
Temperatures of Combinatorial Games

by Elwyn Berlekamp

Abstract

This paper gives an overview of many popular combinatorial games and the temperatures which
occur in them.

This paper also includes an explanation of Coupons, a temperature-related construction which
has proved very useful in the study of relatively complicated combinatorial games such as Go
and Amazons.

Overview

In its broadest sense, Combinatorial Game Theory (CGT) is the study of two-person,
perfect information games of no chance. For each position in such a game, the theory defines a
temperature, which is a measure of the importance of the next move. CGT di↵ers from economic
game theory, which emphasizes multi-player games including elements of chance and imperfect
information. Most economic games focus on maximizing some payo↵ or score; CGT was originally
more concerned with getting the last move, but it now also applies to games whose outcomes are
determined by scores.

CGT is a branch of mathematics. It seeks to find and understand strategies which can provably
succeed against any opposition. This di↵ers from the primary goal of human or computer com-
petitors, who are more focused on making fewer serious mistakes than their opponents. CGT
seeks to understand EVERY position, including composed problems. It assigns no special impor-
tance to any o�cial “opening” position, nor to who gets the first move. Each position is treated
as its own game, and both possibilities for who moves next are given appropriate consideration.
Most CGT results employ the ”divide and conquer” methodology:

1) Partition the board into disjoint regions

2) Analyze each region, condensing it into an appropriate data structure

3) Analyze the entire board position as the (disjunctive) sum of these disjoint regions.

The results are so interesting that many combinatorial game theorists now also play and analyze
hybrid games, which are sums of positions in di↵erent games. Such a hybrid sum is called a
gallimaufry.

The most successful application of CGT to Anglo-American checkers has been to composed
problems (e.g., Berlekamp [2002]). Elkies [1996] has successfully applied CGT to composed chess
problems, and even to at least one position which occurred in a world championship chess match.
But in most historical games of chess and checkers, every position that occurs is already as well
understood by players who know no CGT as by those who do. But in every one of the other
games considered in this paper, most, and sometimes even all, well-played games pass through a
sequence of endgame positions about which CGT provides significant extra insights to those who
have learned it. In some cases, it provides a complete solution. Details of the histories and rule
variants of checkers and many other ancient and modern combinatorial games may be readily
found from numerous sources on the web.
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Introductions to CGT may be found in Winning Ways (WW), by Berlekamp, Conway & Guy
[2001-2004] and in Albert, Nowakowski, & Wolfe [2007]. Siegel [2013] provides the major mathe-
matical results and their proofs. His Appendix C is an excellent historical summary of how this
subject has evolved from its early roots in ancient board games and in recreational mathematics.

Temperatures

In Winning Ways, the temperature of a game was viewed as a specific number, determined as
the base of its thermograph’s mast. But in cases where the lower portion of the mast coincides
with one or both of its walls, it is now considered more convenient to allow the Left-temperature
and the Right-temperature to be viewed as intervals of numbers, whose lower endpoints coincide
at the value originally called ”the” temperature. It is a measure of the importance of the next
move. It can be computed by thermography, a graphical method described in WW and extended
in Berlekamp [1996].

Table 1 lists several combinatorial games and the known temperatures of their positions, listed
in approximately descending order of their hottest known positions with finite temperature.
More information about these games is summarized in Table 2. The reader is challenged to find
improvements and/or corrections to these tables!!

I’ll now comment on these games, starting with the simplest games at the lowest temperatures
and continuing on upwards into the hotter ones.
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Combinatorial	

Games	

Guestimated	

#	of	Players	

Origin	 Winner	 Loopy

?	

�	 NP	

hard

?	

Most	relevant	theory	

Checkers	 10#	 ~3000	BCE	 N	 L	 	 n/a	 w			ab			c’			d			e+			f’			g			h	

Chess	 10#	 ~1810	 	 L	 	 n/a	 w			ab			c’			d			e+			f’			g			h	

	 	 	 	 	 	 	 	

N	x	M	Chess	Pawns	 10$	 		1996	 N	 -	 	*8191	 ?	 w			ab			c’			d			e+			f’			g			h	

Go	(Total)	 10#	 	 	 	 	*	 	 	

				Chinese	Weiqi	 	 ~2000	BCE	 S	 ?	 	*	 NP	 w			ab			c’			d			e+			f’			g			h	

				Taiwan	[Ing]	Goe	 	 ~2000	BCE	 S	 ?	 	*	 NP	 w			ab			c’			d			e+			f’			g			h	

				Korean	Baduk	 	 ~		800	CE	 S	 L	 	*	 NP	 w			ab			c’			d			e+			f’			g			h	

				Japanese	Go	 	 ~		800	CE	 S	 L	 	*	 NP	 w			ab			c’			d			e+			f’			g			h	

				American	Go	 	 ~1930s	 S	 L	 	*	 NP	 w			ab			c’			d			e+			f’			g			h	

				Mathematical	Go	 10%	 		1989	 N	 L	 	*	 NP	 w			ab			c’			d			e+			f’			g			h	

Chilled	Go	 10&	 		1989	 N	 L	 	*3	 NP	 w			ab			c’			d			e+			f’			g			h	

Coupons	 10$	 		1997	 S	 -	 	0	 P	 w			ab			c’			d			e+			f’			g			h	

Amazons	 10%	 		1988	 N	 -	 	*3	 NP	 w			ab			c’			d			e+			f’			g			h	

Konane	 10'	 Medieval	 N	 -	 �	 NP	 w			ab			c’			d			e+			f’			g		h	

Echess	 10$	 ~2000	CE	 	 	 	0	 	 w			ab			c’			d			e+			f’			g			h	

Fox	&	Geese,	F&G
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	 10'	 Medieval	 N	 -	 	?	 P?	 	

Fox,	Flocks,	Fox	 10$	 		2002	 N	 L	 	?	 ?	 w			ab			c’			d			e+			f’			g			h	

Domineering	 10%	 ~1980	 N	 -	 	*3	 ?	 w			ab			c’			d			e+			f’			g			h	

Blockbusting	 10&	 		1984	 N	 -	 	*	 P	 w			ab			c’			d			e+			f’			g			h	

Dots	&	Boxes,	D&B	 10(	 		1889	 S	 -	 	-	 NP	 w			ab			c’			d			e+			f’			g			h	

Misere	Impartials	 10(	 <1600	 M	 -	 	-	 ?	 w			ab			c’			d			e+			f’			g						i	

Misere	Nim	 10(	 <1600	 M	 -	 	-	 P	 w			ab			c’			d			e+			f’			g			h	

Normal	Nim	 10(	 <1600	 N	 -	 �	 P	 w			ab			c’			d			e+			f’			g			h	

RKG’s	Octals	 10'	 ~1950	 N	 -	 	?	 ?	 w			ab			c’			d			e+			f’			g			h	

Impartial	D&B	 10%	 		1967	 N	 -	 	?	 ?	 w			ab			c’			d			e+			f’			g			h	

Clobber	 10&	 		2001	 N	 -	 	?	 ?	 w			ab			c’			d			e+			f’			g			h	

YB	Hackenbush	 10$	 		1993	 N	 -	 	*	 P	 w			ab			c’			d			e+			f’			g			h	

Green	Hackenbush	 10%	 		1971	 N	 -	 �	 P	 w			ab			c’			d			e+			f’			g			h	

Hackenbush	 10%	 		1971	 N	 -	 �	 NP	 w			ab			c’			d			e+			f’			g			h	

LR	Hackenbush	 10%	 		1970	 N	 -	 	0	 NP	 w			ab			c’			d			e+			f’			g			h	

Cutcakes	 10&	 		1970	 N	 -	 	0	 P	 w			ab			c’			d			e+			f’			g			h	
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	alias	Fox	&	Hounds	

N	=	Normal	rule,	player	unable	to	move	loses	 	 w			Warming	inverts	chilling	

M	=	Misere	rule,	player	unable	to	move	wins	 	 a			Bouton	

S	=	Scored	 	 b			Grundy-Guy	

	 	 c			Canonical	

Entries	in	the	column	headed	“�”	show	*K	 	 c’		Misere	canonical	

for	the	largest	K	known	to	exist	within	that	 	 d			Thermography	

game.	�=	Remote	star	 	 e			Heating	

	 	 f			Atomic	weights	

	 	 f’		Liberties	as	combinatorial	games	

	 	 g			Coupons	and	orthodoxy	

	 	 h			Universality	

	 	 i				Finite	Semi-groups	

	





Temperature -1

Only integers have temperature -1. The ”cutcake” family of games at this temperature has
solutions which provide challenging examples for beginners.

Temperatures -1 to 0

The values of all such normal finite games are numbers. Blue-Red Hackenbush, (alias LR
Hackenbush) is the best outstanding example. A basic theorem states that if G is a game
for which there are one or more numbers greater than all of G’s left followers, GL, and less
than all of its Right followers, GR, then G is the simplest such number. Among integers, the
simplest is the one of least magnitude, and among other numbers, the simplest is the dyadic
rational, J{2K , with smallest nonnegative denominator, K. Several structural theorems in
WW provide polynomial-time algorithms for sums of strings, trees, spiders, and several other
classes of LR Hackenbush positions. But when applied to ”Redwood beds”, they yield a proof
of NP-hardness.

Temperature 0

After subtracting out its numerical mean, every game of temperature 0 becomes a nonzero
infinitesimal. So every game of temperature 0 is number-ish, where ”ish” can be viewed as an
abbreviation of ”infinitesimally shifted”. A game of temperature 0 is confused with at most
one number, which is its mean.

The most common infinitesimal, by far, is the game STAR = t 0 | 0 u, denoted by ˚. It is
confused with 0. The most common positive infinitesimal is UP = t 0 | ˚ u, denoted by Ò.
Up turns out to be the first of many orders of infinitesimals, several of which appear in the
complete, explicit solution of sums of strings of Yellow-Brown Hackenbush. A class of much-
smaller positive infinitesimals are called Tinys. Their negatives are called Minies, although
sometimes the word ”tinies” may refer to both.

All finite impartial games are infinitesimal; each of them is equivalent to a green Hackenbush
string. The value of the string of length N is called ˚ if N “ 1; otherwise it is called
˚N . There is an important impartial infinitesimal called remote star, ‹, which is an easy
first-player win when played with any sum of finite stars. All members of a common class
of infinitesimals, including all that occur in Hackenbush, can be approximated (to within at
most 1 or 2), by an integer multiple of Òs. This integer is called its atomic weight. Using
a definition which includes ‹ in a basic way, the atomic weight becomes a homomorphism
from infinitesimals to all games. The importance of atomic weights is exemplified in a popular
game called Clobber, all of whose positions are infinitesimals but whose atomic weights span
a very wide variety of games.

Although the outcome of conventional (i.e., partesan) Dots & Boxes is determined by scores,
many of its positions depend on the outcome of impartial Dots & Boxes, in which the loser
is the player who is unable to complete his turn. Both variants of Dots & Boxes have an
unconventional rule, which states that you must continue making moves until you complete
your turn with a move which completes no box(es). This gives rise to a peculiar value, called
Loony, denoted by L. It has the property that the next player to move can either play
the Loony to zero and complete his turn, or play the Loony to zero and continue to move
elsewhere. L is an idempotent, L ` L “ L. It is a win for the first player: OUTCOME(L) =
1st player, unlike OUTCOME(0) = 2nd player. But when added to any other game, either

5



impartial or partesan, L is negligible. It has even less e↵ect than any tiny, in the sense that
OUTCOME(G ` L) = OUTCOME(G) unless G “ 0. So L is an infinitesimal, and like all
infinitesimals, its temperature must be 0.

Temperatures up thru 1

Cooling is a homomorphism that reduces temperature while preserving the mean. Cooling by
any positive amount transforms all infinitesimals to 0. In general, it is therefore a many-to-one
homomorphism.

Intrigued by 2 ˆ N and 3 ˆ N Domineering, Berlekamp [1986] invented a simplified related
game called Blockbusting, which is played on 1 ˆ N strips, each of whose ends is either L or
R. I discovered that all but one of Blockbusting’s positions become a number when chilled
(i.e., cooled by one degree), whence the recursions to solve chilled Blockbusting are much
simpler than the computations to solve Blockbusting. The values of chilled Blockbusting are
all dyadic rationals, and the sequences of them are arithmetico-periodic.

Whereas in typical games cooling and chilling are many-to-one homomorphisms, Blockbusting
satisfies two atypical conditions: All scores in Blockbusting are integers and ˚ is the only
infinitesimal. Hence, chilling is only a two-to-one homomorphism. The parity turns out to be
resolvable, and so chilling is reversible by an appropriately defined operator called warming.
This yielded explicit tractable expressions for all Blockbusting positions.

Temperatures up thru 2

Domineering

Further refinements of heating operators and their application to Blockbusting values
led to precise solutions of infinitely many 2 ˆ N and 3 ˆ N Domineering games, and
to many others within ”ish”. These analyses remain far from complete. Kim [1995]
included constructions and analyses of several new sequences and a summary of all classes
of positions whose values were then known explicitly. More temperatures were found by
Shankar and Sridharan [2005]. Drummond-Cole [2004] discovered a Domineering position
which has temperature 2, the hottest value yet found. He also composed a position of
value ˚2, which could not be realized by legal moves starting from any empty rectangular
board. Another position of value ˚2, which was realizable, was found by Uiterwijk and
Barton [2015].

Fox & Geese

Although there are loopy positions in Fox & Geese, they are all stoppers with tractable
canonical forms. The simplest two of these are OV ER “ t 0 |OV ER u and OFF “
t |OFF u. Every position in which the fox has escaped is easily seen to have value OFF ,
so the outcome of any Fox & Geese position on any N ˆ 8 board is reduced to deciding
whether the value of the position is finite (a win for the Geese), or OFF (a win for the
Fox), of infinitely HOT as in tx |OFF u, (a win for the next player to move). OV ER and
OFF are idempotents. The temperature of tx |OFF u is ON .

With reasonable play [Uiterwijk and Barton 2015], by retreating when appropriate, the
Fox can easily avoid getting trapped anywhere except the bottom edge of the board, or
possibly in the side square of the double-corner adjacent to the bottom of the board. So
modifying the rules to prohibit the fox from moving into a simple trap along any other
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side or top edge has no significant e↵ect on the game. It is this modified variation of F&G
whose known temperatures are shown in Fig 1. If one also allows composed positions in
which the Fox is about to be trapped along the side edge on an N ˆ 8 board, then there
is such a position which has GL “ 2N ; GR † 2; and temperature exceeding N ´ 1.

Fox, Flocks Fox

This game is the sum of two games, in one of which a traditional flock of 4 black geese
seeks to trap a white fox, and another in which 4 white geese seek to trap a black fox
on the other side of the board. It can be conveniently played on a single 8 ˆ 8 board,
viewed as two 4 ˆ 8 boards. When the two starting positions are symmetric, their values
are putative negatives of each other. Second player can survive indefinitely by responding
to each move with its opposite, so the question becomes whether first player can force a
draw. He can i↵ a loopy position (i.e., OVER, or OFF) appears anywhere in the canonical
form. The game of Fox, Flocks, Fox provides interest and relevance in the canonical values
of Fox & Geese, many of which are given in Chapter 20 of 2nd edition of WW for 4 geese
versus a fox on an N ˆ 8 board. The temperatures of these positions are shown in Table
1, but that list might be incomplete.

Temperatures slightly higher

Entrepreneurial chess (Echess) by Berlekamp and Low [2017] is naturally played on an infinite
board, comprising one quarter of the entire plane. Its hottest known finite temperature is
5 5/8. Many Echess positions have relatively tractable canonical values. When cooled or
quenched (i.e., cooled by 2), many become a number plus an infinitesimal of integral atomic
weight. When played alone, the outcome depends only on the stopping positions. Each of the
finite stopping positions is an integer plus an additional OVER. As in Blockbusting and Go,
there is another warming operator which inverts chilling.

Echess becomes more interesting when played as a component of a gallimaufry. The set of
Echess’ thermographic spectral lines shown in Table 1 is conjectured to be incomplete.

Temperatures yet higher

Coupons

As we look at earlier positions of a well-played endgame of Amazons or Go, we often find
positions which are both hotter and more complicated.

Coupons were initially developed to facilitate more quantitative discussions with expert
human Go players. It turned out that they are also helpful in studying other games,
including Amazons.

When played in isolation, the game of Coupons is degenerate because there is never more
than one legal move, which is to take the top coupon. The game becomes much more
interesting when played as a summand added to another game, such as Amazons or Go.
However, the analyses of Coupon Amazons and Coupon Go both depend on the following
analysis of an ideal stack of Coupons played in isolation.

This game is played with a stack of coupons. Each coupon has a value printed on its
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face. The coupons in the stack are in monotonic non-ascending order. The ideal stack
consists of two large substacks. The bottom substack is a large number of coupons of the
same terminal temperature, T0. The top substack, in ascending order, contains coupons of
these values: T0 ` �{2, T0 ` 3.�{2, T0 ` 5.�{2, ¨ ¨ ¨ , T

top

. Every consecutive pair of coupons
above T0 has values which di↵er by the same amount, �. At any intermediate stage of play,
when the top coupon has value C, the stack is said to have an ambient temperature of
pC ` �{2q, unless the top coupon has value T0, in which case the ambient temperature is
T0. In all other cases, the ambient temperature is the average of the previous coupon and
the next coupon. We also define a current komi, whose value is half the current ambient
temperature.

Consider a game of coupons played on a consecutive subset of the ideal stack described
above, with the ambient temperature running from T2 down to T1. Without komis, a simple
calculation shows that the net sum of all those consecutive coupons will be ˘T2{2˘ T1{2,
where the signs depend on who moves first and who moves last, respectively. To make the
game fair, we need the komis. The interval’s initial komi of magnitude T2{2 is assigned to
the opponent of the player who makes the first move, at an ambient temperature of T2; its
terminal komi, of magnitude T1{2, is assigned to the opponent of the player who makes
the final move in this interval at an ambient temperature of T1. When the game is over,
your score is the sum of all coupons you have taken, including komis. When this ideal
interval coupon game is played in isolation, the net final score will be precisely zero.

When Coupons are played with any chosen (possibly composed) starting position, the ideal
initial temperature should be large enough that both players will take a few coupons before
either chooses to play on the board. The terminal temperature should be T0 “ ´1, and
the number of coupons of this temperature should exceed the number of empty squares
on the Amazons position. When the terminal temperature is reached, at every turn the
player will prefer to fill a point of his territory on the board rather than take the ´1
point coupon. So when the game eventually ends, all scores on the board will have been
converted into the coupons. The winner is the player with the higher score. The terminal
komi obviates any advantage or disadvantage of getting the last move. So a tie is a possible
outcome. This has e↵ectively converted a combinatorial game with normal termination
rule into an economic-style game whose outcome is determined by scores. One advantage
of this viewpoint is that BOTH players now have well-defined optimal strategies. With
the normal termination rule, it is hard to define a good strategy for the losing player, as
all of his possible strategies will lose against an optimal opponent.

Expediting play with thicker stacks

To simplify the analysis when Coupons are added to another game, it is convenient
to let � to be a small nonnegative number. If � is small but positive, the number of
coupon moves will be so large that it is convenient to expedite the game by the following
procedure, which has no e↵ect on the eventual score.

Whenever the players take three coupons on consecutive turns, the game is interrupted.
(The reason that we do not interrupt after only two coupons is that in some ko positions
in Go, one player may use coupons as ko threats.) The opponent of the player who took
the third of these 3 coupons is awarded the current komi. If the ambient temperature
is T0, the game is terminated. If not, each player is required to submit a sealed bid,
• T0. The bid must be the temperature of a coupon which, if play continued, it would
be his turn to take. The winning bidder and his bid are announced. Larger coupons are
removed from the stack. The opponent of the winning bidder is awarded the new komi.
Unless the new temperature is T0, the winning bidder is required to make a move on
the board, and play resumes. If instead the winning bid is T0, then the winning bidder
may either take a coupon or play on the board, and play resumes until 3 consecutive
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coupons of value T0 are taken, at which point the terminal komi is awarded and the
game ends.

Infinitely thick stacks

Using these conventions, it is feasible to play with � “ 0. There is no physical stack
of coupons. Instead, only the current ambient temperature is relevant. Initially it
is so large that the first three moves take coupons, followed by a komi, an auction,
another komi, and the first move on the board. The players may then either play on
the board or take a coupon at this temperature. After three consecutive coupons are
taken at the current temperature, a komi is awarded; a bidding auction yields a new
lower temperature, at which another komi is awarded and play resumes. If the auction
ends in a tie, you may let your opponent break it arbitrarily.

Encores

The first play at a negative ambient temperature begins a phase of the game called
the encore. As explained in Berlekamp & Wolfe [1994], the encore is often lengthy,
tedious, and dull. The easiest way for players to avoid it is to agree on a forecast of
how it would turn out if played. This is usually straightforward when the temperature
is 0. However, there are rare examples in which even very good players may not agree.
Some Amazonian territories are defective. Other Amazonian territories may have a
value that might not be obvious even to very good players, such as Snatzke’s 1/16. In
Coupon Go, even though the score on the board at the beginning of an encore is an
integer, the appendix of the 1989 Japanese rules contain several interesting examples in
which the value of that score has been debated. The mathematically simple procedures
stated in this paper resolve all such disputes by continued play of the encore. In the
very rare cases in which di↵erent dialects of Go yield di↵erent scores, the results of
the encore with infinitely thick coupons tend to be more consistent with Chinese or
American scoring than with Japanese scoring.

Orthodoxy

A theorem states that if � “ 0, the optimum final score is the mean value of the board’s
starting position. Each player has a strategy which ensures an outcome at least that
good for him. Moves which are consistent with any such strategy are called orthodox
moves. The orthodox viewpoint yields much simpler game graphs than the canonical
viewpoint. It also sometimes enables refinement of the decomposition of the board into
”independent” regions. Even when playing a Go endgame in a traditional way, without
coupons, orthodox accounting in Berlekamp [1996] facilitates a prediction of the final net
score and an itemization of how much of this score is due to each region of the board
and how much is dependent on who gets the next move. Refinements facilitate locally
computable quantitative estimates of the values of kos. For further discussion of orthodoxy
see this link:
https://math.berkeley.edu/

~

berlek/pubs/videos.html

In Amazons, Berlekamp [2002] composed a hard problem featuring four opposing pairs of
Amazons, each pair in a region of size 11 ˆ 2 or smaller, Snatzke [2002] built a database
big enough to analyze each of them. Several had canonical forms with many thousands
of positions, yet their thermographs were very simple, with temperatures up to about 5.
In Go, a team of three expert combinatorial gamesmen and two Go players of the highest
rank (9p) spent several months analyzing a position they had encountered 66 moves before
the end of a full game. It was published by Spight [2002]. When they had played it, they
had estimated the temperature as slightly under 4, but analysis showed it was actually
about 5. The determination of the temperature of another region entailed the compilation
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and study of a computer database of over 20,000 positions. The answer was 3.42.

Amazons

Amazons is a conventional loop-free combinatorial game with the normal ending condition.
Hence, it has no positions of infinite temperature, although on large boards it contains positions
with arbitrarily large temperatures. It has numbers and interesting infinitesimals. It includes
positions which have very complicated canonical values but simple orthodox values. Its largest
known negative temperature is ´ 1

16 , found independently by Snatzke [2002] and Tegos [2002].

Tegos [2002] also found positions on a 4ˆ4 board with positive temperatures whose denominators
were 256. Song and Mueller [2015] provide more results and references, with a primary focus on
who can win from certain conventional starting positions on rectangular boards of various sizes.
The definitive list of positive Amazonian temperatures will evidently require more resolution
than the printing constraints of this journal can provide in Table 1.

Go

As explained in the Appendices of Berlekamp & Wolfe [1994], there are many dialects of the
rules of Go. The mathematical study of this game is complicated by the common occurrence of
positions called ”kos”. More information about that can be found in Spight [2003].

Unlike chess, where White gets the first move, in Go, it is Black who gets the first move. In
chess, it is now widely believed that despite White’s advantage, Black has a reasonable chance
of getting a draw. But in Go, modern experts believe that if uncompensated, Black’s first-move
advantage would be decisive. Hence, in most modern professional tournaments White is given a
special compensation of 6.5 points, which is added to his score. This is called the ”komi”. If we
presume that the temperature of the empty 19ˆ19 Go board is about 13, then this ”komi” plays
approximately the same role in conventional Go as what we call the ”initial komi” in coupon
Go. Berlekamp [1996] explains how the absence of other komis and coupons in conventional Go
corresponds to comparable terms in an ”orthodox accounting” which, in principle, itemizes the
score of a well-played Go endgame in terms of each move and each region of the board.

Chess Pawns

This is a degenerate form of chess, in which all pieces are pawns, and the ”normal” objective is
to get the last move.

N ˆ 1 chess pawns is a degenerate form of chess pawns, in which there is only one file. Its
positions provide all of the temperatures shown in the relevant row of Table 1. The construction
of ˚8191 is described by Elkies [2002].

Chess

Noam Elkies [1996, 2002] has shown that some real chess positions, including a nontrivial one
that occurred in a world championship match, simplify to sums of positions in the simpler game
I’m now calling ”chess pawns”. Carlos Santos [2015] has composed more real chess positions
which can be solved by CGT.
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Due to the very unusual termination rules of conventional chess, including such notions as ”stale-
mate”, it isn’t clear how temperature could be meaningfully defined.

Anglo-American checkers

Although relatively few native English speakers realize it, there are many variations of checkers
now popular in di↵erent countries of the world. In most countries in continental Europe, checkers
has ”flying kings”, who can jump opposing checkers at some distance away on the same diagonal.
Board sizes of 10 ˆ 10 rather than 8 ˆ 8 are also common. Some people even regard Konane as
the Hawaiian variation of the checkers family.

Since Anglo-American checkers positions only rarely, if ever, decompose into sums of disjoint
regions, there has been little, if any, study of temperatures of positions in this game, so I’ve left
this row of Table 1 blank.

Nevertheless, the temperature theory of CGT has been very successfully applied to at least one
composed gallimaufry problem including a checkers position (i.e., ”Four Games for Gardner”
in Berlekamp [2002].) Surprisingly, the results of CGT are so robust that the solution of that
gallimaufry is independent of what initially might appear to be important details of the rules: 1)
What is the goal of a game whose components include such diverse components as Go and chess?
2) What is the scope of the compulsory capture rule in checkers? Does it compel the opponent
to take the capture immediately, or does it only prevent him from making any other move on the
checker board. 3) Can a move elsewhere, perhaps in chess, be used as a ko threat in Go?

Open Problems

1. Debug and extend the entries in the existing rows of Table 1.

2. Insert more rows into Table 1. Obvious candidates include more restricted versions of some
games already listed there. In particular, most of the Konane positions constructed by Santos and
Nuno-Silva [2008] have checkers of both colors on both colors of squares, although in all positions
that can arise from the ancients’ o�cial starting position, black checkers can only occupy black
squares and white checkers can only occupy white squares. So composed Konane problems can
be partitioned into two sets: unrestricted Portugese Konane and restricted ancient Hawaiian
Konane.

3. Several families of Domineering positions are known, each containing an infinite number of
di↵erent temperatures. Compose a sum of them which maximizes the di↵ererence between the
orthodox result and the result when played optimally.

4. Make a similar study of which atomic weights occur in which infinitesimal games. Hopefully,
this would include corridors in Go, many of which are infinitesimal but not ”all-small”.
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