order given by zg > z7 > z¢ > 25>
T4>T3>To> Ty

Gsers = {Z12305T7 — 1, Towazems — 1,

3.2 3 2 2 2. 2
TYT5 — T3, TyTg — T4, T387 ~ T1Ts5, T3 — T3T¢ }.
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We switch the variable zg in Gsgrs to get generators for the next ideal:

I.A567 = <1:1.’1,‘3.’1,‘5137 —1,2224%6 — s,

2 2 2 _ 2
232} — z3, 525 — T4, Ty — T1T5, T3 — THTEL3)-

By two more lexicographic Grébner bases computations, we find the next two

ideals:
2 2 3.2
Ihge = ( Z123T5 — T7, T3 — T1T5T7, THTg — Ta,
2 2.3 3 2
ToTaTe — T8, 393136308 — Ty, Tpxy — T3, Ty — T2dg )
3 2 200 — x2mg, T3T2 — T3
and Ihy, = (x5~ T4Tg, T2Ts — TeT6, T2T8 3%e, T1T5 )

2 3 2 3 2
T1T3T5 — T7, m%wsﬂw — X3, Ty — TaZg, T3 — T1T7 )-

The final output ideal I 4 is obtained from I 4, by switching the variable 5. = |

12.B. Truncated Grébner bases ' s
Our next topic is truncated Grébner bases for toric ideals. This extends the famlh_ar
notion of truncated Grébner bases for a homogeneous ideal J C k[x]. We write
Jep = @;,Dzo J. for the (finite-dimensional) vector space of' all poly:nomials of
dggree at most D in J. A subset G of J<p is a D-Grébner basis .of J with ref,pect
to a term order < if inL(J)<p = (in<(G))<p. Basic properties of D-Grdbner
bases can be found in Section 10.2 of (Becker & Weispfenning 1993). We assume
that the reader knows how to compute them (for instance, with the command set
autodeg D in MACAULAY). ‘ .

Let A C N4\{0} as before. Consider the N.A-grading of k[x] via d?g(a:i).z a;.
There is a natural partial order < on the semigroup NA, deﬁned by b' < b if'and
only if b — b’ € NA. A subset {2 of NA is called an order ideal provided b € 2
and b’ < b implies b’ € Q.

Remark 12.8. Let Q be an order ideal in NA. Then the k-lin'ear span of all
monomials x* whose degree w(u) does not lie in Q is a monomial ideal in k(x].

Let J be any ideal in k[x] which is N.A-homogeneous, such as the t.oric ideal
I 4, its initial ideals, or its binomial subideals of the form (12.3). Wg W}rlte Jq =
@D Jo for the vector space of all polynomials in J whose degree lies in an order

ideal €.

Proposition 12.9. Let Q,J, < as above. For a subset G C Jq the following are
equivalent: ‘ o

(1) The vector spaces in(J)q and (inx (g))n coincide.

(2) Every polynomial f € Jq reduces to zero with respect to .g.

(3) Every polynomial f € k[x]q has a unique normal form with respect to G.

(4) There exists a Grébner basis G' of J with respect to < such that

g - gl N k[xlg.

The proof is left to the reader. We say that G is an Q-Grébner basis for J
with respect to < if the four equivalent conditions of Proposition 12.9 h(?ld. The
usual definition of reduced Grobner bases extends to the {l-case. St.artm.g from
any generating set of J, we can compute the reduced -Grébner basis using t.he
truncated Buchberger algorithm, that is, by ignoring all S-pairs whose degree lies
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outside {2. This discussed in detail for d = 1 in (Becker & Weispfenning 1993, pages
473ff.). The general case d > 1 is analogous.

One new issue arising for d > 1 is how to test membership in . For instance,
the membership test for a principal order ideal @ = {b’ € NA: b’ < b} can be
as hard as solving a general integer program. In practical applications of truncated
Grobner bases it is therefore essential to select an order ideal Q which admits an
easy membership test. Here are two possibilities for good choices of order ideals:

e Choose integers ny,...,ny and set Q = {(by,...,bg) e NA : b; < n; }.
e Arrange for the monomial ideal in Remark 12.8 to have few generators.

Truncated Grdbner bases for the toric ideal I4 are of considerable interest
for integer programming (cf. Chapter 5). In this application the selection of an
order ideal {) corresponds to imposing restrictions on the possible right hand side

vectors. In complete analogy to Theorem 5.5, we obtain the following corollary to
Proposition 12.9.

Corollary 12.10. Let G C ker(w) and < any term order on N™. The directed
graph m~!(b)g, < has a unique sink for every b € §) if and only if the set of binomials

(x"—xvV :ve G} is an Q-Grébner basis for the toric ideal I 4 with respect to <.

A direct consequence of Corollary 12.10 is an algorithm for solving integer
programs with fixed matrix, fixed cost function and bounded right hand side. In
the formulation of Algorithm 5.6 simply replace N.A by Q and “Grobner basis”
by “Q-Grobner basis”.

Example 12.7. (continued) Consider the family of integer programs defined
by the matrix A and given lexicographic term order. Suppose we are interested
only in right hand side vectors b = (by, by, b3, bs) which satisfy b; < 8 and b, < 8.
This condition defines an order ideal € in N.A. The reduced Q-Grébner basis
equals {z} — 2322, 7,23 — 577, Tox4 — Texs}. Indeed, the degrees of these three
binomials are (3,6,9,12), (4,6,4,6) and (6,4, 6,4), while the degrees of the other
seven binomials in (12.5) lie outside of ). =

There are two noteworthy facts about Q-Grobner basis for the Lawrence matrix

0 . . . . .
A(A) = ('f 1) considered in (7.1). First, a truncated version of Algorithm 7.2
computes a uniwersal (-Grébner basis of I 4. By this we mean a finite subset of
I4 which is an Q-Grébner basis simultaneously for all term orders. Secondly, one
often encounters integer programs whose solutions u are required to be vectors

in {0,1}". This condition can be coded into an order ideal  in the semigroup
NA(A) C N4, Namely, take

Q = {(bl,i..,bd,vl,...,vn)ENA(A) : 031}1,...,Un§1} (12.7)

Then the universal -Grobner basis provides a test set for all integer programs of
the form

Minimize c-u subjectto A-u=b, ue€ {01}~

Example 12.11. (Primitive partition identities with distinct parts)

Letd =1, A=(1,2,...,n) and Q as in (12.7). Using Observation 6.3 and Proposi-
tion 12.9, we see that a universal Q-Grobner basis for 1 A(A4) 1s given by all primitive
partition identities with distinct parts. Table 6-1 shows that there are seven of these
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forn="5 142=3, 14+3=4, 24+3=1+4, 2+3=5, 14+4=5, 2+4=1+5,
and 3+4=2+5.

12.C. Syzygies

We now turn our attention to minimal generators and higher syzygies of the toric
ideal I 4. These have a beautiful combinatorial-topological expression in terms of
the fibers 77! (b). We continue to assume that A is an n-element subset of N¢. The
polynomial ring k[x] and its quotient k[A] = k[x]/I 4 are graded by the semigroup
NA via deg(x;) = a;. Consider a minimal free resolution of k[A] as a k[x]-module:

0 2 k)Pt 25 B k)P 2 k)P 2 k)P 25 k[x] — 0. (12.8)

Here 14 = image(p), so that k[.A] appears as the cokernel of 9y. By Hilbert’s
Syzygy Theorem, we have r < n. Each of the k[x]-module homomorphisms 9; is
homogeneous of degree 0 with respect to the N.A-grading. Each of the generators
of the j-th syzygy module k[x]ﬁi has a unique degree, which is an element in the
semigroup N.A. We write §{ for the number of generators having degree b. The

numbers B{) are the multi-graded Betti numbers of the toric ideal I 4. We note that ..

B2 equals the number of minimal generators of 14 having degree b.

For each b € NA we define a simplicial complex Ay, on the set {1,2,...,n}
as follows: A subset F of {1,...,n} is a face of Ay, if and only if F' C supp(u) for
some u € 7 1(b). Thus Ay, is the simplicial complex generated by the set system

supp(r—*(b)). Equivalently,

Ap = {FC{l,...,n} : b=—> a € NA}. (12.9)

Theorem 12.12. The multigraded Betti number B{; equals the rank of the j-th
reduced homology group H;(Ayp; k) of the simplicial complex Ap.

Proof: We shall use basic facts from homological algebra. The desired Betti number
can be expressed as follows:

g = dimk(Torigj(k[.A],k)b).

Here the field & is given the structure of a k[x]-module via k =~ k[x|/M, where
M = (z,,...,x,). We have the following isomorphism of N.A-graded k[x]-modules

Torlti(KLA], k) =~ Torlij(k, kA]).

The module on the right hand side is computed as follows. Form the minimal
free resolution of k as a k[x]-module, tensor it with k[A], and then take the
j-th homology module of the resulting complex. The minimal free resolution of
k = k[x}/M is the Koszul complex

0 — Ank[X]® — Ap_1k[X]® — - = Ak[x]® — k[x]" — k[x] —0.

Tensoring this exact sequence with the k[x]-module k[A], we get the complex

0—- /\nk[A]" — /\n_lk[.A]" e /\zk[.A]" — k[.A]" — k[.A] — 0, (12.10)
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where the j-th differential A;1k[A]" — A;k[A]™ is given by the formula

J
Cig N€iy Ao Ney, — Z(—l)s-t“is i A ANEL N Ny, (12.11)
s=0

The rgstriction of the Koszul complex (12.10) to its degree b component is the
following complex of finite-dimensional k-vector spaces

PN @ k[A]b*ai—&j —a; — @k[A]b_ﬁi—aj - @k[A]b‘ai - k[A]b — 0.
i<j<l i<j i=1
" . - (12.12)
t follows directly from the definition (12.9) that for any subset F' of {1,2,...,n}

EAlb-5. ra. = k if F is a face of Ay, ,
Mlb-sicen { 0 otherwise .

Hf?nce we can identify the j-th term in the complex (12.12) with the k-span of the
oriented j-dimensional faces of Ap,. The restriction of the differential (12.11) to
degree b is the usual boundary operator of simplicial topology. Therefore (12.12) is
the augmented oriented chain complex of Ay, and its Jj-th reduced homology group
equals H;(Ap; k). This completes the proof. m

Corqllary ]?2.13. The toric ideal I 4 has a minimal generator in degree b if and
only if the simplicial complex Ay, is disconnected.

Example 12.7. (continued)
tTh}_le computation of the minimal free resolution (12.8) in MACAULAY looks like
is:
% <ring 8 x[1]1-x[8] r
% <ideal i x[2]x[8]12-x[413 x[2]3-x[4]x[6]2 x[1]x[7]2-x[3]3
x[113-x[31x (512 x[2]x[4]-x[6]1x[8] x[11x[3]-x[5]1x[7]
x[2]12x[8]-x[4]12x[6] x[1]2x[7]-x[3]2x[5]

% res i j

1.2.3...4....6...... 6...... 7o, 8...... 9...... 10......
computation complete after degree 10

% betti j

total: 1824342481

] 1 - - - - - -
1: 2 - - - --
2: -6 9 2 - - -
3: - - 6 8 2--
4: - - 9242281

Th'is tal;le gives the Betti numbers of k[.A] in the usual total degree grading. We
write B3 := 3,104 8- In the second column we find 39 = 2 and (Y = 6. This
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means that I 4 has eight minimal generators, 2 quadrics and 6 cubics. The higher
Betti numbers are

64}:9’ ,Bé=6, 6é:97 6.?:27 ﬂgz& 16'?:24’
Br=2 B3=22 O5=8 Ao=1

We now illustrate Theorem 12.12 by deriving the highest non—vamshlng Betti num-
ber 33,. More precisely, we shall prove that

B = dimp Hs(Apsk) = 1 for b =(25,25,25,25).

Using Algorithm 5.7, we easily enumerate the fiber of that multi-degree:

a1(b) = {(00222211), (01232110), (02202112), (03212011),
(10321201), (11331100), (12301102), (13311001),
(20021221), (21031120), (22001122), (23011021),
(30120211), (31130110), (32100112), (33110011)}.

The simplicial complex Ay = {345678,234567,235678 ...,123478} is a triangula-
tion of the 5-dimensional sphere. In fact, Ap equals the boundary complex of the
cyclic 6-polytope with 8 vertices; see (Ziegler 1995, Theorem 0. 7) where this poly-
tope is denoted Cs(8). To identify Ay, with 8Cs(8), either check that the minimal
non-faces of Ay, are precisely {1,3,5,7} and {2,4,6,8}, or verify Gale’s evenness
condition for the supports of the 16 vectors in 7~ (b). Since Ay, is a 5-sphere, the
group Hs(Ap;k) is k! m :

12.D. Localization in integer programming

Linear programming is generally much easier than integer programming. Indeed,
linear programs can be solved in polynomial time, whereas there is very little hope
(unless P = NP) that general integer programs can be solved in polynomial time.
Practical experience confirms these complexity results. Therefore, when analyzing
the families of integer programs in Section 5, it makes sense to assume that the solu-
tion to the linear relaxation (8.4) is already known. In fact, taking the conjunction
over all right hand sides b, we may even assume that the regular triangulation A
is given to us explicitly, along with the matrix A and the term order <= <. We
shall discuss algebraic techniques for speeding up Algorithm 5.6 which are based
on this assumption.

We write M := in(I4) for the corresponding initial ideal. It is spanned by
all (monomials x" representing) non-optimal points u € N" with respect to <.
We are interested in the primary decomposition of M. We assume that the reader
knows how to compute the associated primes of a monomial ideal; see e.g. (Eisenbud
1995. p. 111). By Theorem 8.3 and Corollary 8.4, the minimal primes of M are in
bijection with the maximal faces of A, while the embedded primes correspond to
certain lower-dimensional faces of A.

Let x* ¢ M be a standard monomial. A subset X of the variable set
{z1,...,x,} (or, equivalently, a subset of A) is said to be compatible with x"
if every monomial in the vector space x" - k[X] is standard. If X is compatible
with x¥ and has maximal cardinality with this property, then we say that X is
assoctated with x".
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Lemma 12.14.

(a) If X is compatible with a standard monomial x*, then the set X is a simplex
inA.

(b) If X is associated with a standard monomial x*, then
Px = ({z1,...,2,}\X) is an associated prime ideal of M.

Proof:  The compatibility condition is equivalent to
“EX]NnM = {0} = (M :x") C Py. (12.13)

If .t}‘liS hold§, then there exists a superset of variables X’ D X such that Py is a
minimal lprlme of (M : x“). This implies that Py, is an associated prime of M.
Hence X’ is a simplex in A, and so is its subset X. If X is associated with x"

then X is maximal with the property (12.13). In this case X = X’ and hence PX
is an associated prime of M. m

Our principal goal is to solve the integer programming problem:
Find the <-minimal vector u € N™ subject to A-u=b. (12.14)

A subset of variables X is compatible (resp. associated) with the right hand side b
if X is compatible (resp. associated) with x", where u is the optimal solution to
(12.14?. We abbreviate X := {z,...,2,}\X and consider the localized polyno-
mial ring k(X)[X°]. By restricting to monomials in X¢ alone, < defines a term
order on k(X)[X*]. Let Gx be the reduced Grébner basis with respect to < of the
image of the toric ideal I 4 in k(X )[X“].

Theorem 12.15. Let u’ be any vector in N™ satisfying A - u’ = b, and let X

be any simplex in the triangulation A_. Then the following three statements are
equivalent:

(a) The simplex X is compatible to b.
(b) The normal form of x“/ with respect to Gx is a monomial in k{zy, ..., z,)].
(c) The normal form of x¥ with respect to Gx is the optimal solution to (12.14).

Proof: Let u be the optimal solution of (12.14), and let ILX denote the product
of all variables in X. The localized initial idea) equals

(in<(Gx)) = (M : (IX)®). (12.15)

Statement (c) holds if and only if X" does not lie in (12.15) if and only if (12.13)
bolds if and only if (a) holds. Clearly (c) implies (b). Suppose that (b) holds, and
let xV be the normal form of x* with respect to Gx. Then xV < x" < x'. Since

x¥ € k[z1,...,z,), we have x" — xV € I 4. These two facts imply x" = hi
means that (c) holds. = ply xV, which

The utility of this theorem lies in the fact that Gx is often easier to compute
than ¢ = Gp, the Grobner basis of I4 in k[zy,.. ,Zn]. Computing Gx is most
efficient when X is a maximal simplex A, because in this case (Gx) = I4-
k(X)[X¢] is a zero-dimensional ideal. This heuristic shortcut to solving (12.14)
applies to almost all right hand sides b.
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Proposition 12.16. Suppose that I 4 is positively graded. As the degree'increases,
the fraction of right hand sides b which are compatible to maximal simplices of A
tends to 1.

Proof: We identity the right hand sides b € N.A with the standard'monomials
x" ¢ M. Their number in degree r equals the value of the Hilbert function H M'(r).
Let T denote the intersection of all top-dimensional primary components of M (i.e.,
primary components whose radical is a minimal prime of M). We bave M .g T. A
monomial x" lies in T\M if and only if no minimal prime of M is as§oc1a‘fled to
(M : x"). This means that no maximal simplex of A is compa‘clblej with x*. .We
conclude that the fraction of right hand sides b compatible to maximal §1mph‘ces
in degree r equals Hp(r)/Hp(r). Since M and T are ideals of the same dimension
and degree, we have lim, .ocHr(r)/Hu(r) = 1. m

Example 12.7. (continued) o
The initial terms in (12.5) generate the monomial ideal

2 .3 .2 2 .4 .4
M = (z‘},12{17,zlzg,m1m7,m2,932:58,:52.7:4,:1:2:1:8,9:3,9:4)‘
= Q1N QN QKsN Qy

whose primary decomposition consists of the four ideals

.

3 ,..2 4 .2
Ql - <I1,I2,I§,Ii>, Q2 = <Il,Il.’L’7,.’L‘2,Ig,I4,I7>,

3 ,.2 2 .2
QS = <$17Ig»$%$8a1§a$4,1’§>a and Q4 = <$?,.’If%.’1)7,12,121138,.’133,.’134,17,.’138>.
The associated primes P; = Rad(Q;) are
P1 = <Il,.’E2,.’I23,.’I24>, P2 = P1 + (.’L’7>, P3 = Pl + <.’Eg>, and P4 = P1 + <£I37,Ig>.

There is only one minimal prime P; = Rad(M). Hence T = Ql.and .A< =
{{5,6,7,8}}. The fact that the triangulation A has only one maximal simplex
means that the linear program (8.4) is trivial to solve: for each b € pos(A), the LP-
optimum is the unique vector v = (0,0,0,0, vs, vs, v7, vg) € R® sati.sfying .A.v =b.

Suppose we wish to solve the integer program (12.14) for a given feasible so-
lution but the Grobner basis G in (12.5) is not yet known or too hard to com-
pute. The heuristic suggested by Proposition 12.16 is to use instead‘the local
Grobner basis Gx for X = {z5,x¢,27,2s}. Applying a variant of Algorithm 12.3
in k(X)[z1,x2, T3,24), we find

3,2 3 2 4 _ . 3 4 _ . .3\
Gx = {z1—xia7?, 12— 33T, T3 — TsTy, Ty T6Ty )

Note that T = Q1 = (ing(Gx)) = (M : (zszex778)™).
We consider two given feasible solutions of degree r = 1000:

v() = (2,76,1,11,231,372,1,206) and v® = (2,76,1,11,231,372,0,207).

i . ()
The normal form of x¥'~ with respect to Gx is found to be x" ° where

u® = (0,0,3,3,232,431,0,231) and  u® = (0,0,3,3,232,431,-1,232).

. W .
In the first case our heuristic succeeded in solving (12.14): the monomial x* "~ is the
normal form of x¥" with respect to the “unknown” Grébner basis G, by Theorem
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12.15. In the second case it was unsuccessful. The rate of success of this heuristic
equals

Hr(r) 8/3r3 — 8r2 + 76/3r — 20

Hy(r) — 8/3r3+4r2 —17/3r+7

in degree r > 3

The probability of hitting a bad fiber in degree 1000 is 1 — 7{,’%‘(’)‘3}3 =0.00448 - - -.
|

Returning to our general discussion, consider the unlucky event that the local-
ization heuristic fails. Then the negative exponents in the normal form zJ' 23 . . zi»
modulo Gx suggest the following next step: Replace X by the subsimplex X \{z, :
J» <0} and redo the local Grébner basis computation and reduction. For instance,
replacing X = {5,6,7,8} by X = {5,6,8} for v(?) in the above example yields the
correct solution (1,0,0, 3,232,431, 1,232). The trade off is that Gsgg has cardinality
seven.

The efficiency of the heuristic is improved by working in k[X€] instead of
K(X)[X¢]. Indeed, consider the map p : k(X)[X°] — k[X°] which sends each
variable z; € X to the constant 1. Since X is a simplex in AL, it follows that
the restriction of p to the set of irreducible binomials in 4 - k(X)[X*] is injective.
Moreover, the inverse map is easy to compute by homogenization. This means in
practise that one computes the Grébner basis G := p(Gx) instead of Gx.

Exercises:

(1) Show that the Grébner basis ¢’ in Lemma 12.1 need not be reduced, even if G
is reduced.

(2) Prove Proposition 12.9.

(3) Consider the following vertex set of a planar pentagon,

0 6 11 4 2
A = (01 5 9 5],
111 11

and let < be the lexicographic order given by z; < 25 < 23 < x4 < 5.

(a) Compute the reduced Grébner basis for 14 using both Algorithms 12.3
and 12.6.

(b) Compute a primary decomposition of in_(I).

(c) The maximal faces of the regular triangulation A are the three trian-
gles 123,134 and 145. Compute the corresponding local Grobner bases
G123, Go34 and Gags.

(d) Find a right hand side vector b = (b, by, b3) with bs = 1000 such that the
local heuristic fails simultaneously for all three triangles in A.

(e) What is the probability for the unlucky event in (d) to happen if b is
chosen at random from the uniform distribution on 1000- .4 ?

(4) Compute the minimal free resolution (12.8) of I4 for the matrix A in the
previous exercise. Verify Theorem 12.12 for the minimal generators and the
second syzygies.

(5) Characterize integer programs with the property that #n_(I4) has no embed-
ded components.
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(6) Explain how truncated Grobner bases can be used to solve integer program-
ming problems of the form

Minimize c¢-u subjectto A-u=b, ue{01,...,r}"

Notes:

Algorithm 12.6 is due to Di Biase and Urbanke (1995). Both Algorithm 12.3 and
12.6 are implemented in Hosten’s program GRIN (“Groébner bases for I.nteger
Programming”). An experimental discussion and comparison to existing integer
programming software (CPLEX) is given in (Hosten & Sturmfels 1995). (}RIN
is available via anonymous ftp from ftp.orie.cornell.edu. Truncated Grébner
bases for integer programming have been introduced by Thomas and Weismantel
(1995). In this work the combinatorial algorithms of (Urbaniak, Welsma.ntel. &
Ziegler 1994) are extended and placed in an algebraic setting. The characterization

of Koszul homology of toric ideals (Theorem 12.12) appears for d = 1 in (Campillo

& Marijuan 1991) and for general d in (Campillo & Pison 1993). The passage to

the local Grébner bases Gx in Theorem 12.15 is equivalent to the relaxatjon to the ,

group problem in integer programming as presented on page 364 in (Schrijver 1.986).
This equivalence was suggested in Section 6 of (Sturmfels, Weismantel & Ziegler

1995).

CHAPTER 13
Toric Varieties in Algebraic Geometry

The theory of toric varieties plays an important role at the crossroads of ge-
ometry, algebra and combinatorics. It provides a fertile testing ground for general
theories in algebraic geometry (and in symplectic geometry, and in topology, and
...). It is the objective of this chapter to establish a connection to toric varieties as
they are defined and used by algebraic geometers. We shall assume that the reader
is familiar with the books of Fulton (1993) and Oda (1988). Notation and results
from these books will be used.

Starting with Chapter 4 we have chosen the name “toric variety” for the zero
set of any toric ideal I 4. In other words, we defined a toric variety to be an affine or
projective variety which is parametrized by a set .4 of monomials. This nomencla-
ture disagrees with the standard definition used in algebraic geometry, which goes
as follows: a toric variety is a normal variety X that contains an algebraic torus
T ~ (k*)¢ as a dense open subset, together with an action T x X — X of T on
X that extends the natural action of T on itself. (In this chapter we shall make
the simplifying assumption that k is an algebraically closed field of characteristic
zero.) The crucial requirement here is that X is normal. In the following we shall
prepend this adjective for the sake of utmost clarity.

Let X be a normal toric variety which is either affine or projective, and suppose
further that X is endowed with an explicit embedding into affine or projective space.
Then X is defined by a toric ideal I 4, where A belongs to a special class of vector
configurations. Our first goal is to identify these configurations.

We fix a lattice N ~ Z¢ and its dual lattice M = NV. Let o denote a strongly
convex (rational polyhedral) cone in the corresponding vector space Nq ~ Q¢. Its
polar dual

0/ = {u€eMqg:u-v>0 forallveo}.

is a d-dimensional cone in the dual vector space. The associated semigroup
S, = o¢'NM = {ueM :uv>0 forall veo}

is finitely generated, and hence so is the semigroup algebra k[S,|. Its spectrum
X, = Spec(k[S,]) is a normal affine toric variety. Conversely, every normal
affine toric variety is isomorphic to X, for some cone o; see (Oda 1988, Theorem
1.5).

Lemma 13.1. The cone o is d-dimensional if and only if its dual o is strongly
convex. In this case the semigroup S, has a unique minimal finite generating set
ACM =174

‘)
{0}

Proof: The cone ¢V is strongly convex if and only if its lineality space oVN(—o
o' equals {0} if and only if & is d-dimensional. The hypothesis S, N (—S,) =
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implies that we can define a partial order on S;\{0} by u<v :<= v-—ue€ S
Let A be the set of minimal elements in this partial order. Clearly, the set A
minimally generates S,, and it is unique with this property. To show that A is
finite, we need the fact that ¢V is a rational cone. Let ay,...,a, be the first non-
zero lattice points on the extreme rays of o¥. Then A is contained in the zonotope
(sum of line segments) 3_;_;[0,a;]. This sum being a bounded set, it contains only
finitely many lattice points. m

The unique minimal generating set A of a strongly convex semigroup S, is
called the Hilbert basis. Here is an algorithm using Grébner bases for computing
Hilbert bases.

Algorithm 13.2. (Computing the Hilbert basis for an affine toric variety)
Input: A spanning set for a d-dimensional convex polyhedral cone o in N =~ VA
Output: The Hilbert basis A of the semigroup S, C M = NVY.

0. Identify both N and M with Z¢.

1. Replace the given generators of the cone o by a new generating set {vi,...,Vdq, |

Vdil,--+,Vm} consisting only of lattice points and such that {v,...,vq}isa

lattice basis of Z®. Let V denote the m x d-matrix whose rows are the vectors ‘

Viy--+sVYm.
2. The image of V in Z™ is a saturated sublattice, i.e., Z™ /imz (V) is free abelian.
Compute an (m — d) x m-integer matrix B whose kernel equals imz(V).
. Compute the Graver basis Grg C Z™ of the matrix B using Algorithm 7.2.
4. For each non-negative vector s = (si,.. .,8m) in the Graver basis Grp de-
termine and output the unique vector u € Z% such that u-v; = s; for
i=1,...,d.

o

Discussion and proof of correctness: Since o is a rational cone, it is generated by
lattice vectors, and since ¢ is d-dimensional, we can augment any such generating
set by a lattice basis. The computations in steps 1 and 2 involve standard integer
linear algebra. They can be performed using the Hermite normal form algorithm
(see e.g. (Schrijver 1986)).

We replace the semigroup S, = {ueZi:u-v;,>0fori=1,... ,m} by its
image under the monomorphism V, which equals

N™ N Imz(V) = N™nN kerz(B). (13.1)

The Hilbert basis of the semigroup (13.1) consists of those elements which are
minimal in the componentwise partial order on N™. These are precisely the non-
negative vectors in the Graver basis Grp of B. Here the Graver basis is thought of
as a set of vectors in Z™ rather than binomials in k[x]. The vector u computed
in Step 4 is the unique preimage under V of s in So. These vectors constitute the
Hilbert basis of S,. =

Example 13.3. - Let ¢ be the cone spanned by (3,1) and (1,2) in the plane
Q2. We shall compute the Hilbert basis A of S, using Algorithm 13.2. Since the
two given generators do not span the lattice 72, in Step 1 we throw in the vector
(1,1) = 1-(3,1) + 2-(1,2) € o. Now {(1,2),(1,1)} is a basis of Z2. The two

matrices constructed in Steps 1 and 2 are

1 2
vV = 1 1 and B = (2 -5 1).
3 1
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In Stlep 3 we compute the Graver basis of I'z. In vector notation this Graver basis
equals

GTB = {(57270)7 (2’1,1), (1’173)a (0’1,5), (1,0, —2), (3,1,—1) }

ICI; Step 4. we compute the preimages under V of the four non-negative vectors in
hr B. This is easily done by inverting (over Z) the 2 x 2-submatrix consisting of
the first two rows of V. The set of four preimages equals the desired Hilbert basis:

A = {(—173)7 (071)7 (170)7 (27—1) }

The normal toric variety X, is the spectrum of the toric algebra k[S,] = k[A] =

klx]/14. We : .
tcEri]c/ igeal e conclude that X, is embedded in affine 4-space as the zero set of the

In = (zoxy—23}, T4 — 2lv3, 123 — 23 ). (13.2)

Figure 13-1. The fan in Example 13.3.

In the previous chapters we wrote X 4 for the zero set in k" of any toric ideal
I4,and we called X 4 an affine toric variety. This terminology is well-justified since
X 4 contains an algebraic torus T as a dense open subset, together with an action
T x X4 — X4 o0f T on X4 that extends the natural action of T on itself. All that

is lacking is the extra requirement of normality. Here is an easy way to visualize
the dense torus in X 4.

Lemma 13.4. Suppose dim(A) = d. Then the set X4 N (k*)" is an algebraic
grou;()ku;lfer coordinatewise multiplication isomorphic to the d-dimensional torus
Proof:  For any n-element subset .4 of Z¢, the map

*\d *\7
() — Xa N (k)" t=(tn,...,ta) — (6% t%2, .. %)

is an epimorphism of algebraic groups. The additional requirement dim(A) = d
guarantees that this map has a regular inverse. m
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The issue of normality is summarized in our next proposition.

Proposition 13.5. For a finite subset A of Z¢ the following are equivalent:

(1) The affine toric variety X 4 is normal.

(2) The affine toric variety X 4 is isomorphic to X, for some rational cone o in
Q7.

(3) The integral domain k[A] = k[x]/I4 is integrally closed (in its field of frac-
tions). .

(4) The semigroup NA is normal, i.e., NA = ZA N pos(A).

Proof: The conditions (1) and (3) are equivalent by definition of “normality”. The
implications “(2) = (4)” and “(3) = (4)” are obvious. Suppose that (4) holds. To
prove (2) we choose an isomorphism between Z.A and Z° and we replace A be its
image under this isomorphism. Let 7 = pos(A) be the cone generated by this set in
Q¢. Its polar dual o = 7V is a rational cone in Q¢ as well. We have 0¥ =7"V =1
and S, = ZNt = ZANpos(A) = NA. Therefore X, is isomorphic to X 4. For
the remaining implication “(4) = (3)” we refer to the proposition on pages 29-30
of (Fulton 1993). m

Corollary 13.6. For any finite subset A of Z% the normalization of the affine
toric variety X 4 is the normal toric variety X, where M = ZA, N = MV, and
o = (pos(A))”.

Let o and A be as in Lemma 13.1. Then X, = X 4 is smooth if and only if A
is a lattice basis of Z¢ if and only if 74 = {0}. In all other cases the given normal
affine toric variety has a singularity at the origin 0. An important invariant of a
singular point on a variety X is its tangent cone. According to (Shafarevich 1977,
Section I1.1.5), the tangent cone is defined by the initial forms of lowest total degree
of all defining equations of X. We paraphrase this for the toric case using initial
ideals.

Remark 13.7. Let X, = X 4 be a normal affine toric variety as in Lemma 13.1.
The defining ideal of the tangent cone at the origin 0 € X 4 is in_o(l4), where
e=(1,1,...,1).

Note that S, = N A is a strongly convex semigroup, so that the Grébner region
of I 4 equals all of R". Hence the negative vector —e does determine a partial term
order for I 4. Using the identifications of Theorems 8.3 and 10.10, the underlying
reduced scheme of the tangent cone equals the coherent polyhedral subdivision A_e
of A. For instance, consider Example 13.3: the three binomials in (13.2) are the
reduced Grébner basis for any term order refining —e = (—1,-1,-1,-1). The
tangent cone of this 2-dimensional toric singularity happens to be a reduced scheme.
It is defined by the Stanley ideal

inc,1,-1,-1){1a) = (123, T174, o2 — woxy ) = (1, 5 — T3z4) N (T3, 74).
The corresponding polyhedral subdivision of A is

A(—l,—l,—l,—l) = {{25374}7 {1a 2}}

We now turn our attention to normal projective toric varieties. Following
(Fulton 1993) and (Oda 1988) we fix a complete fan A in N ~ Z< which is the
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ngrmal fap of a polytope in Mq. Such fans are called strongly polytopal. They are
dlsc.ussc'ad in (Fulton 1993, Section 1.5) and in (Oda 1988, Section 2.4). 'I.‘he no);mal
projective toric variety X is glued from the normal affine toric varieties X, where
o runs over all cones in A. This is an abstract construction. A priori thgr,e is no
concrete model of X in any projective space. To map XA into projective space we
must choose an ample divisor D. Let Pp be the associated polytope in Mg ~ Q¢
(Fu}ton 1993, Section 3.4). Then we get a map ¥p from X, onto the pr?)'e-ctive
variety Y4 which is the zero set of the homogeneous toric ideal I 4, where :

A = (PpnM)x{1}) ¢ M@Z ~ zi+1 (13.3)

The extra coordinate “1” is essential here: in particular, it guarantees the homo-

geneity condition in Lemma 4.14. Our assertion that Y4 equals the image of X

under the map 4, defined by the ample divisor D i
Lemma on page 66). ple divisor D is the content of (Fulton 1993, -

' In orfier to determine whether D is very ample, that is, whether Y4 is actuall

1s9morph1c to Xa, we consider the affine cover {Xs}oea of Xa. We identif Py
with the convex hull of A. Each d-dimensional cone o € A is the normal fe};n cl))f
the polytope Pp at a vertex a,. In the notation of Chapter 1 this is expressed as

o = Np,({as}).

Lemma 13.8. The divisor D is very ample if and only if the semigroup S, is
generated by A — a, for every d-dimensional cone o € A,

Proof: See page 69 of (Fulton 1993). w

. Formally, the set A—a, = {a—a, :a€c A} liesin M @ Z. But each element
as zero last coordinate. We drop it and identify A — a, with its image in M.

Example 13.9. .(Embedding P! x P! into P'! by the line bundle 0(3,2))
Let A be the f.an in Z? consisting of the four orthants. Then X equals the prod-
uct of two projective lines, P! x P'. The four rays of A are denoted D0y, Do)

D_1,0), D Th LV :
7 (=1,00, L(0,~1)- ey correspond to the codimension 1 orbit
ing divisor is very ample: orbits on Xa. The follow-

D = 2D+ Dy + D(_1,0y + D(o,—1).
The polytope defined by the divisor D is the rectangle
Pp = {(u,u)€Q®:u; <2, up< I, —~u; <1, —uy <1},
In this example the configuration (13.3) equals

A = {(-1,-1,1),(-1,0,1), (-1,1,1), (0,-1,1), (0,0,1), (0,1,1),
(1,-1,1), (1,0,1), (1,1,1), (2,-1,1), (2,0,1), (2,,1) }.
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Figure 13-2. Embedding of P! x P! via O(3,2).

That the line bundle O(D) ~ O(3,2) is very ample can be seeln.by verlilfying the
condition in Lemma 13.8. The resulting embedding of P! x P! into P'* has thq
defining ideal

2%
- — i1 — T10T12 )-
I,= ( z% — I1T3, 23 — L1T4, T2T5 — T1T6y ..., T10T11 — T9TL12, Tq; 10 12>

Algebraic geometers will find it noteworthy that thg sets A in ( 13.3.)-.always give
embeddings by complete linear series. Naturally, it is very well Poss1ble to eml?ed
a normal projective toric variety Xa by an incomplete linear series, corres/pondlng
to a certain subset A’ of A. For instance, in Example 13.9 we9 can take A’ := .A\
{(0,0,1),(1,0,1)} to get such an embedding of P! x P! into P°. The correspo.ndlr.lg
toric ideal T4 = I4 N kl[zy,...,Ts,Ts, T, ... T12] is not generated by quadrics (in
contrast to Conjecture 13.19 below). Among its 22 minimal generators there. are
two cubics. Our claim that Y4 is still isomorphic to P! x P! can be verified
in the previous diagram: removal of the two interior points does not change the
semigroups corresponding to the four affine coordinate charts. m

For the remainder of Chapter 13 we assume that A = {al,.. ..,a,} spans Zd
and is a graded set in the sense of Lemma 4.14, meaning that [ 4 is ho¥noger.1eous in
the usual grading deg(z;) = 1. The toric ideal I 4 defines an afﬁn‘e toric va?letyn)_( 14
of dimension d in k™ and a projective toric variety Y4 of dime_n.smn d—1in P i
The variety Y4 is projectively normal if the equivalent conditions of Proposition
13.5 hold. A weaker requirement for Y4 is to be normal. Readersf of‘(Hartshorne
1977) will find a normal projective toric variety which is not prOchtlvely normal
on page 23 in Exercise 1.3.18 (b). To address the issue of normality we need to
examine the natural affine cover of Y4.

Lemma 13.10. The projective toric variety Y 4 has an open cover consisting of the
affine toric varieties X 4_n,, where a; runs over the vertices of the (d — 1)-polytope

Q = conv(A).

Proof: The image of the homogeneous ideal 14 under the substitution z; — 1
is the toric ideal I4_a, associated with A—a, = {a—a; : a € A} .Therefore
the i-th affine coordinate chart {z; # 0} in P"! intersects the projective variety
Y4 precisely in the affine variety X 4—a,, and we get an affine covering

Y4 = Xpg-a UXaa, U - UXya, (13.4)
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12.15. In the second case it was unsuccessful. The rate of success of this heuristic
equals

Hr(r) 8/3r® —8r2+76/3r~20
- >
Hp(r) 8/3r3 ¥ 42 — 17/3r 4.7 in degree r > 3

The probability of hitting a bad fiber in degree 1000 is 1— g—;% =0.00448 - - -.
=

Returning to our general discussion, consider the unlucky event that the local-
ization heuristic fails. Then the negative exponents in the normal form ]zl i
modulo Gx suggest the following next step: Replace X by the subsimplex X\{z, :
J» <0} and redo the local Grébner basis computation and reduction. For instance,
replacing X = {5,6,7,8} by X = {5,6,8} for v(?) in the above example yields the
correct solution (1,0,0, 3,232,431, 1, 232). The trade off is that Gsgs has cardinality
seven.

The efficiency of the heuristic is improved by working in k[X€] instead of
K(X)[X¢]. Indeed, consider the map p : k(X )[X¢] — k[X¢] which sends each
variable z; € X to the constant 1. Since X is a simplex in A, it follows that
the restriction of p to the set of irreducible binomials in 7 - k(X)[X€] is injective.
Moreover, the inverse map is easy to compute by homogenization. This means in
practise that one computes the Grobner basis G5 := p(G x ) instead of Gx.

Exercises:

(1) Show that the Grobmer basis G’ in Lemma 12.1 need not be reduced, even if G
is reduced.

(2) Prove Proposition 12.9.

(3) Consider the following vertex set of a planar pentagon,

0 6 11
A = 01 5
1 1 1

— O

2
5,
1

and let < be the lexicographic order given by z1 < 29 < 13 < 74 < 5.

(a) Compute the reduced Grébner basis for I A using both Algorithms 12.3
and 12.6.

(b) Compute a primary decomposition of in<(14).

(c) The maximal faces of the regular triangulation A are the three trian-
gles 123,134 and 145. Compute the corresponding local Grobner bases
G123, Gazs and Gays.

(d) Find a right hand side vector b = (b, by, b3) With by = 1000 such that the
local heuristic fails simultaneously for all three triangles in A_.

(e) What is the probability for the unlucky event in (d) to happen if b is
chosen at random from the uniform distribution on 1000 - A ?

(4) Compute the minimal free resolution (12.8) of I4 for the matrix A in the
previous exercise. Verify Theorem 12.12 for the minimal generators and the
second syzygies.

(5) Characterize integer programs with the property that in(I4) has no embed-
ded components.
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(6) Explain how truncated Grobner bases can be used to solve integer program-
ming problems of the form

Minimize c¢-u subjectto A-u=b, ue{0,1,...,r}"

Notes: -
Algorithm 12.6 is due to Di Biase and Urbanke (1995). Both Algorithm 12.3 and

12.6 are implemented in Hosten’s program GRIN (“Gré%bner basgs fpr I.nteger
Programming”). An experimental discussion and comparison to existing integer
programming software (CPLEX) is given in (Hosten & Sturmfels 1995). (“}RIN
is available via anonymous ftp from ftp.orie.cornell.edu. Truncated Qrobner
bases for integer programming have been introduced by Thom?,s and Welsmantel
(1995). In this work the combinatorial algorithms of (Urbamak, Welsma‘ntel. &
Ziegler 1994) are extended and placed in an algebraic setting. The characterization

of Koszul homology of toric ideals (Theorem 12.12) appears for d = 1 in (Campillo .

& Marijuan 1991) and for general d in (Campillo & Pison 1993). The passage to

the local Grobner bases Gx in Theorem 12.15 is equivalent to the relaxation to the.

group problem in integer programming as presented on page 364 i'n (Schrijver 1.986).
This equivalence was suggested in Section 6 of (Sturmfels, We1smante1 & Ziegler

1995).

CHAPTER 13
Toric Varieties in Algebraic Geometry

The theory of toric varieties plays an important role at the crossroads of ge-
ometry, algebra and combinatorics. It provides a fertile testing ground for general
theories in algebraic geometry (and in symplectic geometry, and in topology, and
...). It is the objective of this chapter to establish a connection to toric varieties as
they are defined and used by algebraic geometers. We shall assume that the reader
is familiar with the books of Fulton ( 1993) and Oda (1988). Notation and results
from these books will be used.

Starting with Chapter 4 we have chosen the name “toric variety” for the zero
set of any toric ideal I 4. In other words, we defined a toric variety to be an affine or
projective variety which is parametrized by a set .A of monomials. This nomencla-
ture disagrees with the standard definition used in algebraic geometry, which goes
as follows: a toric variety is a normal variety X that contains an algebraic torus
T ~ (k*)% as a dense open subset, together with an action T x X — X of T on
X that extends the natural action of T on itself. (In this chapter we shall make
the simplifying assumption that & is an algebraically closed field of characteristic
zero.) The crucial requirement here is that X is normal. In the following we shall
prepend this adjective for the sake of utmost clarity.

Let X be a normal toric variety which is either affine or projective, and suppose
further that X is endowed with an explicit embedding into affine or projective space.
Then X is defined by a toric ideal 14, where A belongs to a special class of vector
configurations. Our first goal is to identify these configurations.

We fix a lattice N ~ Z¢ and its dual lattice M = NV. Let o denote a strongly
convex (rational polyhedral) cone in the corresponding vector space Nq ~ Q¢. Its
polar dual

0/ = {ueMqg :u-v>0 forallveo}.

is a d-dimensional cone in the dual vector space. The associated semigroup
Se = d'NM = {ueM:uv>0 forallveo}

is finitely generated, and hence so is the semigroup algebra k[S,]. Its spectrum
Xo = Spec(k[S,]) is a normal affine toric variety. Conversely, every normal
affine toric variety is isomorphic to X, for some cone o; see (Oda 1988, Theorem
1.5).

Lemma 13.1. The cone o is d-dimensional if and only if its dual oV is strongly

convex. In this case the semigroup S, has a unique minimal finite generating set
ACM~1Z%

Y)
{0}

Proof: The cone oV is strongly convex if and only if its lineality space oVN(—o
o' equals {0} if and only if & is d-dimensional. The hypothesis S, N (-5,) =
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implies that we can define a partial order on S;\{0} by u<v : <= v-ue€S,.
Let A be the set of minimal elements in this partial order. Clearly, the set A
minimally generates S,, and it is unique with this property. To show that A is
finite, we need the fact that oV is a rational cone. Let a,,...,a, be the first non-
zero lattice points on the extreme rays of o¥. Then A is contained in the zonotope
(sum of line segments) 5_;_,[0,a;]. This sum being a bounded set, it contains only
finitely many lattice points. m

The unique minimal generating set A of a strongly convex semigroup Sy is
called the Hilbert basis. Here is an algorithm using Grébner bases for computing
Hilbert bases.

Algorithm 13.2. (Computing the Hilbert basis for an affine toric variety)
Input: A spanning set for a d-dimensional convex polyhedral cone ¢ in N ~ VA
Output: The Hilbert basis .A of the semigroup S, C M = NV.

0. Identify both N and M with Z¢.

1. Replace the given generators of the cone o by a new generating set {vi,-.-,vq,

Vdil,---,Vm} consisting only of lattice points and such that {v1,...,vq}isa

lattice basis of Z¢. Let V denote the m x d-matrix whose rows are the vectors”

Viy..ey Vin.
2. The image of V in Z™ is a saturated sublattice, i.e., Z™/imz(V) is free abelian.
Compute an (m — d) x m-integer matrix B whose kernel equals imz(V).
. Compute the Graver basis Grg C Z™ of the matrix B using Algorithm 7.2.
4. For each non-negative vector s = (s1,...,Sm) in the Graver basis Grg de-
termine and output the unique vector u € Z? such that u-v; = s; for
i=1,....d

W

Discussion and proof of correctness: Since o is a rational cone, it is generated by
lattice vectors, and since o is d-dimensional, we can augment any such generating
set by a lattice basis. The computations in steps 1 and 2 involve standard integer
linear algebra. They can be performed using the Hermite normal form algorithm
(see e.g. (Schrijver 1986)).

We replace the semigroup S, = {u € Z¢:u.v;,>0fori=1,...,m} byits
image under the monomorphism V, which equals

N™ n Imz(V) = N™nNn kerz(B). (13.1)

The Hilbert basis of the semigroup (13.1) consists of those elements which are
minimal in the componentwise partial order on N™. These are precisely the non-
negative vectors in the Graver basis Grp of B. Here the Graver basis is thought of
as a set of vectors in Z™ rather than binomials in k[x]. The vector u computed
in Step 4 is the unique preimage under V of s in S,. These vectors constitute the
Hilbert basis of S,. m

Example 13.3. Let ¢ be the cone spanned by (3,1) and (1,2) in the plane
Q2. We shall compute the Hilbert basis A of S, using Algorithm 13.2. Since the
two given generators do not span the lattice Z2, in Step 1 we throw in the vector
(1,1) = L-(3,1) + 2-(1,2) € 0. Now {(1,2),(1,1)} is a basis of Z?. The two

matrices constructed in Steps 1 and 2 are

1 2
v = 11 and B = (2 -5 1).
3 1
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In Stlep 3 we compute the Graver basis of Is. In vector notation this Graver basis
equals

Grg = {(5,2,0), (21,1), (1,1,3), (0,1,5), (1,0,—2), (3,1,-1) }.

In Step 4. we compute the preimages under V' of the four non-negative vectors in
Grp. This is easily done by inverting (over Z) the 2 x 2-submatrix consisting of
the first two rows of V. The set of four preimages equals the desired Hilbert basis:

A = {(_1a3)a (0’ 1)’ (1’0)’ (2’_1) }

The normal toric variety X, is the spectrum of the toric algebra k[S,] = k[A] =

k(x]/L4. We conclude that X, is embedded in affine 4-space as the zero set of the
toric ideal

Ia = (zoz4— mg, T1T4 — TiT3, T 103 — 3 ). (13.2)

Figure 13-1. The fan in Example 13.3.

In the previous chapters we wrote X 4 for the zero set in k™ of any toric ideal
I 4, and we called X 4 an affine toric variety. This terminology is well-justified since
X 4 contains an algebraic torus T as a dense open subset, together with an action
Tx X4 — Xaof Ton X4 that extends the natural action of T on itself. All that

is lacking is the extra requirement of normality. Here is an easy way to visualize
the dense torus in X 4.

Lemma 13.4. Suppose dim(A) = d. Then the set X4 N (k*)" is an algebraic

gﬂrouI(J u;1dder coordinatewise multiplication isomorphic to the d-dimensional torus
= (k*).

Proof: For any n-element subset A of Z¢, the map

(K4 = Xan (k) t=(t,...,ta) — (£2,£%2,...,¢%)

is an epimorphism of algebraic groups. The additional requirement dimn(A) = d
guarantees that this map has a regular inverse. m
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The issue of normality is summarized in our next proposition.

Proposition 13.5. For a finite subset A of Z¢ the following are equivalent:

(1) The affine toric variety X 4 is normal.

(2) The affine toric variety X 4 is isomorphic to X, for some rational cone o in
QY.

(3) The integral domain k[A] = k[x]/14 is integrally closed (in its field of frac-
tions).

(4) The semigroup NA is normal, i.e., NA = ZA N pos(A).

Proof: The conditions (1) and (3) are equivalent by definition of “normality”. The
implications “(2) = (4)” and “(3) = (4)” are obvious. Suppose that (4) holds. To
prove (2) we choose an isomorphism between ZA and Z? and we replace A be its
image under this isomorphism. Let 7 = pos(.A) be the cone generated by this set in
Q<. Its polar dual o = 7V is a rational cone in Q¢ as well. We have 0¥ =7"¥ =17
and S, = Z°N7 = ZANpos(A) = NA. Therefore X, is isomorphic to X 4. For

the remaining implication “(4) = (3)” we refer to the proposition on pages 29-30

of (Fulton 1993). m
Corollary 13.6. For any finite subset A of Z¢, the normalization of the affine
toric variety X 4 is the normal toric variety X, where M = ZA, N = M Vv, and

o = (pos(A))V.

Let o and A be as in Lemma 13.1. Then X, = X 4 is smooth if and only if A
is a lattice basis of Z¢ if and only if 4 = {0}. In all other cases the given normal
affine toric variety has a singularity at the origin 0. An important invariant of a
singular point on a variety X is its tangent cone. According to (Shafarevich 1977,
Section I1.1.5), the tangent cone is defined by the initial forms of lowest total degree
of all defining equations of X. We paraphrase this for the toric case using initial
ideals.

Remark 13.7. Let X, = X 4 be a normal affine toric variety as in Lemma 13.1.
The defining ideal of the tangent cone at the origin 0 € X 4 is in_e(I4), where
e=(1,1,...,1).

Note that S, = N.A is a strongly convex semigroup, so that the Grébner region
of I 4 equals all of R™. Hence the negative vector —e does determine a partial term
order for I4. Using the identifications of Theorems 8.3 and 10.10, the underlying
reduced scheme of the tangent cone equals the coherent polyhedral subdivision A e
of A. For instance, consider Example 13.3: the three binomials in (13.2) are the
reduced Grobner basis for any term order refining —e = (—1,—1,—1,—1). The
tangent cone of this 2-dimensional toric singularity happens to be a reduced scheme.
It is defined by the Stanley ideal

in( 1, 1,-1,-1(La) = (2123, T124, T3 — Taxa) = (T2, &5 — T2T4) N (T3, T4).
The corresponding polyhedral subdivision of A is

A(—1,*1,*1,—1) = {{2’3’4}9 {19 2}}

We now turn our attention to normal projective toric varieties. Following
(Fulton 1993) and (Oda 1988) we fix a complete fan A in N ~ Z¢ which is the
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normal fan of a polytope in Mq. Such fans are called strongly polytopal. They are
discussed in (Fulton 1993, Section 1.5) and in (Oda 1988, Section 2.4). The normal
projective toric variety X is glued from the normal affine toric varieties X, where
o runs over all cones in A. This is an abstract construction. A priori there is no
concrete model of XA in any projective space. To map X, into projective space we
must choose an ample divisor D. Let Pp be the associated polytope in Mq ~ Q¢
(Fulton 1993, Section 3.4). Then we get a map ¥p from X, onto the projective
variety Y4 which is the zero set of the homogeneous toric ideal I 4, where

A = (PonM)x{l} C¢ MoZ ~ 74!, (13.3)

The extra coordinate “1” is essential here: in particular, it guarantees the homo-
geneity condition in Lemma 4.14. Our assertion that Y4 equals the image of X
under the map ¥ defined by the ample divisor D is the content of (Fulton 1993,
Lemma on page 66).

In order to determine whether D is very ample, that is, whether Y4 is actually
isomorphic to X, we consider the affine cover {X,},en of Xa. We identify Pp
with the convex hull of .A. Each d-dimensional cone ¢ € A is the normal fan of
the polytope Pp at a vertex a,. In the notation of Chapter 1 this is expressed as

g = NPD({aO’})‘

Lemma 13.8. The divisor D is very ample if and only if the semigroup S, is
generated by A — a, for every d-dimensional cone o € A,

Proof: See page 69 of (Fulton 1993). m

Formally, the set A —a, = {a—a, :a € A} liesin M & Z. But each element
has zero last coordinate. We drop it and identify A — a, with its image in M.

Example 13.9. (Embedding P' x P' into P'! by the line bundle O(3,2))

Let A be the fan in Z? consisting of the four orthants. Then X equals the prod-
uct of two projective lines, P! x P!. The four rays of A are denoted D10y, D(o,1,
D(_1,0y, D(9,—1)- They correspond to the codimension 1 orbits on Xa. The follow-
ing divisor is very ample:

D = 2Du0)+ D1y + D10y + D(o,—1)-
The polytope defined by the divisor D is the rectangle
Pp = {(u,u) €Q?:u <2, ups < 1, —u1 <1, —ups <1}.
In this example the configuration {13.3) equals

A = {(-1,-11),(-10,1), (~1,1,1), (0, -1,1), (0,0,1), (0,1,1),
(la_l,l)a (150’1)7 (lalal)» (2a_1’1)7 (2a0’1)’ (271?1) }
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Figure 13-2. Embedding of P! x P! via 0(3,2).

That the line bundle O(D) ~ O(3,2) is very ample can be seen by verifying the

condition in Lemma 13.8. The resulting embedding of P! x P! into P! has the

defining ideal
2 2 T10T12)-
I,= ( I5 — T1T3, T2T3 — T1T4, T2T5 — T1Te, --- 5 T10T11 — T9L12, T1) 10L12 /-

Algebraic geometers will find it noteworthy that the sets A in (13.3) always give
embeddings by complete linear series. Naturally, it is very well possible to embed
a normal projective toric variety Xa by an incomplete linear series, corresponding
to a certain subset A’ of A. For instance, in Example 13.9 we can take A’ := A\
{(0,0,1),(1,0,1)} to get such an embedding of P x P!into P°. The correspo.ndir.lg
toric ideal T4 = I4 N k[zy,...,Ts5,Ts,Tg,...T12] is not generated by quadrics (in
contrast to Conjecture 13.19 below). Among its 22 minimal generators there are
two cubics. Our claim that Y is still isomorphic to P! x P! can be verified
in the previous diagram: removal of the two interior points does not change the
semigroups corresponding to the four affine coordinate charts. m

For the remainder of Chapter 13 we assume that A = {a;,...,a,} spans yAd
and is a graded set in the sense of Lemma 4.14, meaning that I 4 is homogeneous in
the usual grading deg(zx;) = 1. The toric ideal I 4 defines an affine toric variety X 4
of dimension d in k™ and a projective toric variety Y4 of dimension d —1 in pr-1
The variety Y4 is projectively normal if the equivalent conditions of Proposition
13.5 hold. A weaker requirement for Y, is to be normal. Readers of (Hartshorne
1977) will find a normal projective toric variety which is not projectively normal
on page 23 in Exercise 1.3.18 (b). To address the issue of normality we need to
examine the natural affine cover of Y 4. '

Lemma 13.10. The projective toric variety Y 4 has an open cover consisting of the
affine toric varieties X 4_a,, where a; runs over the vertices of the (d — 1)-polytope

Q = conu(A).

Proof: The image of the homogeneous ideal I, under the substitution z; — 1
is the toric ideal I4_a, associated with A—a; = {a—a; : a € A}. Therefore
the i-th affine coordinate chart {z; # 0} in P"~! intersects the projective variety
Y4 precisely in the affine variety X 4_a,, and we get an affine covering

Yi = Xpg-a, UXa-a, U -+ UXya,. (13.4)
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Let aj,...,a, be the vertices of Q@ = conv(A). For each non-vertex a;, i = s +
1,...,n, there exists a homogeneous binomial of the form z% — IT5-, x?" in the
ideal I4. Hence all points x = (z; : -~ : T) on Y4 must have a non-zero entry

among its first s coordinates. Equivalently, the affine charts X A—a, for i > s are
redundant in the union (13.4). m

We recall the definitions of the Hilbert polynomial and the Ehrhart polynomial:

Hu(r) = #{ai1+---+air:ail,...,aireA} for >0
Ea(r) = #(r-conv(A) N ZA) for r>0.

It follows directly from the definition that Ha(r) < E(r). In the proof of
Theorem 4.16 it was shown that both polynomials have the same initial term

Vol(Q) pdm(A)

dim(A)!

Theorem 13.11. The projective toric variety Y4 is normal if and only if its Hilbert
polynomial H 4 and its Ehrhart polynomial E 4 are equal.

Proof: Let aj,...,a, denote the vertices of Q = conv(.A). The projective variety
Y4 is normal if and only if all of its charts X A—a,; are normal affine toric varieties.
By Proposition 13.5 and Lemma 13.10, the latter condition is equivalent to

N(A—-a;) = pos(A—a;) N Z(A- a;) for i=1,2,...,s. (13.5)

To prove the if-direction suppose that (13.5) does not hold. Choose a vector b
in the right hand side of (13.5) which does not lie in the left hand side. For all
sufficiently large integers r > 0, the vector b+ ra; lies in pos(A) N Z.A, but it does
not lie in N.A. Therefore H4(r) < E 4(r) for r > 0.

We next prove the only-if-direction. Suppose that (13.5) holds. The degree of
a vector b € Z.A is the inner product w - b, where w € Q¢ is the grading functional
in Lemma 4.14. The semigroup algebra of pos(A) N ZA is a finitely generated
graded module over k[A]. This means that there exists a unique minimal finite set
H C pos(A) N ZA such that

pos(A) NZA = H+ NA (13.6)

We claim that each vector h € H has degree at most d—1. Suppose on the contrary
that degree(h) > d. Choose indices iy, . . ., %4 such that h € pos({a;,, ..., a;,}) and
write h = A\ja; +--- 4+ A\ga;,, where \; are non-negative rationals. Then we have
degree(h) = A\j+---+); > d, and therefore A; > 1 for some j. The vector h—a;,
lies in the semigroup pos(.A)NZ.A. This is a contradiction to our assumption that
h is a minimal generator of that semigroup over N.A.

LetheH and i€ {1,...,s} and consider the degree 0 vector h — (h-w) - a;.
It lies in the right hand side of (13.5), and hence it lies in the semigroup N(A—a;).
Adding a sufficiently large positive multiple of a; to this vector yields an element
of NA. We conclude that there exists an integer R > 0 such that

H+R-a, C NA fori=1,..,s. (13.7)
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Let b be an arbitrary vector in pos(A) N Z.A whose degree b-w is at least Rd. There
exists a subset {i1,...,i4} C {1,2,...,s} and rational numbers Ay, .. - Ad > 0.such
that b = X\ja;, +- -+ Aga,,. Since Ay +---+Aq 2 Rd, at least one index satisfies
i, > R. This implies b ~ Ra;; € pos(A). Using (13.6) and (13.7) we conclude

b € Ra; +(pos(A)NZA) = Ra; +H+NA C NA

This implies that E4(r) = H4(r) for all integers r > Rd. »

There is a natural generalization of Theorem 13.11 which explains the difference
between the Ehrhart polynomial and the Hilbert polynomial in geometrif: terms.. A
projective variety Y is said to be normal in dimension > e if, for evelr}f 1r.reduc1ble
subvariety Y’ of dimension > e, the local ring Oyy’ of Y along Y’ is integrally
closed. If F is a face of the polytope Q = conv(A), then we write Z(A/ F) for .the
quotient lattice Z.4/Z(F N.A), and we write A/F for the image of A in this lattice.
We omit the proof of Theorem 13.12.

Theorem 13.12. For a graded set A = {a;,...,a,} C Z4 the following are equiv- -

alent:

(i) The projective toric variety Y4 is normal in dimension > e; .
(ii) pos(A/F)NZ(A/F) = N(A/F) for every e-dimensional face F of Q;
(iii) The polynomial E4(r) — H(r) has degree less than e.

It is easy to go back from the A-point of view to the setting gf a.lgebraic
geometry as presented in (Oda 1988) and (Fulton 1993). The normalization of a
projective toric variety Y4 is the normal projective toric variety Xa deﬁped by the
normal fan A = N(Q) of the polytope Q = conv(A). Here A is taken with respect
to the lattice N = (Z.4)V. If the condition in Theorem 13.11 holds, then Y4 and
X A are isomorphic. ‘

If A’ is a subset of A then there is a natural projection (by deleting coordinates)
from Y 4 onto Y4 if and only if conv(A) = conv(A’). This condition is necessary and
sufficient (by Lemma 13.10) for the projection to be everywhere defined. (B.lra.tlonal
maps are not considered here.) A typical situation is that Y4 is normal and its image
Y4 is no longer normal. For instance, if d = 2, A = {(3,0),(2,1),(1,2),(0,3)} .and
A = {(3,0),(1,2),(0,3)}, then Y4 — Y4 is the map from p! on.to a cu§p1dal
cubic curve (Hartshorne 1977, Exercise 1.3.14 (b), page 22). It is 1nstruct1Ye to
notice that not every projective toric variety can be gotten by such a coordinate
projection.

Example 13.13. (Saturation may destroy the standard grading) o
We shall present a graded set .4 which cannot be extended to a graded set A’ with
the same convex hull such that Y4 is normal. In other words, Y4 is not a proper
coordinate projection of any normal projective toric variety V4. Let d =4,n =5
and define

A = {(0,0,0,1),(0,0,1,1),(1,0,1,1),(0,1,1,1),(1,1,4,1)}.

The projective variety Y, is a hypersurface of degree four in P4, Its ideal is

I, = (z?zs - I%$3$4>
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The polytope Q = conv(A) is a bipyramid, which contains no lattice points from
ZA = Z* other than its vertices. Therefore Y4 is not a proper coordinate projection
of any other projective toric variety. We must show that Y4 is not normal. Consider
the affine chart defined by the vertex as = (1,1,4,1) of Q. Then N(A — aj) is
isomorphic to the semigroup spanned by B = {(1,1,4), (1,1,3), (0,1,3), (1,0,3)}.
The vector (1,1,5) lies in ZB N pos(B) but not in NB. Therefore Xg = XA—a,
is not normal, and hence Y4_,, is not normal. Indeed, the Hilbert polynomial and
the Ehrhart polynomial are different:

2 7 5 )
Ha(r) = 3ri+r®+grt1,  while Ey(r) = r + grz n Flr L

We see that Y4 is not normal in codimension 1. The condition (ii) of Theorem
13.12 is violated for the facet F spanned by the last three vectors in A. The
isomorphism Z(A/F) ~ Z' is defined by the linear form n = (-3,-3,1,2). The
one-dimensional set A/F = {n-a;,---,n-as} = {2,3,0,0,0} does not span a
normal semigroup. m

Our next result concerns the ideal of a projectively normal toric variety Y 4.

Theorem 13.14. Let A C Z? be a graded set such that NA is a normal semigroup.
Then the toric ideal I is generated by homogeneous binomials of degree at most d.

Proof:  Choose a generic n x n-matrix U over k and perform the linear change of
variables x +— U-z, We identify T4 with its image under U. This is a homogeneous

ideal in k[z] = k[z1,...,2,]. (It is is not a binomial ideal !) Let < denote the
reverse lexicographic term order with z; < 22 <--- < 2,,. Suppose dim(A) = d.
Then I4 N k[z1,...,24] = {0}, which means that {z,...,2,} is a linear system

of parameters for k[A].

We shall apply Hochster’s Theorem that k[A] = k[z]/I4 is Cohen-Macaulay;
see (Oda 1988, Corollary 3.9). Since we are in generic coordinates, the results
of Bayer and Stillman (1987a) guarantee that k[z]/in(I4) is Cohen Macaulay
as well. Since in(I4) is Borel-fixed, this means that in(I4) is generated by
monomials only in the last n—d variables z4,1,...,2,. There are only finitely many
standard monomials in these variables. Let h; denote the number of monomials
z -2l not in inL(I4) of degree j = 2441 + -+ i,. The common Hilbert
series of k[A] = k[z]/I4 and k[z]/in<(I4) equals

r ho +hiz+hyz? + - + h 2"
Y Ea(r)-2 = L . (13.8)

Here EA(r) is the Ehrhart polynomial of the (d — 1)-polytope conv(A). This
is a polynomial of degree d — 1. Standard arguments about rational generating
functions (Stanley 1986) imply that the numerator polynomial in (13.8) has the
same degree s = d — 1. Hence there are no standard monomials 27} -+ zi» of
degree d and higher. This means that in_(I4) is generated by monomials of degree
< d. We have shown that the reverse lexicographic Grébner basis of I 4 in generic
coordinates consists of forms of degree < d. m
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We remark that the bound in Theorem 13.14 is tight. For instance, the graded

set
A= {del,deg, ..., deg, e1+e2+...+ed}

spans a normal semigroup (check this), while its toric ideal is generated in degree d:
Iy = (%2 Tg—Thyq).

Also note that our proof of Theorem 13.14 actually proves a stronger statement,
namely, that the toric ideal I4 has regularity at most d. It is an open problem
whether there exists a Grobner basis of degree < d in the original coordinates x
rather than in the generic coordinates z. Here is the precise question: If.A satisfies
the hypotheses of Theorem 13.14, then does the toric ideal I4 C k[x] possess a
Grébner basis of degree at most d ? The answer is “yes” if .4 admits a unimodular
regular triangulation.

Proposition 13.15. Let A be a graded subset of 7% . Suppose that, for some

term order < on kl[x], the initial monomial ideal in(I4) is square fre?. Then
(i) Y4 is projectively normal, and '
(i) the reduced Grébner basis of I 4 with respect to < has degree < d.

Proof: Let A~ be the regular triangulation of A having Stanley-Reisner ideal
in<(I4). By Corollary 8.9 every simplicial cone o of A is spanned by a lattice
basis {a,,,...,a,,}. Every vector b € pos(A) lies in one of these cones o, so
that b = Aja,, + -+ + A4a,, where Aq,...,Aq are unique non-negative reals. If
in addition b lies in Z.A4, then the coefficients A; must be integers, and therefore
b € NA. This shows that the semigroup NA is normal, which means that Y4 is
projectively normal.

For the assertion (ii) we must show that in_(I4) is generated in degree < d.
Every minimal generator of in(I4) is a square-free monomial z;, ;, - T, guch
that {iy,...,i,} is not a face of A but each of its proper subsets is a face of A. Slpce
A triangulates the polytope conu(A), it is a pure (d — 1)-dimensional contractible
simplicial complex. The boundary of the (s — 1)-simplex {iy,...,i,} lies in A, and
it must therefore be the boundary of an (s — 1)-dimensional subcomplex of A. This
implies s < d. m

Proposition 13.15 is a tool for showing that a toric variety is projectively nor-
mal.
Example 13.16. (Toric varieties in the Grassmann variety of lines in pi-1)
Let £ be a generic point on the Grassmann variety Grassg 4 of 2-dimensional linear
subspaces of k%. Let Y := (k*)¢-£ denote its orbit closure under the natural
action of the torus (k*)?. We shall prove that Y is projectively normal. To this end
we consider the Pliicker embedding of Grassz 4 into the projectivization of Aokd.
The image of Y under the Pliicker embedding is isomorphic (in the .A-graded sense
of Chapter 10) to the toric variety Y4, where A = {e;+¢; : 1 <i<j <d} is
the set of weights of A2k? as a GL(d)-module. It was shown in Theorem 9.1 that
the toric ideal 14 possesses a squarc-free initial ideal. Using Proposition 13.15, we
conclude that Y = Y4 is projectively normal. In Chapter 14 we shall see that our
square-free quadratic Grobner basis generalizes to the generic toric variety in the
Grassmann variety Grass, 4 of r-dimensional subspaces. m
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Unfortunately this technique for showing projective normality does not always
apply. Our next example shows that the converse of Proposition 13.15 (i) is false
in general.

Example 13.17.
(A projectively normal toric variety without square-free initial ideal)
Let d = 5,n = 9 and let A be the graded set consisting of the columns of the matrix

010011111
0010112 22
A = 0 060112233
0 00 012 3435
111111111

This defines a 4-dimensional projectively normal toric variety of degree 18 in P8.
The normality of the semigroup N.A was verified by computer (see Exercise (6)
below). The toric ideal 74 has 14 minimal generators: one quadric, twelve cubics
and one quartic. We ran the MAPLE program PUNTOS by Jesus De Loera, ( 1995b)
to enumerate all regular triangulations of the set A. There are 180 of them and
none is unimodular. Using Corollary 8.9 we conclude that no initial monomial
ideal of I4 is square-free. We conjecture the stronger statement that no initial
monomial ideal of I4 is Cohen-Macaulay. (This conjecture is meant with respect
to the original coordinates z1, ..., o, of course.) m

The phenomenon of Example 13.17 can be circumvented by enlarging the gen-
erating set of the given semigroup. Indeed, the familiar desingularization construc-
tion for toric varieties (Fulton 1993, Section 2.6) implies the following result: A
semigroup M is normal if and only if there exists a set .4 of generators of M
which admits a unimodular triangulation. It is noteworthy that the converse of
Proposition 13.15 (i) is true for toric surfaces.

Proposition 13.18. Let Y4 be a projectively normal toric surface in P*~! defined
by the graded subset A = {ay,...,a,} of Z3. Order the variables z1,z,, ...z, so
that a; & conv({ai1,...,a;_1}) for i = 2,...,n and let < be the resulting purely
lexicographic term order on k[x]. Then in_(I4) is square-free and generated in
degree d < 3.

Proof:  The polygon @ = conv(A) has the property that each lattice point of
@ lies in A. Consider the lexicographic triangulation A_ of Q. According to
Proposition 8.6, it can be constructed as follows: Proceed recursively and first
triangulate Q;_1 := conv({ai,...,a;_1}). Then join the new point a; to every
boundary segment of the triangulated polygon Q;_; which is visible from a;. Each
triangle o in the resulting triangulation A contains no lattice points except for its
three vertices. This implies that the normalized area of ¢ is one. (The analogous
property does not hold in higher dimensions; cf. Example 13.13). Hence A is
a unimodular triangulation and in.(l4) is a square-free monomial ideal. It is
generated in degree < 3 by part (ii) of Proposition 13.15. m

The following diagram illustrates the square-free lexicographic Grébner basis
constructed in Proposition 13.18 for the toric ideal 14 in Example 13.9.
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10 9 7
® 4

8 5
o @6
12 11 3

Figure 13-3. Square-free lexicographic Grobner
basis of degree < 3.

One might ask whether the degree bound in Theorem 13.14 can be further

improved by putting geometric restrictions, such as smoothness, on the variety Y4."

Conjecture 13.19. Let Y, be a projectively normal nonsingular togic variety..

Then the toric ideal I 4 is generated by quadratic binomials.

In 1994 Rikard Bggvad announced this conjecture as a theorem, but unfortu-
nately a gap was found in his proof. Bggvad’s approach is based on the technique of
Frobenius splitting in characteristic p and some intersection-theoretic arguments.
It is beyond the scope of this monograph. Note, however, that both the hypothesis
and the conclusion of Conjecture 13.19 are combinatorial statements. (Recall that
Y, is smooth if and only if the semigroup N(A — a) is isomorphic to N~ for
every vertex a of conv(A).) So, we may hope for a purely combinatorial proof of
Conjecture 13.19. For a special class of toric manifolds such a proof was given by
Ewald & Schmeinck (1993). It is also unknown whether the toric ideal I4 of a
projectively normal nonsingular toric variety Y4 always has a quadratic Grobner
basis. We remark that this does not hold in generic coordinates. They were denoted
z = (z1,...,2,) in the proof of Theorem 13.14. As an example we take Y4 to be
the cubic Veronese embedding of P? into P®. The regularity of its ideal I 4 is three.
Every initial ideal of 14 in k{z] = k[z1,. .., z9] is Borel-fixed and has regularity at
least three and must therefore possess a minimal monomial generator of degree > 3.

Exercises:

(1) In Lemma 13.4 we saw that X 4 N (k*)" is a group.
(a) What is the identity element of this group ?
(b) Determine the tangent space of X 4 at this identity point.

(2) Give a geometric description of the subdivision A_¢(.4) considered in Remark
13.7. Derive a criterion for the tangent cone of a toric singularity to be irre-
ducible.

(3) Consider two graded sets .A,.4' C Z¢ and form their sum A+ .4". What is
the geometric relationship among the three projective varieties Y4, Y4 and
Yasa ? Describe the fans of their normalizations. How is the toric ideal
I,y 4 related to T4 and T4 7 What can you say about minimal generators
and Grobner bases ?
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(4) Show that every projective toric surface Y4 is a proper coordinate projection of
a normal projective toric surface. In other words, the phenomenon of Example
13.13 cannot happen for d < 3.

(5) Let A C Z¢ be a graded set such that conv(A4) N ZA = A. Does there exist
a bound in terms of d for the degrees of the minimal generators of I4 ?

(6) Let A be the configuration in Example 13.17.
(a) Compute the Hilbert polynomial H4(r).
(b) Show that H (r) coincides with the Hilbert function r s dimy(k[x]/L4),
for all non-negative integers r.
(c) Compute the Ehrhart polynomial E 4(r).
(d) Conclude that the projective toric variety Y4 is projectively normal.

(7) Let I4 be the ideal of the cubic Veronese embedding of P? into P8, considered
in generic coordinates z = (z1,...,29) as in the proof of Theorem 13.14.
(a) Show that k[A] is a free module of rank 9 over k[z), 2y, z3].
(b) Determine an explicit module basis.
(c) Express the element (z; + - - + 29)* in your basis.

(8) Let Y4 be a projectively normal toric surface. Show that the toric ideal I is
generated by quadrics if and only if the polygon @ = conv(.A) has more than
three lattice points on its boundary. This result is due to Koelman (1993b).

(9) Give an algorithm for computing the normalization of an affine toric variety
X4

(10) Write down explicitly the reduced Grobner basis defined by Figure 13-3.

Notes:

Some exciting current research on toric varieties is motivated by the mirror sym-
metry conjecture of mathematical physics. These developments involve surprising
connections to the material presented in this monograph. Two examples are the
Grébner basis for the quantum cohomology ring of a toric manifold given by Batyrev
(1993) and the role of the secondary fan £(.A) in the work of Aspinwall, Greene
and Morrison (1993).

Theorem 13.14 is a folklore result of commutative algebra. It was first explained
to me by Victor Batyrev in 1992. For the special case of toric surfaces there is a
nice combinatorial proof of Theorem 13.14 in (Koelman 1993a). The construction
in Example 13.16 is based on an example of Bouvier and Gonzalez-Sprinberg (1992),
which was shown to me in a simplified form by Giinter Ziegler.

The normality result in Example 13.16 is by no means best possible. Stronger
results were proved using different methods by White (1977) and Dabrowski (1994).
White shows that the basis monomial ring of a matroid is normal, which implies
that every torus orbit closure in a Grassmann variety (not just the generic one) is
projectively normal. Dabrowski shows that generic torus orbit closures in any flag
variety G/P are normal.



CHAPTER 14
Some Specific Grobner Bases

There is an abundance of toric varieties X 4 arising naturally in combinatorics,
in geometry and in the applications of Chapter 5. Each of the underlying con-
figurations .A calls for a project to examine its toric ideal I 4, its Grébner bases,
its syzygies, its triangulations, its state polytope, etc... This was illustrated in
Chapter 9 for the second hypersimplex. In this chapter we discuss Groébner bases
for three special families of toric ideals. The first family of configurations to be
examined is a common generalization of hypersimplices and Veronese embeddings
of projective space. Our second configuration A lives in matrix space: it is the
set of 7 X r-permutation matrices. Our third configuration is a higher-dimensional
generalization of Example 5.1 (contingency tables and transportation problems).

14.A. A square-free quadratic Grébner basis for varieties of Veronese-type.

We fix positive integers 7 and s4, ..., sq4, and we consider the set
A= {(iiz..02) €27 tii 4 +ig =, (14.1)
0<é1<s1,..., 0<4q < 5q} '
This family of toric ideals includes many familiar examples. For s; = - .- = Sqg=T
the toric variety X 4 is the r-th Veronese embedding of P41, For sy = --- = g4 = 1

the polytope Q = conv(A) is the r-th hypersimplex of dimension d — 1, and the
corresponding toric variety is naturally embedded in the Grassmann variety of r-
dimensional linear subspaces of k% (as in Example 13.16). The second hypersimplex
(r=2,s1=---=84 = 1) was discussed in detail in Chapter 9. In what follows we
shall present a square-free, quadratic Grébner basis for 14 which generalizes our
"thrackle construction” in Theorem 9.1.

There is a natural bijection between the elements of A and weakly increasing
strings of length r over the alphabet {1,2,...,d} having at most s; occurrences of
the letter j. Under this bijection, the vector (31,13, 3, ... ,i4) € A is mapped to the
weakly increasing string

Uy - Uy — 11---122..-233.--3 --- dd---d.
1y times 15 times i3 times i4 times

We write Zy,u,...u, for the corresponding variable in our polynomial ring k[x]. Let
sort( ) denote the operator which takes any string over the alphabet {1,2,...,d}
and sorts it into weakly increasing order. With these convention our toric ideal is
described as follows:

Remark 14.1. The toric ideal defined by the set (14.1) equals

T4 = (ZuTv' Ty — TyZy - T : sort(uv---w) = sort(u'v’---w')).

141
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For instance, the ideal of the Veronese surface in P5% equals in this notation

2 2
<$11$33 — X713, T11%22 — T12,X11%23 — T12713,

2
T12%33 — £13T23, L1322 — L1223, L33T22 — $23>~

In fact, these six minimal generators constitute the reduced Grobner basis for the
Veronese ideal with respect to any term order which selects the underlined initial
terms. This the special case d =3,r =s; =s2 =83 =2 of Theorem 14.2 below.

A monomial Ty, uy u,Loyvgevy *° Twywyw, I k[x] is said to be sorted if

<o < <wp <up<vp < SwpLug S LUy Svg S S Wa
(14.2)

For monomials which are not sorted we define the inversion number to be the
number of inversions in the string (14.2). By an inversion in a string of integers
¢,0, - - £, we mean a pair of indices (¢, j) such that ¢ < j and ¢; > ¢;. The following
two facts are easily verified:

(i) Every power of a variable is sorted. .
(ii) If a monomial is not sorted, then it contains a quadratic factor which is not

sorted.

Theorem 14.2. There exists a term order < on k[x] such that the sorted monomi-
als are precisely the <-standard monomials modulo I 4. The initial ideal in<(14) is
generated by square-free quadratic monomials. The corresponding reduced Grobner

basis of I 4 equals

{ Luy - ur Loy v, — Twiwy - war—1Pwrws -war

Wi Waws - - - Wy = SOrt(ujviUovs -+ urvr)}

Proof: Let G denote the above set of marked binomials

Ty, Toyve — Lwiwgwar—1 Lwaws wayr (143)
We first show that these relations do indeed lie in I4. Note that for each j €
{1,...,d} the strings u; - - - u, and v; - - - v, each have at most s; occurrences of the
letter j. We must verify that the strings wyws - - war—1 and wowy - - - wo, have the
same property. This holds because the number of j's in wiws---war—1 and the
number of j’s in wawy - - - wo, are either equal or they differ by one, which in turn
follows from w; < wq < -+ < Wy,

Consider the reduction relation on k[x] defined by the marked binomials (14.3).
A monomial m is in normal form with respect to this reduction relation if and only
if m is sorted (this was observed in (ii) above). If a non-sorted monomial m;
is reduced to another monomial m, using G, then the inversion number of my is
strictly less than the inversion number of m;. This shows that the reduction relation
defined by G is Noetherian. By Theorem 3.12, this implies that the given marking
is coherent: there exists a term order < on k[x] which selects the underlined term
as the initial term for each binomial in G.

Consider the initial ideal in<(I4). Every non-sorted monomial lies in this
ideal. Suppose that some sorted monomial m; lies in in(I4). There exists a
non-zero binomial m, — mo € I4 such that m, does not lie in in ([ 4). Then my
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is s.orted as well, that is, m; and m, are sorted monomials which lie in the sam
residue class modulo 4. It follows from the description of I 4 in Remark 14.1 ‘chafc3
my z?nd my are equal. This is a contradiction. Hence the monomials in in (I ) are
pre"c1sely the non-sorted monomials. We conclude that the set G equals th; r ?1 d
Grobner basis of 14 with respect to <. m s

The above construction generalizes the thrackles in Chapter 9.

Remark 14.3. In the special case of the second hypersimplex (r =2,s; = .- =

sq = 1), the Gréb is i ined . .
Theorezn o ner basis in Theorem 14.2 coincides with the Grébner basis in

Proof: T o C .
of: The characterization of standard monomials in (9.3) is “to be sorted”. m

' There is an important difference between the special case of the second hyper-
simplex and the geperal case. The thrackle triangulation of the second hypersimplex
was seen to be lexicographic in Remark 9.2. This does not hold in general,

Pro;')osition' 14.4. In general, the reduced Grébner basis given in Theorem 14.2
is neither lexicographic nor reverse lexicographic. .

Proof: 'We list our Grébner basis explicitly i =
oy o0 W listou plicitly in the case d =4, r = 3, and s; = 59 =
'A :{(2’ 1’ 07 0)7 (1’ 27 0’ 0)’ trty (07 07 17 2)’ (17 17 1’ 0)7 (17 17 07 1)’ (1) 07 1? 1)7 (O? 1, 17 1)}’

k[X] =[$112, T122, ..., T344, T123, T124 T134, T234 ]
Hence k[x] is a polynomial ring in 16 variables. Our Grébner basis equals ¢ =

{ T1127133 — Z113%123, T112%134 ~ T113T124, £112T144 — Z114%124, T112T223 — T122T123,
T112T224 — T122T124, T112T233 — $%237 T112%234 — T123T124, T112%244 — $¥24,—
T112%334 — 1237134, T112L344 — T124T134, T113%122 — T112T123, 113144 — T114Z134,
T113%223 — CE%23, T113%224 — Z123%124, T113T233 — L123T133, £113T234 — T123%134,
T113T244 — £124T134, T113%334 — T133T134, £113L344 — $%34, T114T122 — L112T124,
114T123 — £113%124, 114133 — T113%134, T114L223 — T123%124, £114T224 — $%24,
T1147T233 — T123%134, 114234 — T124T134, T114T244 — T124T144, T114T334 — $%34,
T114T344 — 134T 144, T122T133 — $¥23, T122%134 — T123T124, T122T144 — CE%24,
1227233 — Z123T223, T122L234 — T123T224, T122T244 — T124%224, T122%334 — T123T234,
T122%344 — T124T234, T123T144 — T124T134, T123T244 — 21247234, 1237334 — Eﬁrzszx,
T123T344 — T134%234, T124T133 — T123T134, L124T223 — T123%224, T124T233 — T123T234,
T124%334 — 1347234, T124L344 — T134T244, Z133%144 — $f34, T133%223 — T1237233,
Z133T224 — 2123%234, T133%244 — T134T234, T133%344 — T134T334, T134T223 — :23@34,
T134%224 — T124T234, T134T233 — L133T234, T144T223 — T124T234, T144T224 — T124T244,
T1447233 — 1342234, T1443234 — T134T244, T144L334 — T134%344, L223T244 — T224T234,
T223T334 — T233T234, £223%344 — 13347 T224%233 — T223T234, T224T334 — 1334,
T224%344 — T234%244, T233T244 — 1334, T233T344 — T2347334, T244T334 — T234L344 }

In each of these 68 binomials the first term is the initial term and the second term

is the trailing term. Note that the trailing terms are sorted while the initial terms
are not sorted.
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If G were the Grobner basis for a lexicographic term order, then there would
exist a variable z;;; which appears only in the initial terms. If G were the Grobner
basis for a reverse lexicographic term order, then there would exist a variable ;i
which appears only in the trailing terms. However, each of the 16 variables appears
both in some initial term and in some some trailing term. This is indicated by the
underlinings. We conclude that the Grébner basis G is neither lexicographic nor
reverse lexicographic. m

The property of Proposition 14.4 holds even for the third hypersimplex
A(3,6) = conv{e; +ej+e 1 1<i<j<k<6}

Here d = 6,7 = 3,5, = so = -+ = s = 1. The corresponding toric ideal I4 is the
kernel of the k-algebra homomorphism

k[Trst 11 <i<j<k<6] — klti,ta,ts,ta,t5,t6], Tijr — titjte

Here the reduced Grébner basis G consists of 69 binomials. Each variable z;jx
appears in some initial term, so that G cannot be reverse lexicographic. The six

variables x193, T234, T345, Ta56, T156, T12¢ appear ouly in initial terms, sa they can -

come first in a possible lexicographic order. Let X denote the set of the other 14
variables. Our argument shows that the elimination ideal I N k[X] has the induced
Grobner basis '

GNk[X] = {z124T256 — T125T246, T124T346 — £134T246,

T124T356 — L135T246,T125T134 — T124%135, £125%346 — T135T246, T125T356 — L135L256,

T134T256 — T135L2465 T134L356 — T135L346, L136T145 — T135T146, T136Z235 — L135L236,

T136T245 — T135%246> T145T235 — T135L245, L145T236 — T135T246, L1462235 — L135L246,

T146%236 — T136T246, L146T245 — T145%246+ L236T245 — T235%246, L256TL346 — $246m}~
Each of the remaining 14 variables appears in some trailing term and hence cannot
be the next variable in a possible lexicographic term order. This shows that the

Groébner basis G for the hypersimplex A(3,6) is neither lexicographic nor reverse
lexicographic.

Each of the support sets .4 appearing in (14.1) occurs naturally in the rep-
resentation theory of the general linear group GL(d). We recall that each irre-
ducible GL(d)-module V) is indexed by a partition A = (A1, A,...,A:), where
A1 > Ay > -2 > A, The vector A is called the highest weight of the representation
V. The torus (k*)¢ acts on Vy as the group of diagonal matrices in GL(d). Let
A, denote the set of all weights occurring in V. Then the toric variety X 4, is
isomorphic to the closure of a generic (k*)"-orbit in V. We call a partition A almost
rectangular if Ay =X o == M1 2 A

Proposition 14.5. Let A\ be an almost rectangular partition. Then the set Ay
of weights appearing in the irreducible GL(d)-module V) is equal to the set A in
(14.1) with sy =---=sq =X, and r = [A| = 3X0_, A
Proof: This follows from the fact that the weight defined by a partition p appears
in the irreducible representation Vj if and only if |A| = |u| and A dominates p, i.e.,
z=1 A > Zzzl w; for all 7. Since X is almost rectangular, these inequalities are
equivalent to g < 81, o < Sg, ..., Ha < S84, which means that pu lies in A. This
proves that 4, = .A. =
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Examples:

(a) The almost rectangular partition A = (2,0,0) defines the symmetric power
%\5 = S%k3. The corresponding toric variety X 4, is the Veronese surface in
(b) The alm;)sg rectangular partition A = (1,1,1,0,0,0) defines the exterior power
X)\(?):G )/\ k®. The corresponding polytope conv(A,) is the third hypersimplex
(c) The almost rectangular partition A = (2,1,0,0) defines an irreducible GL(4)-

module of dimension 20. This can be seen by substituting ¢; — 1 in the Schur
polynomial

Sa(t1,ta, ts,14) = it + t7tg + 134 + t185 + 21 taty + 2ataty + t112
+ 2t1tats + t1t] + thts + t3ty + totd + 2atsty (14.4)
+ tot] + t3t, + tst2.

The tor.ic ideal I4, is the ideal of algebraic relations among the 16 distinct
mopomlals appearing in the expansion (14.4). An explicit quadratic Grébner
basis for this ideal is given in the proof of Proposition 14.4.

14.B. Permutation matrices

Let A be the set of all permutation matrices of size p X p. In this example d = p?,
n=p! and dim(A) = (p — 1) + 1. The variables in the polynomial ring k(x| are
indexed by the elements o of the symmetric group Spon {1,2,...,p}, and klt] is
the ring of polynomial functions on a generic p x p-matrix (tij). The toric map #
in (4.2) takes the variable z, associated with the permutation ¢ to the monomial
tic(1)t20(2) * * * tpo(p) Which codes the permutation matrix (6; U(i)). The polytope
Q = conv(A) is the famous Birkhoff polytope of doubly—sto’chastic matrices. It
consists of all non-negative real p x p-matrices with row sums and column sums
equal to 1. Note that dim(Q) = (p—1)2. Our objective is to study the toric ideals
defined by the Birkhoff polytopes. Here are the first two cases.

Example 14.6. (3 x 3-permutation matrices)

For p = 3 the toric map # : k[x] — k[t] is given by xi23 — tiitastas,
Tizz > tutestsy, Toiz — tiataifss, o1 — tiotastsy, 312 — tistortss and
T321 > tigtaytsi. The projective toric variety Y4 is a hypersurface of degree 3
in P°. It is defined by the principal ideal

Iy = ($123$231$312 - $132$213$321>-

Example 14.7. (4 x 4-permutation matrices)

The case p = 4 is more challenging: here d = 16, n = 24, and the projective toric
variety Y4 has dimension 9 and degree 352. We order the variables in the usual
lexicographic order on the symmetric group Sy, Ti234 > Tiog3 > Tizeq > - >
T4321, and we define < to be the induced reverse lexicographic term order on k[x].
The reduced Grobner basis G of I4 with respect to < consists of 199 binomials:
There are 18 quadrics such as

T124372134 — 123472143, T1324T4231 — T1234T4321, X1342L3124 — T1324T3142, - ..
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The Grobner basis G contains 176 cubics, including

T1234T1342%1423 — T124371324T1432, T1234T1342T4123 — £124321324T41325 - -+ - - - s

and it contains precisely five quartics:

2 2

T123471423T341224132 — £143273124T4213 5 T1342T1423%243124132 — T1432%2143T4321 5
2 2

T1342T2314T2431T3241 — T1234T5341T3412, T2314T3124T324174213 — £2143T3214T4321 5

T1234T21437341274132 — T1432T2134T3142T4213-

In each displayed binomial the initial term comes first. All 199 initial terms are
square-free. Thus in<(I4) is a square-free monomial ideal. By our results of
Chapter 8, it defines a regular triangulation of the Birkhoff polytope into 352 9-
simplices of unit volume. ®

Examples 14.6 and 14.7 are generalized in the following theorem.

Theorem 14.8. Let = be any of the (p!)! graded reverse lexicographic term

orders on k[x|. Then the initial ideal in (I 1) is generated by square-free monomials -

of degree < p.

Proof: A key ingredient in our proof is the following well-known result from
combinatorics (due to Birkhoff): every non-negative integer p x p-matrix with equal
row and column sums can be written as a sum of permutation matrices.

We fix any of the (p!)! linear orders on the symmetric group Sp. Let G be
the reduced Grobner basis of 14 in the resulting reverse lexicographic term order
on k[x]. Consider any element x* — x¥ of G, where x" is the initial term. Let ,
denote the smallest variable which divides x¥. By the choice of reverse lexicographic
order, it is smaller than any variable appearing in x". Writing (u,)ses, for the
coordinates of the vector u, we have

ix) = #x%) = J]@@)” = IIIItwe (14.5)

€Sy €Sy i=1

The monomial #(x,) = 151y tpp(p) divides (14.5). Therefore, for each index
i € {1,...,p} there exists a permutation ¢ such that (i) = p(i) and u, > 1.
Let x* denote the product (without repetition) of the variables associated with
these permutations. Then xY is a square-free monomial of degree at most p. The
condition u, > 1 guarantees that xv divides x“. )

We claim that x¥ lies in the initial ideal in(l4). If we divide #(x") by
#(z,) then we obtain a monomial [1},_; tf;j where (c;;) is a non-negative integer
p X p-matrix with all row and column sums equal. By Birkhoff’s Theorem, (€i5)
can be written as a sum of permutation matrices. Equivalently, the monomial

g j=1 tf]’ lies in the image of the map 7. Let x¥' be any of its preimages. By
construction, the two monomials x" and z o .x¥' have the same image under 7.
Therefore x* — z,-x" lies in 14. Here x" is the initial term since z, is smaller
than any of the variables in x%'. This proves our claim. ’

Now, x" is both a minimal generator of in<(I4) and a multiple of x" . This
implies x* = x¥'. Thus in.(I4) is generated by square-free monomials of degree
<p =
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Corollary 14.9. (Stanley 1980) Every reverse lexicographic triangulation of
the Birkhoff polytope of doubly-stochastic matrices is unimodular.

Proof: By Corollary 8.9 and Theorem 14.8. m

Stanley (1980) calls a lattice polytope @ = conv(A) compressed if each of its
reverse lexicographic triangulations is unimodular. Equivalently, we may call a
homogeneous toric ideal I 4 compressed if every reverse lexicographic initial ideal
of 14 is square-free. Being compressed is a strictly weaker property than being
unimodular, since there may be other initial ideals which are not square-free. The
simplest example of a compressed polytope which is not unimodular is the regular
3-dimensional cube.

It is easy to see that the Birkhoff polytope is not unimodular for p > 4.
Consider the binomial T123471423T3412%4132 — T3432T312424213 Which appears in the
reduced Grébner basis of Example 14.7. By Corollary 7.9, there exists a term order
~ on k[x] such that this binomial appears in the reduced Grébner basis with the
underlined term as its initial term. The monomial ideal in(I4) is not square-free,
and hence the set A of 4 x 4-permutation matrices is not unimodular (by Remark
8.10). This example lifts to p > 5.

The reverse lexicographic Grobner bases of a compressed toric ideal have the
pleasant property that they can be used for normal form reduction without know-
ing them explicitly. For instance, if p > 5 then it is a rather hopeless enterprise
to explicitly compute any reduced Grobner basis for the toric ideal of the Birkhoff
polytope. Nevertheless we can use the Grobner bases of Theorem 14.8 for normal
form reduction in an implicit manner. Fix the usual lexicographic order on the
symmetric group S, with the identity 123...p the highest element and its reverse
p(p—1)...21 the lowest element. Let < denote the resulting reverse lexicographic
term order on k[x]. The following procedure computes the normal form of a mono-
mial modulo the “Birkhoff ideal” I4.

Algorithm 14.10. (Normal form modulo the toric ideal of the Birkhoff polytope)
Input: A monomial X" in the variables z,, 0 € S),.
Output: The normal form of x" modulo the ideal I 4 with respect to the term
order < .
1. Let r be the degree of x".
2. Write x" as an r x p-tableau U with entries in {1,2,...,p} whose rows are the
permutations corresponding to the variables in x", with repetition.
3. While r > 0 do
3.1. let ¢ be the smallest permutation obtainable by taking one entry from
each column of U. Delete these p entries from U while restoring the
rectangular shape (as in the example below), and let U’ be the resulting
(r — 1) x p-tableau
3.2. Output the variable z,. Set r:==r — 1 and U :=U’.
4. The normal form is the product of all variables which have been output along
the way.

The correctness of this algorithm follows from the proof of Theorem 14.8. Here
is an example how it works. Let p = 5 and consider the monomial

u
X =  T12435 * T25134 * T31452 ~ T43125 - T53241



148 B. STURMFELS

The sequence of tableaux generated by Algorithm 14.10 equals

12435
2 5 1 3 4 ;;‘i‘gi 12435
31452 - |77 ] s, — [21154
43125 43 2 4 % 33245
532 41
11435
_'[23245]_'[13‘245]

We conclude that the normal form of x* equals

u’

X = 53421 " £45132 * 32154 * £21435 * 13245-

The study of the toric ideal defined by the permutation matrices is motivated

by a sampling problem from statistics. In fact, it may be added that it was this .

very problem which got the project (Diaconis & Sturmfels 1993) started. Consider a

group of r voters electing a president from a list of p candidates. Each of the r voters .

ranks the p candidates in order of preference. This collection of r permutations is the
complete election data. To compress this mass of information we form a px p-matrix
as follows: the entry in position (i, j) is the number of people who rank chndidate
in position j. This matrix is the first-order summary. The sampling problem is to
choose at random from the set of all election data with a fixed first-order summary.
When modeling this problem as in Chapter 5, one realizes that the set A is precisely
the set of p X p-permutation matrices. The election data is a monomial x* in p!
variables, and its first order-summary is a monomial #(x") = t™% in p? variables.
Theorem 14.8 implies that any two election data with the same first-order summary
can be connected by a sequence of local moves involving at most p voters.

14.C. Three-dimensional matrices

Our next example comes from a direct generalization of the sampling problem in
Example 5.1. In (5.4) a group of people was classified according to two features
(hair color and eye color). It is natural to consider three or more features and
study their interrelations. This leads us to introduce three-dimensional matrices
(of format r x s x t). The case of 3 X 3 X 3-matrices appeared in Exercise (7)
of Chapter 5. The corresponding integer programming problem is known as the
three-dimensional transportation problem; see e.g. (Vlach 1986).

Fix integers r < s < t. Let n = rst, d = rs 4+ rt + st, and identify Z¢ with the
direct sum of matrices spaces Z7*° @ Z™*t @ Z°*t, We denote the standard basis
vectors in the three components as e;;, e, and e, respectively. Our configuration
in this subsection is

A = {e;de @€y :i=1,...,rj=1,...,5, k=1,...,t}. (14.6)
The resulting ring map is
o k[zie] — klug,vie, wik], Tk = Wi vik - Wik, (14.7)

where the indices 7, 7, k run as in (14.6). At first glance the projective toric variety
Y 4 may appear similar to a Segre variety. But this a deception. The kernel of (14.7)
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is much more complicated than the Segre ideal (5.7). Formula (4.3) translates into
the following:

T T

— Qijk T .

Ta= <Hzijk - szﬁc : E Qijk = E bijx for all j,k,
ijk ijk i=1 i=1

(14.8)

s s i i
D aik =Y byk for all ik, Y aie = 3 by for all 2_7> :
7j=1 7j=1 k=1 k=1

To emphasize the combinatorial difficulty of the configuration A in (14.6), we re-
mark that it is an unsolved problem to describe the facets of conv(A). Partial
results on this problem are given in (Vlach 1986).

Our first example is the case r = s = ¢ = 2. Here the toric ideal is principal:

Iy = <$111$122$212$221—$112$121$211$222>-

.It turns out that the case r = 2 and s,¢ arbitrary is still easy, in the sense that
it can be reduced to Proposition 5.4. We write A, := {e; @ e} for the Segre

configuration in Example 5.1. Thus 1 4,, is the ideal of 2 2-minors of an s x t-matrix
of indeterminates.

Proposition 14.11. If r = 2 then the configuration A in ( 14.6) isomorphic to
the Lawrence lifting A(Ay) of the Segre configuration Ay. In particular, A is
unimodular.

Proof:  To exhibit the isomorphism we rename the variables ZTjk = Ty, and
Yjk = Z;k. Consider the binomials in (14.8) which have no monomial factors. The
first set of conditions translates into aijk = bzjk and agy = byjx forj=1,... s
and k = 1,...,t. Using these we replace all b-variables. The second and third set
of conditions in (14.8) now equals

Z(aljk —a9) =0 forallk=1,...,¢t and
j=1

t
Z(aljk —a95) =0 forallj=1,...,s.

k=1
This says that the s x t-matrix ¢ = (cj;) := (@15 —a2;x) has zero row and column
sums. Our assumption (no monomial factor) implies that aijk = 0 or ag;, = 0.
Therefore ¢t = (a1jx) and ¢~ = (a2jx). With all this new notation equation

(14.8) becomes

. et e - ot
I, = (x®y° —x°y® : ceZ has zero row and column sums ),

Formula (7.1) shows that I is the toric ideal of the Lawrence lifting of Ag. The
fact that A and A(As:) have the same toric ideal means that these two vector
configurations are isomorphic (i.e., there is an isomorphism between their ambient
d-dimensional lattices which carries one into the other). Finally, A is unimodular
because the configuration A, is unimodular and the operator A(-) clearly preserves
this property. m
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For r = 2 and s,t arbitrary, the Graver basis of A is given by the following
corollary.

Corollary 14.12. The Graver basis Grj(a4,,) consists of all binomials
TjikyTizks " Tjok Yjzks Yisks ** Yirke —Tjoks Tisks " Tirk,Ygiky Yiaks " Ysskr (14.9)
where (71, k1), (k1,72),---,(Js, ks), (ks, J1) is a circuit in the complete bipartite
graph K.

Proof: Erase all the y-variables in the binomials (14.9). In view of equation (7.2),
it suffices to show that these binomials form the Graver basis of the determinantal
ideal I4,,. (Perhaps you have done this already when you solved Exercise ( 1) of
Chapter 5 ?) Since A,; is unimodular, we have C4., = Grgu,,, by Pro;?osm'on
8.11. But the circuits of A,, are precisely the circuits of the complete bipartite
graph K,.; (see Lemma 9.8 for a more general statement). &

The next case is r=s=t=3. The toric ideal I 4 of the 3 x 3 x 3-transportation
problem lives in a polynomial ring in 27 variables. The projective vari.e‘vy )./A 'has
dimension 9. By direct computation we found that the set of circuits still coincides
with the Graver basis. This is surprising since the configuration A is no longer
unimodular. The non-unimodularity is seen from the appearance of squares in the
circuits of types (f) and (g).

Theorem 14.13. For r = s = t = 3 the Graver basis Gr 4 equals the set C4 of
circuits. There are precisely 795 circuits; they are grouped into seven symmetry
classes as follows:

(a) 27 circuits of degree 4 such as

T123 T132 T322 T333 — 122 T133 T323 T332,
(b) 54 circuits of degree 6 such as
T111T122 212 £223 £313 321 — T112 X121 213 T222 T311 T323
(c) 108 circuits of degree 7 such as
T111 X123 T132 £222 T231 £313 321 — T113T122 T131 T221 T232 T311 T323
(d) 216 circuits of degree 9 such as

2
L1312 L1921 £133 222 T231 T311 T323 L339

= T111 7123 T132 T221 T232 T312 T322 T331 L333
(e} 12 circuits of degree 9 such as

Z112 123 131 213 T221 232 T311 £322 T333

— T113Z121 T132 T211 T222 233 T312 323 T331
(f) 162 circuits of degree 10 such as

2
T111 2123 132 To13 221 T231 311 T322 T333

2
— T113 2122 £131 L2711 T223 233 T313 T321 T332
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(g) 216 circuits of degree 12 such as

2 2 2
T111 T723 132 £213 T292%231 £312 T321 T333

2
— T113 T122 T131 T133 T212 £221 223 T232 311 £323 T332

Moreover, the 81 quartic and sextic binomials of types (a) and (b) minimally gen-
erate I 4.

Proof: The 795 circuits were computed by a brute-force approach based on formula
(1.1). Our proof that they constitute the Graver basis will be explained in detail.
We introduce 27 new variables y;1, Y112 - - -, y¥333. We homogenize each of the above
795 circuits as follows: if the variable Tijk appears in one of the two terms then

multiply the other term by Yijk- For example, the homogenization of the quartic
in (a) is

T123 T132 T322 T333 Y122 Y133 Y323 Y332 — T122 T133 T323 T332 Y123 Y132 Y322 Y333-

The resulting 795 binomials are the circuits of A(A), by part (b) of Exercise (3)
below. In view of equation (7.2), it suffices to show that these 795 binomials form
the Graver basis for I A(A)- In view of Theorem 7.1, it suffices to simply show that
they generate I 4).

Let J be the ideal generated by the given 795 circuits of A(A). We claim that
J = Ip(a)- Let X denote the product of all 54 variables. We shall make use of
Lemma 12.2, which states that (J: X°) = J A(a)- Our claim is therefore reduced
to the assertion

(Jizye) = J and (Jyge) = J forall 1<4,5,k<3. (14.10)

Consider the symmetry group of the configuration A(A). Clearly, it acts transitively
on the 54 variables, and it leaves the ideal J invariant. Therefore it suffices to check
the condition (14.10) for one variable only, say z1;;. We shall apply Lemma 12.1.
Fix any reverse lexicographic term order on k[x,y] such that z,1; is the cheapest
variable. A single application of Buchberger’s criterion reveals that the given 795
binomials in 54 variables are already a reduced Grébner basis in this order. (This
involves the computation of up to (735) = 315,615 S-pairs.) By Lemma, 12.1, this
implies (J:z111) = J, and we are done.

Our last claim that the binomials in (a) and (b) form a minimal generating
set was verified by a brute force computation in MACAULAY. We have proved
Theorem 14.13. =

A binomial in one of the ideals I 4 is said to have format (r, s, t) if its variables
Z;jx involve r distinct indices 4, s distinct indices J, and t distinct indices k. For
instance, among the circuits in Theorem 14.13, the binomial in (a) has format
2 % 2 x 2, the binomial in (b) has format 3 x 2 x 3, and all others have format
3 X 3 x 3. Hence we observe that the ideal for 3 x 3 x 3-matrices is generated by
binomials of strictly smaller format. This raises the question whether there exist
R, S and T such that, forallr > R,s > S, ¢t > T, our ideal is generated by binomials
of format smaller than R x S x T. The answer is “no”:
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Proposition 14.14. For every positive even integer p there exists a minimal gen-
erator for the toric ideal (14.8) which has degree 2p and format 2p x (p+1) x (p+1).

Proof: For p > 0 even we consider the following Laurant monomial

Tp+1,1,1 " Tp+1,23 325 \Tp+l,i—1,i+1 " Tp4+1,i4+2,

ieven

T, Tii+1,441

K3

p (-1)* p—1
(Ii,i+1,z‘ 'xi,i,i+1> RUISRERL/ARE | (xp+l,iv1,z"Ip+1,i+2,i+l>
=]

p—1
X H (%H,i,m'xp+i,i+1,z'—1) . Topp-ip T2 ptiptl

iz \Tp+iy,i—1" Tptiit+l,i+2 T2p,p—1,p+1 " T2p,p+1,p

iodd

We write x" for the numerator and xV for the denominator of this expression. Then
xY—xV is a binomial of degree 2p and format 2px (p+1) x (p+1). It can be checked
that x" — xV lies in the kernel of (14.7). The general pattern is best understood
by looking at the first two instances. For p =2 our binomial equals

T111 T122 T232 T293 T313 T321 T412 T433 — T121 T112 T222 T233 T311 £323 T413 T432
and for p =4 it equals

T111 T122 T232 T223 T333 344 L454 T 445 T521 T512 T543 T735 T742 T834 T855

—  T121 T112 T222 T233 T343 T334 T444 T455 T511 T523 T542 T732 T745 T835 T854-

We claim that x“ — x¥ is a minimal generator of the toric ideal. In view of
Corollary 12.13, it suffices to show that u and v are the only two elements in their
common fiber. Suppose that w is any other 2p x (p+ 1) x (p + 1)-matrix in the
same fiber. For fixed second and third index jk there is at most one variable z.;x
appearing in x%. This holds because each image variable w;, appears at most
linearly in #(x%) = #(x¥) = #(x"). Now, for each fixed first index ¢ our binomial
x% — xV looks like a ordinary 2 x 2-determinant z;.z;. — Z;.;.. One the these
two terms must appear as a factor of x¥. These two requirements together imply
that x¥ =x" or x¥" =x". m

Exercises:
(1) How many of the 199 Grébner basis elements in Example 14.7 are needed to
minimally generate this toric ideal ? Are the quadrics and cubics sufficient 7

(2) Estimate the size of a reverse lexicographic Grébner basis for the toric ideal
defined by the 5 x 5-permutation matrices. Determine the exact number of
Grobner basis elements of degree two and three.

(3) Let A = {ai,...,a,} be any configuration in Z¢. Prove the following two

statements:

(a) The set of circuits C4 generates the lattice kerz(A) (as an abelian
group).

(b) Let A(A) C Z%*™ be the Lawrence lifting. Then Cp(a) = {(u,—u) :
u e CA}

(4) Consider the cubic Veronese embedding of P* into P!, The quadratic Grébner
basis in Theorem 14.2 defines a regular triangulation consisting of 27 tetrahe-
dra. List them. '
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Notes:

Eisenbud, Reeves and Totaro (1994) have given a quadratic Grobner basis for the
Veronese ideal, but theirs is not square-free. The square-free quadratic Grébner
basis for the Veronese ideal appearing in Theorem 14.2 was first derived from the
corresponding triangulation, which is the special regular triangulation appearing in
Section I11.2B of (Kempf, Knudsen, Mumford & Saint-Donat 1973). The examples

and results in subsections 14.B and 14.C are taken from (Diaconis & Sturmfels
1993).
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Segre (variety), 37, 149

standard (monomial), 1, 86, 88
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state polytope, 14, 15, 19, 61, 71, 79, 102
syzygy, 107, 108, 120

tangent cone, 130

term order, 1, 5

- thrackle, 79
three-dimensional matrix, 148
transportation problem, 40
triangulation, 63, 123
truncated Grobner basis, 118
toric ideal, 31, 100

toric variety, 31, 36, 127, 129

unimodular, 69, 70, 93, 136
universal Grébner basis, 2, 6, 15, 33, 57, 81

Veronese, 141

o Tt A 3 = T 1




