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Abstract Although the combinatorial game Entrepreneurial Chess (or Echess)
was invented around 2005, this is our first publication devoted to it. A single
Echess position begins with a Black king vs. a White king and a White rook
on a quarter-infinite board, spanning the first quadrant of the xy-plane. In
addition to the normal chess moves, Black is given the additional option of
“cashing out”, which removes the board and converts the position into the
integer x + y, where [x, y] are the coordinates of his king’s position when he
decides to cash out. Sums of Echess positions, played on different boards, span
an unusually wide range of topics in combinatorial game theory. We find many
interesting examples.
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1 Introduction

Following its beginnings in the context of recreational mathematics, combina-
torial game theory has matured into an active area of research. Along with its
natural appeal, the subject has applications to complexity theory, logic, graph
theory and biology [8]. For these reasons, combinatorial games have caught
the attention of many people and the large body of research literature on the
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subject continues to increase. The interested reader is directed to [1,2,5,7,10,
12,13] and to Fraenkel’s excellent bibliography [8].

In [9], the following problem was posed:

A King and Rook versus King problem. Played on a quarter-infinite
board, with initial position WKa1, WRb2 and BKc3. Can White win?
If so, in how few moves? It may be better to ask, “what is the smallest
board (if any) that White can win on if Black is given a win if he walks
off the North or East edges of the board?” Is the answer 9× 11? In an
earlier edition of this paper I attributed this problem to Simon Norton,
but it was proposed as a kriegsspiel problem, with unspecified position
of the WK, and with W to win with probability 1, by Lloyd Shapley
around 1960.

Fig. 1 Initial configuration in the “King and Rook vs. King on a quarter-infinite board”
problem and thermograph.

With this starting position, White can win if the rook (protected directly
or indirectly by the White king) limits and then narrows the moves of the
Black king. In [11,14], it was shown that White has a winning strategy which
can be implemented within a 9× 11 region (assuming White moves first). For
example, if Black utilizes the DOGMATIC strategy described in Section 8,
we would have the game described in Table 1. White wins after his eleventh
move.

Let us consider a board of fixed size where White can move anywhere on
or off this board, but Black (and White) cannot move off the bottom or left
sides. If Black escapes off the top or right side of the board, he is given a win.
Pearson [14] created a program to calculate the maximum number of (total)
moves it takes Black to escape or White to checkmate Black. We see that from
Figure 2, the smallest board such that Black will be checkmated (no matter
who moves first) is of size 11 x 8. If White moves first, it takes a total of 77
moves to checkmate Black. If Black moves first, it takes a total of 86 moves
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Table 1 A game where Black uses the DOGMATIC strategy, with initial position in Figure
1(a).

White Black
1. Re2 Kd4
2. Kb2 Kd5
3. Kc3 Kd6
4. Kd4 Kd7
5. Re11 Kd8
6. Ke5 Kd9
7. Kf6 Kd10
8. Ri11 Ke10
9. Kg7 Kf10
10. Kh8 Kg10
11. Ki9

to checkmate Black. Also, one can see that there is a segment of board sizes
such that it matters who goes first. Finally, observe that Black can eventually
escape any board that is too narrow.

Fig. 2 Number of moves before outcome occurs.

Entrepreneurial Chess (or Echess), invented by Berlekamp [14], modifies
this game so that Black (who would otherwise always lose) can “cash out” by
getting a payment of x+y if the Black king is at position [x, y]. Cashing out is
a move which terminates the game. The present paper gives the first virtually
complete analysis of this game. By using results found later in this paper, one
can calculate the following: the initial position shown in Figure 1(a) has mean
17 with Left sente, and temperature 2.
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2 General background

Combinatorial Game Theorists can now find correct analyses and winning
strategies for many positions in many games. The theory is most successful
in positions which are closely approximated as sums of more localized posi-
tions, each of which is a game. Appropriate analysis of each local game yields
some sort of mathematical object or data structure, which is simple enough
to be added to other such objects, and yet sophisticated enough to facili-
tate a correct analysis of their sum. In the (now) classical case, this object
is called the game’s canonical form or equivalently, the canonical value. The
most important homomorphism from such objects to the real numbers yields
the mean value. The key measure of dispersion around this mean value is called
its Temperature, a real number which provides a quantitative measure of the
importance of the next move. These terms and a few others we will use in this
paper are now standard in Combinatorial Game Theory, as seen in [1,10,12,
13]. Precise mathematical definitions may be found in introductory texts such
as [2] or in treatises such as [5,16].

Most games whose sums have been completely analyzed have rather low
temperatures, such as 2 or 3. A game whose temperature is −1 is an integer. A
game with subzero temperature is a well-understood dyadic number. A game
whose temperature is 0 is an infinitesimal. Games with positive temperatures
often have canonical forms which are precise but which can be too complicated
to be of much use (e.g., Snatzke [15]). When viewed as game-move trees in
extensive form, canonical forms can have large breadth as well as large depth.

Yet, complete analysis of many positions in such “hot” games can be facil-
itated by studies of their means. There is a natural sense in which means can
be regarded as scores. Moves which ensure optimal scores are called orthodox.
Every position in an orthodox form, like the thermograph, requires only one
Left follower and one Right follower. Since its breadth is only two, an orthodox
form can be vastly simpler than the canonical form. However, victory in many
combinatorial games is defined not only by getting the best orthodox score,
but also by getting the last move. This typically depends on the analysis of
infinitesimal canonical values, which are lost in the orthodox simplification.
Although infinitesimals can also have large breadth, there is a homomorphism
from them to other games called atomic weights which are typically signifi-
cantly simpler than the infinitesimals from which they were mapped.

Simon Norton’s “thermal disassociation” theorem (page 168, WW[5]) es-
sentially proposes a series of increasingly accurate (but increasingly compli-
cated) approximations to an arbitrary canonical form. The first approximation
is the mean. The second approximation also includes the appropriate infinites-
imal heated by the Temperature. We call this the primary infinitesimal. Some
moves optimize both the mean and the atomic weight of this infinitesimal. We
call such moves ultra-orthodox.
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3 Summary of results

We show that cooling any Echess Value by one degree (called chilling) turns
out to be reversible by an operation called warming. To distinguish between
them, we use “lower-case” for the values and temperatures of the chilled game,
but “upper-case” Values and Temperatures for the warmed games. In general,
temperature = Temperature− 1.

After at most a very short opening (lasting at most two or three moves),
White’s rook will occupy a position whose either x or y coordinate exceeds the
Black king’s by one. Then begins the middle game, which may last for many
moves. We obtain the ultra-orthodox value of each middle game position. If
the rook is either behind the Black king, or sufficiently far ahead of him, most
of these values near the two kings are only weakly dependent on the precise
location of the rook. Their mean values are shown in the contour map of
Figure 3. These values are naturally partitioned into six big regions of the
plane, depending on the direction from the White king to the Black king. The
values we obtain are ultra-orthodox in every region. In three of the six main
regions, they are also canonical. Except in a few very narrow subregions, the
original Temperatures are at most 2.

Fig. 3 Contours of the mean value with Black king at [0, 0]; rook at [−2, 1].

Virtually all Echess games terminate with a canonical Value that is the sum
of an integer and a loopy infinitesimal ε, called OVER. The only exception is
the unique Value of the position after the rook has been captured. This Value,
which is bigger than any finite number, has been discussed by Siegel (pages
31-33, [16]). We have nothing further to say about it here. Many of the Echess
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positions discussed in this paper have properties previously encountered only
in Berlekamp and Wolfe’s [6] analysis of Go.

4 Some typical terminal positions in Echess

Throughout this paper, we assume Left plays BLack and Right plays White.
As is common in combinatorial game theory, we assume that whatever position
we might be discussing is likely to be played disjunctively as part of a larger
overall game (Berlekamp [3]). At any turn, either player may decide to play
“elsewhere”, in some other summand. Hence, within the particular game under
discussion, several consecutive moves might be made by the same player while
his opponent responds “elsewhere”.

Figures 4-9 show positions relatively near the end of the game. In these
positions, the square with the thick border is taken as [0, 0]. Each of x and y
ranges from some finite negative value to +∞. The locations of the Black king
and the White rook are shown explicitly. The White king is presumed to be
located at a square with a lowercase letter, and that letter is then also used
to denote the position.

In Figure 4, the Black king can no longer advance and White can punish
any retreating move that Black might consider. So, all of Black’s retreating
moves are dominated by his option to cash-out to a value of 0. White, on the
other hand, can move to and fro between positions a and b. This gives the
formal values:

a = 0|b
b = 0|a

Since a is a follower of b and b is a follower of a, both a and b are loopy.
To define inequalities among games of this sort, the outcome (with al-

Fig. 4 Two “terminal” positions in Echess.

ternating optimal play by both sides) is allowed to be any of three values,
ordered from Left’s perspective as LEFTWIN > DRAW > RIGHTWIN. Let
Loutcome(G) be whichever of these three possible values occurs if Left plays
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first from G, and let Routcome(G) be whichever of these three values occurs
if Right plays first from G. Then, we say that

G ≥ H ⇐⇒ ∀ games X, Outcomes(G+X) ≥ Outcomes(H +X),

for both Loutcome and Routcome. For loop-free games, this reduces to the
traditional definitions. However, it also provides many equalities among loopy
games. In particular, it is not hard to see that both a and b can be viewed
as instances of the same simpler abstract value, called OVER. We denote
this value with the symbol ε. OVER is a positive infinitesimal and it satisfies
several more equations, including

OVER = ε = 0|ε = ε|ε = ε+ ε.

The formal negative of OVER is −ε = −ε|0, and this game is called UNDER.
Note that OVER and UNDER do not add up to zero, because their sum is a
draw. If α is any conventional loop-free infinitesimal with finite birthday, then
it is absorbed by ε in the sense that ε+α = ε. Similarly, UNDER also absorbs
all loop-free infinitesimals with finite birthdays.

Figure 5 shows eight positions, all having value ε. In each case, Black can
do no better than to cash-out to value 0. White can do no better than to move
to another position in this figure. After a sequence of several such moves, he
can reach the rudimentary case of Figure 4.

Fig. 5 More positions of value ε. We define e′, d′ and f ′ by reflecting both the White king
and rook across the diagonal through the Black king.

Figure 6 shows six positions of value 1ε|ε. As usual in combinatorial game
theory, implicit plus signs are omitted, so that 1ε means 1 + ε. In each case,
Black can move to [1, 0]. When translated by 1, this is identical to one of the
positions shown in Figure 5. White can move from each of the positions shown
in Figure 6 to a position of value ε. From 6a or 6b, White can move his king
to [2,−1]. From 6e or 6f , White can move his king to [2, 0]. From 6c or 6d,
White can move his rook to [1, 1].

Figure 7 shows the game tree of position 6a. Edges going downward to the
left indicate Black moves. The node reached by such a move is denoted by
the resultant position of the Black king. Edges going downward to the right
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Fig. 6 Some positions of value {1ε|ε} in Echess.

indicate White moves. The moves are denoted by K, E, or S, representing
a king move, a rook moving east, or a rook moving south, respectively. In
each case, the astute reader will quickly see the appropriate destination of the
moving king. At each of the leaves of the tree shown in Figure 7, we show
a circle containing the value of the corresponding position. Most of these are
direct translations of positions shown in prior figures. A notable exception
occurs after E from [2,−2]. Its value is 1ε, because from this position, either
player going second can ensure a value at least this good.

The two positions named BIG are not terminal nor are they identical, but
they are both clearly very favorable to Black. It will turn out that the details
of their complicated values are not too important, because an orthodox White
will not allow Black to reach these positions.

6a

[1, -1]

K

E

S

[2, -2]

E

S

E

[3, -2]

E

[3, -2]

E

[4, -2]

E

0ε

0ε
1ε

1ε

0ε

1ε

1ε

BIG

[1, 0]

1ε

2ε
BIG

[1, 0]

Fig. 7 Game tree of Figure 6a.
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5 Freezing and chilling

As explained in Chapter 6 of [5], cooling is a way to map a conventional loop-
free game onto another loop-free game which is often more tractable. Freezing
is cooling by an amount sufficiently large to map the game onto a number,
which is called its mean. Cooling by 1 is called chilling. When ε is chilled, it
becomes 0. When {1|0} is chilled, it becomes {0|1} = 1/2. Thus, the positions
in Figure 5 chill to 0, and the positions in Figure 6 chill to 1/2. If BIG is
any sufficiently large game, then when {BIG|0|| − 1} is chilled, it becomes an
infinitesimal, {BIG′|0||0}. This value is a member of a class known as Minies.
Minies are negative, but very small. Their atomic weights, as per Chapter 8
of [5], are zero. Minies may assume many different values corresponding to
different values of the parameter BIG. The larger the BIG, the smaller the
magnitude of miny. However, all minies are very small, and their values are
very close to each other. For many purposes, all minies behave so much alike
that it is convenient to use a single symbol m, to denote any member of this
class of games. There are rare occasions when distinctions are needed. However
in this paper, we eschew them. Games of this class will be discussed further
in Section 12.

The S follower of [2,−2] in Figure 7 chills to 1m. Figure 8 shows some
positions which chill to a MINY.

Fig. 8 Some positions which chill to a MINY in Echess.

If White plays first from any of these positions, he can immediately reach a
position of value −1ε. If Black plays first, his move creates a threat which, after
White’s response, leaves a position of value ε. From 8a, 8b, and 8c, Black’s
first move is to [0, 0]. In 8a, the size of this threat (to capture the rook) is truly
infinite. In 8b and 8c, the size of the threat (to continue to [1, 0], escaping local
containment) is more modest.

Figure 9 illustrates a position which chills to 1/2. Note that Black’s move
to [0, 0] and White’s king move to [3, 1] reverse each other.



10 Elwyn Berlekamp, Richard M. Low

Fig. 9 A “near-terminal” position which chills to 1
2

.

6 Warming inverts chilling

Infinitesimals vanish when cooled by any positive amount. Thus, all infinites-
imals chill to zero, as do many other games such as { 1

2 | − 1
2}. So, chilling is a

many-to-one mapping which, in general, we could not hope to invert. However,
certain classes of games have the property that all of their stopping positions
are infinitesimally close to integers. Such values are said to be integer-ish. For
such games, chilling can be reversed, at least up to the “ish”. For some special
classes of games, it is even possible to go further and also recover the “ish”.
The first such game for which this was discovered was Blockbusting [4], a game
closely related to Domineering. The second such game [6] was Go, an Asian
board game which for several thousand years has been considered by many to
be the most demanding intellectual game ever played.

In both Blockbusting and normal Go, only two infinitesimal values occur,
namely 0 and *. Since all stopping positions are integers, chilling is only a
two-to-one mapping. In each game, there is a special parity rule (different
for Blockbusting than for Go) which facilitates the resolution of this one-bit
ambiguity. In Entrepreneurial Chess, things are simpler. There is only one
infinitesimal Value, namely ε, which is added to every finite stopping position
in which all three pieces are still on the board. So, it is unusually easy and
straightforward to define a warming operator which inverts chilling. This oper-
ator consists of two steps: (1) Overheat the value from 1 to 1, yielding an inter-
mediate result we call the Valu. (2) Add ε, yielding Valu+ ε = Valuε = Value.
In Entrepreneurial Chess, warming and chilling are homomorphisms. Since
chilling gives simpler values without any loss of information, it is our preferred
point of view. As we mentioned before, all of the positions in Figures 4 and 5
chill to 0. Positions in Figures 6, 7 and 9 chill to 1/2, and positions in Figure
8 chill to a MINY.

7 What can we know about a typical position?

When an Echess position is played alone, we would like to know its Left-stop
and its Right-stop. These are the cash-out values that result from optimal
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alternating play if Black starts, or if White starts, respectively. But when many
positions (on different boards) in several games are played as a single sum, the
overall stop can be quite difficult to compute. However, as in statistics, there
is a single numerical parameter, called the mean, which usually provides a
(relatively easy to compute) good estimate of the outcome. In general, means
need not be integers, but they are bounded by the inequalities

Left-stop ≥ Mean ≥ Right-stop.
Since the mean of a sum is the sum of the means, the means of individual
positions are very important.

The minimal data structure of a combinatorial game G, which is sufficient
to determine the outcome of G+X for any other game X, is called the canoni-
cal form, or equivalently, canonical VALUE of G. We have already encountered
several important Values, namely 0, 1/2, and several different minies. If we
know the Value of a position, the mean can be determined by freezing. How-
ever, the Value of a position is often much more difficult to determine than its
mean.

8 Black’s dogma

For all of the Echess positions that we have examined, a relatively simple
strategy for Black proves as good as any. We call this Black strategy, which
entails only one-move lookahead, DOGMATIC. Here it is:
1. If possible, capture the rook.
2. If not possible, go northeast.
3. If not possible, go north.
4. If not possible, go east.
5. If not possible, go southeast or northwest.
6. If not possible, cash-out.
Constraining Black to this strategy simplifies the analysis. By optimizing
White’s play against this strategy, we obtain DOGMATIC results. After ob-
taining them, it is often straightforward to show that Black could have done
no better; that is, the dogmatic results are optimum. Thus, we simplify the
discussion by omitting the word “dogmatic”. To check our claims, the reader
is encouraged to use the dogmatic restrictions first.

In the course of this paper, we will also develop a dogma for White. In
general, our dogmatic moves are independent of whatever the summands may
be in play, so that each local dogmatic game tree has breadth two, with only
one local option for each player. In a sum of several games, a dogmatic player
decides which summand to play in based on global parameters that may in-
clude recent history, but after that decision is made, he has no choice about
what move to make there. Since there may be canonical moves which are in-
consistent with whatever dogma is specified, dogmatic strategies may fail to
win in some environments. However, they are much simpler. In this paper, we
assert (without proof) that our dogmatic strategies are ultra-orthodox.



12 Elwyn Berlekamp, Richard M. Low

9 A global view

In general, the temperature of a position is the amount by which the position
needs to be cooled in order to freeze it to a number. Following the terminology
of the game of Go, a move which raises the temperature is said to have sente;
a move which lowers the temperature is said to be gote. In WW [5], pages
159-161, these were replaced by the terms excitable and equitable. We now
advocate the more precise terms unstable and stable, which are defined in
reference to some specified ancestral position, which is often but not always
the previous position. A position is then said to be unstable if any of its
intermediate ancestors have lower temperature, or stable otherwise. Stable
positions can then be further partitioned into strictly stable positions and
quasi-stable positions. The latter must have temperature equal to that of some
relevant ancestor; the former do not. This nomenclature evades the difficulties
that even the best Go players face when attempting to force marginal cases into
a strict dichotomy between sente and gote. Nevertheless, because “sente” and
“gote” are in such widespread use, we may use those terms when their meanings
are indisputable. It turns out that many entrepreneurial chess positions are
either gote or Black sente. For this reason, the mean value is usually much
more closely related to the Left-stop than to the Right-stop. Hence, we found
that an investigation of dogmatic Left-stops was a fruitful place to begin.

Suppose the Black king is at [0, 0], the White rook at [k, 1], and the White
king at [x, y], where |x| + |y| >> |k| >> 0. Then, when zoomed out to a
significant distance, the values and White strategies can be partitioned into
six major regions as shown in Figure 10.

Fig. 10 Very high-level overview of how the plane is partitioned into regions.

On the global map, these regions correspond respectively to the east, the
south-southeast, the southwest, the west-northwest, the north, and the north-
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east. Each of these regions is best exemplified by considering one of its “typi-
cal” points, located reasonably far from the boundaries of the region, and far
away from the Black king and White rook. If [x, y] are the coordinates of such
a point, then |x| + |y| is large. If Black plays first and the players alternate
turns, then the eventual cash-out value of the position will be its Left-stop L.
Dogmatic play by Black will increase at least one of his coordinates at every
turn, and correct play by White will ensure that no Black move increases both
of her coordinates. So, Black will get exactly L moves, and White will get
either L or L − 1 moves, depending on who gets the last move. In Go termi-
nology, this depends on whether Black ends in sente (in which case, White
gets L moves) or gote (in which case, White gets only L − 1 moves). In most
cases (but not all), Black keeps sente and both White and Black get L moves.
Nearly all of White’s moves are king moves, but (in some cases) a few of them,
r, must be rook moves.

To determine L for a “typical point” (located away from the boundaries of
a region), we use Table 2. We assume that the Black king starts at [0, 0] and
the White rook starts at [k, 1], where |k| > 1. The second column of Table
2 indicates the number and direction(s) of rook moves that White will need
to make. In particular, for regions A and B, White will either have to make
one rook move to the west (denoted by W) or not have to make a rook move
(denoted by 0). For regions C, D, E, and F, White will need to make two rook
moves (either east or west, and then eventually south or north). The third
column of Table 2 refers to Figure 5, which depicts the final target ending
position (up to translation) just before Black cashes-out. The fourth column
indicates the critical parameter(s) which the White king changes on each of
his moves. Some of his moves may also include a non-critical orthogonal com-
ponent which does not affect the value. In the fifth column of Table 2, the
entries correspond to the change in the key parameter(s) value each time the
White king moves. The sixth column indicates the starting value of the key
parameter(s). Finally, the entries in the seventh column are triples (xi, yi, pi),
where [xi, yi] is the final position (modulo translation) of the White king and
pi is the value (modulo translation) of the key parameter(s). We use Table 2
to obtain an equation involving x, y, r, and L. We then solve for L in each of
these cases (see Table 3).

Table 2 Overview of play when the White king starts from a region’s deep interior.

Region r Targ. End Param. Direct. Start. Val. End. Val.
A 0 or W 5d or 5e x −1 x (2,−1 or 0, 2)
B 0 or W 5d y +1 y (2,−1,−1)
C EW+S 5d′ x+ y +2 x+ y (−1, 2, 1)
D EW+S 5d′ x +1 x (−1, 2,−1)
E EW+S 5d′ or 5e′ y −1 y (−1 or 0, 2, 2)
F EW+N 5c or 5b or 5b′ x+ y −2 x+ y (1, 1, 2)
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Table 3 Left-stop as derived from Table 2, if L is an integer.

Region Solution of equation for L
A (x+ r − 2)/2
B −y − 1 + r
C −x− y + 1 + 2r
D −x− 1 + 2r
E (y + r − 2)/2
F (x+ y + 2r − 4)/3

Table 4 A well-played game.

Start 1 2 3 4 5 6 7 8 9
BK [0, 0] [1, 0] [2, 0] [3, 0] [4, 0] [5, 0] [5, 1] [5, 2] [5, 3] [5, 4]
WK [−3,−1] [−2, 0] [−1, 1] [0, 2] [1, 3] [2, 4] [3, 5] [4, 6]
WR [±10, 1] [6, 1] [6,±10]

Consider, for example, the optimum play from the following position in
Region C (see Table 4). The starting locations are shown in the second col-
umn. The White rook may begin either in the far East or the far West. After
Black’s second move to [2, 0], the White rook moves to [6, 1]. When attacked
two moves later, he flees to the far North or far South. When the White king
eventually moves to [4, 6], he attains the terminal position which is a trans-
lation of Figure 5d′ (by which we denote a reflection of Figure 5d). Relative
to the final position of the Black king, the final position of the White king
is [−1, 2]. Black and White each made L moves, but two of White’s moves
were rook moves. All White king moves were NE, so, relative to the starting
position, White’s terminal king position is [−3,−1]+(L−2)[1, 1], and Black’s
terminal king position is [−3,−1]+(L−2)[1, 1]− [−1, 2] = [L−4,L−5]. Black
took L moves to get here, so L = L−4+L−5 and thus L = 9. More generally,
if the White king had started at [x, y] in Region C, he would have ended at
[x+L−2, y+L−2] and the Black king would have ended at [x+L−1, y+L−4],
whence L = x+ y + 2L − 5 and L = 5− x− y.

Similar calculations obtain other formulas for the values of L in the re-
maining regions. The solutions of these equations are shown in Table 3. Of
course, these equations cannot give the precise value of L unless the value is
an integer.

When k < 0, within the deep interiors of Regions A and F, when the for-
mula for L yields an integer, this integer turns out to be the chilled value
of the game. The reader may verify this fact by computing Right-stops and
observing that they are equal to the Left-stops.

When k < 0, in Regions B, C, and D, the mean turns out to be the same
integer as the Left-stop. However in the other regions, the mean is often a
non-integer. Fortunately, within these regions (excluding certain boundaries),
the temperature is no greater than 1. In regions A and F, the chilled value can
be determined by a recursion which we will present in later sections.
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10 Overview of the remainder of this paper

We remind the reader that, in the view of Combinatorial Game theorists, any
Echess position whose value we seek may be only one component in a galli-
maufry, which is the (disjunctive) sum of several games, such as in Berlekamp
[3]. So from any Echess position, one player might make several consecutive
moves while his opponent plays “elsewhere” in some other summand. In the
local Echess position, successive moves need not alternate between two play-
ers. Thus, stops are insufficient. So we seek ultra-orthodox values, which in
some cases will turn out to be canonical as well. For brevity, we sometimes
simply call the moves and lines of play which lead to such values “good”.
The different lines of play to which we refer do not occur because of different
canonical options from any position, but rather to the possibility that either
player might make the next move from each stable position. From an unstable
position, there is no such choice, as an orthodox player will always respond
immediately and directly to any destabilizing move.

More generally, since we are interested only in “good” lines of play, that
word may sometimes become implicit. A zoomed-in look at Figure 10 reveals
Figures 11 or 12, which show the partitioning of regions into subregions. We
distinguish among these subregions with suffices which may specify the ori-
gin, number, and/or direction(s) of the rook’s move(s) in good lines of play in
which the White king begins within the given region. For example, A− denotes
region A in Figure 11 where the rook began with a negative x coordinate; while
A+ denotes region A in Figure 12 where the rook began with a positive and
moderately large x coordinate (e.g., k = 9). Since regions in Figure 11 are
typically simplified or degenerate versions of Figure 12, in many cases we can
omit the suffix of + or − because it is irrelevant, or clearly implied. However,
especially in Figure 12, other suffixes are sometimes needed. A0 denotes a re-
gion wherein, in all (good) lines of play, the rook never moves; A1 denotes a
region wherein in all lines of play, the rook moves exactly once. Capitalized
directions, N,S,E,W , indicate a rook move which occurs in all good lines;
lower case directions, namely n, s, e, w, indicate that such a rook move will
occur in some lines but not others. Thus, in EWN , the rook will always move
West and then North; in EwN , there are some (but not all) lines of play in
which he can avoid the move West.

As k increases above 9, many of the regions in Figure 12 grow, but no new
regions appear. So, we will first examine the general case of large k before
commenting on how some regions in Figure 12 disappear or merge with each
other when k descends from 9 to 2. As k approaches infinity, we will see that
of those regions which remain within finite distance of the Black king, only A
maintains any significant difference between Figure 11 and Figure 12.

In both Figures 11 and 12, a white dot denotes a position whose value is
an integer.

Some narrow regions lie in between major regions and are denoted by
descriptions of the relevant contest, as in the row just below B0 and just above
B1 near the bottom of Figure 12. We denote this region as B1|B0, meaning that
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Fig. 11 Regions and their boundaries, Black king at [0, 0]; rook at [−2, 1].

in this contested region, Black’s move will translate to a position in B1; White’s
move, to a position in B0. Continuing around the map in the counterclockwise
direction, we find other contested border regions: the jagged vertical C|B, the
horizontal C2|C1, the two-point vertical DwS |EW , and the north-northwestern
region DwS |EWN . Except for the single-point region F2|F0, other boundaries
are uncontested. Some, such as the horizontal 4-point region EWN and EW are
actually administered jointly, since although the two sides differ on White’s
strategy, they both attain the identical optimal result. Other joint borders run
diagonally NE to SW within B0, and C2.

We will present figures that tabulate values in each irregular region where
multiple boundaries come together. In each case, the patterns that arise there
persist as one moves away from that irregularity. The value of any point in a
narrow border region may be expressed directly as G = GL|GR. Since G has
higher temperature than either GL or GR, this expression is already orthodox.
When G is frozen, the infinitesimal it gives off is ∗, so the simple expression
for G is also ultra-orthodox. In order to save space, we will omit tabulating
the values in such border regions.

In the following sections, we evaluate each region in detail. We’ll begin
with the easiest regions, A and B. Then, since White can move from C to D,
and from D|E to E, we’ll investigate C, D and E in bottom-up order: E, then
D, then C. We’ll then conclude with F. In each region, if Black king is at [0, 0]
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Fig. 12 Regions and their boundaries, Black king at [0, 0]; rook at [9, 1].

and White rook at [k, 1], we’ll study k < 0, then k = +∞, and finally allow k
to decrease to smaller and smaller positive integers.

11 Region A

In Figure 11 and Figure 12, the simplest row in A0 is y = −1, wherein the
White king consistently moves due W while the Black king moves E until they
meet in a terminal position seen in Figures 4 and 5. Since y is fixed, the Values
depend only on x. Starting from V (2) = ε, we have the recursion

V (x) = {V (x− 1) + 1|V (x− 1)},
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which chills to

v(x) = {v(x− 1)|1 + v(x− 1)} = v(x− 1) + {0|1} = v(x− 1) +
1

2
.

More generally, if the White king starts anywhere within A0, the White rook
need never move, and the value is independent of y because the White king
can move NW or SW (which might be needed in order to reach the row y = −1
or y = 0 in time to halt any further advance of the Black king).

In Figure 12, if the White king starts on row y = 2 in Region AW , he
should not move SW because doing so would block the influence of the White
rook and allow the Black king to escape northward. So on this row, the White
king moves W until he is close enough to the Black king to bring in the White
rook to a position which is either kickable and protected or confrontational
(i.e., a knight’s move ahead of the White king). This region is called A1 since it
requires one rook move westward. As in earlier sections, we denote the number
of rook moves by the letter r. In both AW and A1, r = 1 and

v[x, y] =
x+ 2 + r

2
.

In Figure 12, there is also a column between A0 and A1. We call this region A1|A0

because Left’s move translates to a position in A1, but Right’s move reaches
a position in A0. Closer analysis reveals each of the chilled values of points in
this region to be an integer+3/4, which is consistent with the notion that the
number of rook moves could be taken as r = 1/2. This simple interpretation
is unique to Region A; it does not work along other boundaries. However, it
does work in Figure 11, where the Region A1 (now located just north of A0)
contains only two points/row. White’s best move from this region is king SW.
White’s single rook move will be made only after the translated position has
eventually left Region A1.

12 Region B

In Figure 11, the simplest point in Region B is [2,−2], from which the best
White king move is to [2,−1] (whose value is 0). However if Black moves first,
he reaches a position which translates to

1 + V [1,−2] = 2 + [0,−2]|1 + V [2,−1];

so V [1,−2] chills to the hot value BIG|0, where BIG = 1+ v[0,−2]. Although
the value of this position is complicated, it is easily seen to be bad news for
White because the Black king will be able to make several moves before White
can stop his advance.

Values such as BIG|0||0 are explored in WW[5], where they are called
minies. They occur so frequently in Echess that we’ll now give them a special
notation:

m0 = BIG|0||0.
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This m0 is a negative game. White can win it if it is played alone. The more
interesting question is its effect on the total when added to a sum of other
games. The answer is that m0 is very, very small. It is infinitesimal, in the
sense that the sum of any (large) finite number of them remains greater than
−1. In WW[5], there was an attempt to quantify the canonical values of these
games precisely in terms of the values of BIG. In Mathematical Go, the quest
for this precision was de-prioritized because (in Go, like Echess) the canonical
value of the BIG game is often quite complex. What is important is only that
BIG exceed small positive numbers such as 2−j ; being any larger than that
makes at most only a tiny difference. Thus, the interest shifts to focusing on
the ancestors of the miny (i.e., earlier games in which the miny occurs as a
position). One common sequence of such games (which we also encounter in
this paper) satisfies the recursion:

mn+1 = mn|0.

The placement of n as a superscript (rather than a subscript) is reminiscent
of the notation in Mathematical Go, where (for example) BIG|0||0|||0||||0 =
m0|0||0 is naturally abbreviated as m0|02. The atomic weight of mn is −n.
The integer n may be viewed as the number of consecutive Black king moves
which White can ignore at a cost of no (chilled) points per move, after which
the need for White to respond to Black becomes more urgent.

All of B− may be regarded as B0. However, B+ contains a large southern
subregion B1, wherein the White king is too far away to prevent the Black
king from kicking the rook. The rook may then flee to the west, after which
the position translates to B0. In B1|B0 (the row between B0 and B1), the
chilled values are hot because the question of whether r = 0 or 1 depends on
who plays first. The global maps of Figures 11 and 12 contain several other
subregions (like B1|B0) which are hot but narrow. The fact that they are hot
means that an orthodox player will exit any such region immediately after his
opponent enters it. Hence, the values within these regions do not propagate.
The conventional form, G = GL|GR, is itself already ultra-orthodox or even
canonical. So except for the case of A1|A0 (where the value of the non-integer
term is recognizable in its more familiar form 3/4), we will leave the relevant
boxes in some forthcoming figures blank. Throughout both B0 and B1, the
ultra-orthodox value v[x, y] is the sum of an integer r−y−1 and an infinitesimal
mn, for some integer n. Although the infinitesimal term in the canonical value
v[x, y] may differ from mn, this difference necessarily has atomic weight 0.

One way to verify the boundary between A and B in Figure 11 is as follows:
First, verify our claimed values along the boundaries v[x,−1] and v[2, y] for
the relevant positive x and negative y. Then notice that at all other points,
White can do well by moving his king NW. Although other White moves
may have higher atomic weight, they can all be viewed as reversible, so king
NW is among White’s moves which are orthodox. That observation yields the
following recursion for all other values with x > 2 and y < −1:

v[x, y] = {v[x− 1, y]|v[x− 1, y + 1] + 1}.



20 Elwyn Berlekamp, Richard M. Low

The solution to this recursion yields the boundary between A and B, shown in
Figures 11 and 12.

In Region B, vR[2,−3] includes both of the options v[2,−2] = 1m0 and
v[3,−2] = 1m1. In most environments with other summands, the latter option
is preferable because it has the better atomic weight. However in some envi-
ronments, the former option is the only winning move. So, both options must
be included in the canonical form. Hence, even though v[2,−3] = m, the more
precise value m0 is not canonical. This is true for most of the infinitesimals
occurring in Regions B and D: We can specify their atomic weights simply,
but their canonical values might be more complicated.

Fig. 13 Values near A1|A0 and B1|B0.

In Figure 12, the eastern end of the horizontal row B1|B0 terminates near
the southern end of A1|A0.

The ultra-orthodox values in this vicinity are tabulated in Figure 13, where
the origins of x, y and v have been translated to make the Figure independent
of k, for all k ≥ 3. The origin of x and y is the darkened square. The origin of
v is denoted by a circle. In Figure 13, this circle is adjacent to and diagonally
SW of the rook. What appears to be the strange irregularity at [−1, 0] is due
to the efforts of the White king to prevent Black from kicking the rook. West
of the irregularity, White can reach y = −1 just in time to block the kick.
East of the irregularity, White can arrive at y = 0 to protect the kicked rook.
However if White starts at the irregular point, he arrives too late to do either.
So, this point lies in B1 rather than B0 or B1|B0.

The western end of the single row region B1|B0 meets the column C|B, as
shown in Figure 14. With respect to the origins of this figure, the bottom row
of B0 is now y = −3, and each of its values is −3m0.

In this figure, there are two subregions of B0. The shared boundary between
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them lies on the diagonal x− y = 5. Northwest of this boundary, the eventual
threat of Black’s king is to catch up with White’s, exiting Region B0 into C|B.
The atomic weight depends only on x. Southeast of this boundary, Black’s
eventual threat is to kick the rook, exiting Region B0 to B1|B0. Here, the
atomic weight depends only on y.

We defer discussion of the left side of Figure 14 until Section 15, which is
about Region C.

Fig. 14 Values near B1|B0 and C2|C1.

13 Region E

In Regions E and D, unless the two kings are reasonably close (i.e., 0 ≤ y ≤ 4
and 0 ≤ x ≤ 6), White’s orthodox opening move is to bring the rook to con-
front the Black king, which then kicks the rook, who then flees. This triplet
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of moves: White, Black, White, is most conveniently viewed as a single White
move. If instead Black plays first, there will eventually be a confrontation be-
tween his king and the rook, soon after which there will be a kick and a flight
as before.

Fleeing northward gives an orthodox advantage only if White’s king started
very near the EF boundary. Thus by temporarily excluding such points from
the region under consideration, we can assume that the rook flees S. The re-
sulting position is then a diagonal reflection of Region A− or B−.

Thus, we can view the game as consisting of two separate sequences of
play. The opening sequence ends with the pair of moves consisting of the kick
and the flight. The moves which follow it constitute the endgame. It happens
that most or all of the opening is at least as hot, and often hotter, than the
endgame. So with some minor adjustments when 1 ≤ k ≤ 3, we will view the
original value of v[x, y] as the sum of two components.

REGION E2 (ALIAS EWN in E+ or EEN in E−)
In the endgame, most of Region E− reflects diagonally into Region A. The

row y in E reflects into the corresponding column of A, yielding an endgame
component of value (y− 2)/2. To this must be added the opening component.
In the opening sequence, White (if he wishes) may ignore some initial moves
while Black gains one point per move. Eventually, Black’s next move becomes
a threat to translate the position from Region E to the hotter Region D. So an
orthodox White player must answer this threat. Evidently, the chilled value
of this opening is of the form 2m, by which we mean 2mn = 2 +mn for some
integer n, whose value depends on the horizontal distance from the DE bound-
ary.

The presumption that the kicked rook fled southward allowed us to reflect
into Region A−, avoiding the potential complications of Region A+. However,
now that we have found endgame values on each row in E2, we can consider
the possibility that the kicked rook might flee northward. This move is essen-
tial if the White king starts adjacent to the EF boundary. If y is even, the
rook’s desired destination is directly in the path of his SW-bound king, where
he can be protected just in time. If y is odd, the rook’s desired destination is
one square S of the king’s projected SW path. This latter location also works
for White king locations whose latitude is at least as eastward as the rook.
For locations westward of the rook, any location sufficiently far north is good
enough. For example, he might as well move to the same row as the location
of his king. If White follows these guidelines, we can assume that from every
position in E2, the rook always flees north. Then for all positive k, E+ can be
renamed EWN .

REGION E1

Region E1 appears when y is small enough that White can avoid the vertical
rook move. Instead, he brings the king down to y = 2 and then terminates the
position with his single horizontal rook move.

The southern boundary of E2 lies on the row y = 4; x = 1, 2, 3, and 4.
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These points also lie in E1, a region within which White can move the king S
(or SE or SW) until it reaches y = 2 (one or two squares ahead of the Black
king), and which White can play his single rook move to reach the integral
stop. Although E2 does not include the points y = 4; x = 5, 6, E1 does. In E1,
the mean value of row y is y − 1, for y = 2, 3, and 4.

When k is negative, among the values shown in Figure 15 are Region E1

and its vicinity. When 14 ≤ k ≤ ∞, all values in this figure in Regions B, E,
and F remain unchanged.

Fig. 15 Values with Black king at [0, 0] and rook at [−4, 1].

In Figure 12, the points with y = 1 and 0 < x < k are hot. However, in
Figure 11, for x ≥ 4, the points [x, 1] are in A, but [2, 1] and [3, 1] form their
own small region E|A. From these points, Black may begin by moving his king
SE. However (from either of these two positions), White can reverse Black’s
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SE move by playing his rook one square S, yielding the value at [1, 2] or [2, 2]
respectively. Although there are other plausible variations of play, the canon-
ical values are as just claimed.

REGION EwN

Let’s look again at Figure 12, when k > 3, in Region E when x ≈ k/2
and y is positive and large. In this region, there are canonical lines of play
in which the westward rook move is avoided. If the horizontal distance from
the White king to the D|E boundary is sufficiently large (e.g., more than k),
then the value of the initial component is not 2 + m. Instead, it is 2 plus a
negative number of small magnitude, λ = −2−(k−2). Since such numbers are
very common in Echess, to compress them, we define j = k−2 and λj = −2−j .

Figure 16 illustrates some of the values in the opening sequences in EwN .
In this figure, the locations of both White pieces are fixed, but the Black king
can occupy any of the annotated squares. All such squares have the same
endgame value, y/2+ 1, but the values of the openings differ, as shown in the
figure. We might use an accounting system which decomposes the mean value
of Black’s current position into its cash term, which is the number of moves
he has advanced from the origin, and an accrual term of value 2 + λ. If the
origin is translated to the Black king’s current position, from which the rook
is then at [k′, 1], the accrual term is the translated value of the opening. Its
right follower is 1, the value attained if the rook moves into confrontation. The
value λ satisfies the recursion:

λn+1 = λn|0.

Fig. 16 Some values of the opening sequence in EwN .

With appropriate initial conditions we shall soon discuss, the solution is
λn = −2−n. In Figure 16, when the translated value of the opening is 2 + λ,
the temperature is λ; the Temperature is 1+λ. Each Black move decreases the
temperature, yielding a new stable position. When k′ = 3, the temperature
is −1/2, identical to the temperature of the endgame. So if White decides to
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move when k′ = 3 or 2, White can move his king instead of his rook. From
k′ = 3, Black’s king move and White’s king move have incentive equal to −1/2.
They can be viewed as reversals of each other, in either order. From k′ = 2,
Black’s kick and White’s flight are again an orthodox reversal, whether or not
they were preceded or followed by another White king move at t = −1/2.

14 Region D

Figure 17 is similar to Figure 16 except that now we are in Region D, and the
figure shows the full orthodox Valu, not only its opening component. We now
start with the Black king at [0, 0], the White king at [−1, 2], and the rook at
[k, 1]. If instead K starts at [x, y] in Region D, then the values in Figure 16
should be incremented by 1−x. As before, if k > 3, White’s best first move is
to confront Black’s king, get kicked and flee away vertically, leaving a position
whose value is of the form 1− x+m. But because each eastward Black move
now increments −x as well as gaining the usual point by translation, the mean
value of the initial position is now 3− x+Λ, where the mean value of Λ (like
λ) is −2−i, where i = k − 3. However, whereas the game λ is a number of
temperature −2−i, the game Λ is hotter, of temperature 1 − 2−i. Thermo-
graphs of translations of Λ2, Λ1, and Λ0 are among those shown in Figure 18.
In accordance with the formula, the mean of Λ0 is −1, and its temperature
is 0. Its chilled value is a negative infinitesimal of atomic weight −1, like m1.
Formally, when k = 2 and i = −1, we have Λ−1 = −2. This happens to give
the correct mean value, but the wrong temperature. Λ−1 is actually −2+m0.

Fig. 17 Some values in D+.

When, as in Figure 18, the y-coordinate of the Black king exceeds 2, the val-
ues are increased by an infinitesimal whose atomic weight is the same as my−2.

REGION D|E2

Unlike the boundary between A and B, or between EWN and EwN , there are
transitional points within the contested region D|E2 . All such points have odd
values of y. The thermograph of one such point is depicted as “G” in Figure
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Fig. 18 Some thermographs.

18. Although its Right follower is presented in the figure as Black king at [0, 0]
and rook at [2, 1], we know that the kick is reversed by the flight, so that this
GR is equivalent to Black king at [1, 0] and rook at [2,−2], a position whose
value is more easily seen to be a half-integer.

As one progresses upwards along any column of D, one encounters one such
transitional point, below which the temperature is 1 + λj . At the transition
point, t = 1

2 . Above the transition point, the values are integers plus infinites-
imals having temperature 0. Below the transitional point, the mean value is
2 − x + Λj . Immediately above the transition point, the mean value is the
integer 2 − x = 1 + y/2, which increments by 1/2 thereafter until it crosses
the boundary from EWN into EwN .

QUENCHING
To reduce an original (warm) position depicted as Λj to the number −2−j ,

it is necessary to cool it by 2. Just as cooling by 1 is called chilling, cooling
by 2 is called quenching. In Echess, we have discovered one special case under
which quenching can be reversed.

When k goes to infinity, Λ obviously approaches 0 and the chilled tempera-
ture approaches 1. As the surreal numbers which appear elsewhere in combina-
torial game theory distinguish among different values of infinity, some readers
may find it interesting to specify the infinite value of k in greater detail. The
most interesting value is k = ON, defined as ON = {ON|}. ON is so big that
it satisfies ON− 1 = ON. When k = j = ON (in Region D), the value V [x, y]
quenches to the game

UNDER = UNDER|0,

where UNDER = −OVER and OVER is denoted by ε (which we have used in
an earlier section of this paper). Whenever White decides to stop paying two
points per Black move, he moves his rook into confrontation. In this particular
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case, restoration by heating works; we can say that when k = ON or k < −1

in Region D, we have v[x, y] = −x+ 2 +my−2 +
∫ 1

1
ε.

15 Region C

The partition of C into several subregions is shown in Figure 12. Figure 14
shows some values in region C when k is a large positive number. The Black
king is located at [0, k−4]; the White rook and the baseline of values are both
at [k, k − 3].

REGION C1
Since the value of a terminal position is the sum of its x and y coordinates,

all of the values shown would have been unchanged if we had instead placed
the circle a single king’s move NW of the rook, which will be the terminal
position if the White king starts at [−2, 0]. If Black goes first, his king will get
k + 1 moves (k − 1 East and then 2 North), ending at [k − 1, k − 2]; White
will also get k+1 moves (1 with his fleeing rook and k moves as his king treks
from [−2, 0] to [k − 2, k]). On the other hand, if White goes first, he can do
no better. Unless he makes an early rook move, his king will be blocked by
the Black king, and White’s king can then only move in a direction that lacks
any eastward component. Nor does an early rook move prove any better. As
White’s rook is already optimally positioned, it has nowhere better to go. So,
the value at [−2, 0] is precisely an integer, namely 0. Similar arguments also
reveal zero values at [−1, 0] and [0, 0]. From all three positions, if Black starts,
White’s first move of K to [−1, 1] is as good as any. If the White king starts
at [0, 0] and White plays first, he might try the confrontational R to [2, k− 3],
then kicked northward. However, this terminates with Black cashing out for
the same value as the circled position on which the rook started, namely 0.
Although this Black strategy avoids the blocked king, it costs him a third rook
move.

Since C is generally the hottest of the six primary regions, we regard the
appearance of these three integer values at [0, 0], [−1, 0] and [−2, 0] as a sur-
prise. White’s moves (east and west among these positions) are all canonical,
although he could also play another move which Black could reverse.

If the White king is initially positioned anywhere along the row with y = 0,
his rook is already optimally positioned. Outside of C′, the next lower row, C2|C1
with y = −1, is hot. If Black moves first, he can kick the White rook before
White’s king is able to reach Region D. Then, White’s rook does best to flee
eastward, and will need to make a vertical second move later. However, if
White moves first, to the row y = 0, he will then be able to reach Region
D just in time before his rook is kicked, to which it responds vertically with
its single move. If y < −1, then White’s rook will need to make at least two
moves in all orthodox lines of play.
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ORTHODOX PLAY IN CwS

If x ≤ −2, in CwS , the mean is

µ = λy−1 − x− y,

where λn = −2−n. We apply this formula even when y = 0 and λ = −2,
thus obtaining the correct mean of 0 at [−2, 0]. We find it useful to view the
orthodox Value as the sum of two terms. The integer −(x+ y) is the primary
term and the secondary term is the game Λ. Its mean is the same as the num-
ber λy−1 = −2−(y−1), but its temperature is one degree higher than λ’s. The
formula also holds on the the bottom row of Region D, where its mean value
coincides with the mean values found there. From the perspective of orthodox
Values, that row is shared between C and D. However, D’s claim to that row
prevails because White’s best move is not king NE nor rook eastward, but
rook to confrontation.

In CwS , if White moves his king NE, he changes from [x, y] to [x−1, y−1],
increasing the temperature. If instead, Black advances his king, he moves the
origin one unit NE. Since rook and the circle around it are unchanged, this has
the same effect as changing [x, y] to [x−1, y−1]. So, each White king move that
stays within the region can be reversed by Black. On the other hand, White
might instead choose to move his rook. This leaves the horizontal component
of the origin and of the king’s [x, y] position unchanged. So the rook move
effects only the column in Figure 14. Since the circle representing the origin
of values stays with the rook, the primary term of the Value is unchanged.
So, the rook’s best move is to C1, where y = 0, and the secondary part of
the value changes from Λy−2 to −2. White’s rook move improves the mean by
2 + Λy−1. If Black had moved first, changing [x, y] to [x− 1, y − 1], he would
have changed the formal fractional part of the mean from Λy−1 to Λy−2, a
difference of Λy−1. So evidently, from [x, y] in CwS , either player can improve
the mean by 2 Λy−1. This is equal to the Temperature and to both orthodox
incentives. The position is stable, because although White might destabilize
it, Black’s orthodox reply will reverse its mean back to its prior value. Black’s
moves from CwS are all stabilizing. In Go terminology, these Black moves are
gote. However, once we exit CwS , either to D or to C1, the situation changes.

In C1, y = 0, the secondary term is −2, and the infinitesimal term is m0.
In CwS , if y = 1, the secondary term is −1, and the infinitesimal term is m1.

REGION C′

Region C′ is the subregion of C with x ≥ −1 and y ≥ −4. It requires special
treatment because in some situations, the White king’s northeastern trek runs
into Black’s. As seen in Figure 14, all values in this region have nonpositive
temperatures. The assiduous reader is invited to verify that these results are
consistent with Figures 19 and 20, which exhibit two sequences of values as a
function of the location of the rook.

REGION C2
South of C1 = CS lies the Region C2, wherein White cannot prevent Black
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Fig. 19 Some values in column x = −1 of C′.

Fig. 20 Some values in column x = 0 of C′.

from eventually kicking the rook twice. As shown in Figures 12 and 14, this
region is partitioned into two parts by the dotted diagonal line running through
the rook. In CES , the first time the rook is kicked, he can flee East; in CNW ,
he can flee North. The option to flee north is important on files such as x = 0
or −1, because it avoids the White king running into the Black king.

Once kicked, the rook will flee East to a position in C1, or North to a
diagonal reflection of such a position.

The means in C2 are all equal to the Left-stops. They are all integers. The
Temperature is 2. Black gains two points from each move preceding the kick.
White could typically also gain two points by playing his king NE. The question
is how many such two-point moves either player can let the other take. This
is related to the atomic weight of the quenched Value of the position, where
quenching means cooling by 2.

From positions in C2 for which |x| > 1, if White wants to exit the region, he
can do so immediately by playing his rook the appropriate number of squares
horizontally to reach C1.

But if Black seeks to exit the Region, he can do so only by playing j = k−2
preliminary moves before he can kick the rook. So the atomic weight of the
quenched game is −j. In Figure 14, we denote the secondary terms of the
values by M j , which is mj heated by one. If k = ON, j = ON. Regions CwS

and C1 vanish and all of C, except C′, becomes C2, wherein the secondary term
of every value is MON. This same result also holds if k < 0.
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16 Region F

We find it instructive to examine the play from two of the westernmost points
in F in detail, with the Black king starting at [0, 0]. For the convenience of chess
players, we annex another row at the bottom of the chessboard, and denote
its squares by a0, b0, c0, . . . so that the digits in chess notation correspond to
the value of y, while {a, b, c, . . . } = {1, 2, 3, . . . }, correspondingly.

In each of these four skirmishes (Figure 21), the White rook may be viewed
as starting at h1 = [7, 1].

Fig. 21 Four short games.

If K starts at g6, then no matter who goes first, the second player can
ensure that the stopping position is 4 (or better for him). Hence, that value is
4. Similarly, if the king starts at e5, then either player going second can en-
sure that the value is 3 1/2 (or better for him). After three full moves by each
player, the warmed temperature is 1/2 and the next player (who went first
originally) may spend his next move taking his half point, to which the second
player need not respond. Or in some cases, the first player may have moved to
his desired integer earlier, and the second player might cease to respond then,
rather than continuing to reverse the temperature back to 1/2.

Similar results occur further NNE-ward. For even y, the westernmost point
in F is at x = (y+6)/2; for odd y, it is at x = (y+3)/2. In both cases, the value
immediately to the W in E is only slightly less. In Figure 11, where k < 0, it
is only infinitesimally less. In Figure 12, which has the same EF boundary as
in Figure 11, the “slightly less” becomes −2−(k−2) = λj .

A RECURSION FOR VALUES IN F−
The defining property of F is that White’s best king move is SW. This

property can also be imposed on the subset of Region A for which y > 2. We
are thereby able to find a simple recursion for all values in F, because

v[x, y] = {vL[x, y]− 1|vR[x, y] + 1}

becomes v[x, y] = {v[x − 1, y]|v[x − 1, y − 1] + 1}. The initial conditions are
given by known values at points just over the boundary in A or E. Crossing
over the southwestern boundary enters E1 at y = 4, where v = 3m.

The solution of this recursion is simplified by an important theorem (in
WW), which states that if there is any number in the interval between GL
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and GR, then the value of G = GL|GR is the simplest such number. Among
integers, the simplest is the one of least magnitude. Among non-integers, the
simplest number is the one whose denominator is the smallest power of two.
Thus, for example, {3 1

2 |3
7
8} = {3 1

2 |3
15
16} = {3 1

2 |4m} = {3 1
2 |4} = 3 3

4 . Sim-
ilarly, {3 1

2 |4
1
2} = {4m|4 1

2} = 4. But since there is no number between the
infinitesimals m1 and m2, the simplest number theorem does not apply, and
we find that {m2|m1} = {m2|0} = m3. We need not invoke that here, be-
cause there are no infinitesimals in Region F. For x ≤ 10 and y ≤ 10, the
solution to this recursion is shown in Figure 15. Within Region F of Figure
11, we often have v[x, y] = 1 + v[x− 2, y − 1], from which we can state that
v[x, y] = n + v[x − 2n, y − n], for all n sufficiently small (where the latter’s
coordinates still lie within F).

SUBREGIONS OF F−
In Figure 11, the values in the deep interior of F are given by (x + y)/3,

rounded up to the nearest quarter integer. In our earlier discussion of stops,
we justified this value when it is an integer L. We call this region F2 because
at every point within it, all canonical lines of play entail two rook moves. To
its west, for even y, F abuts E, but for odd y, it is separated from E by a sub-
region of F, which we will call F′. This region contains values which need to
be measured in eighths, and even a unique spot at [8, 5] which requires 32nds.
By excluding F′ from F2, we can say that the value of the westernmost point
of every row of F2 is an integer, as depicted by a white dot in Figure 11. To
its south, F2 is separated from A by another subregion of F. We call this sub-
region FEn, because all of its points have canonical positions which eventually
translate into E1, thus eliminating the need for a vertical king move in that
canonical line of play. Each row of FEn contains two points, whose values are
integers plus λ3 and λ4, respectively.

REGION F+
As before, we assume Black king at [0, 0] and White rook at [k, 1], but we

now consider positive k (rather than negative k). We will start with k = ∞
and proceed downward until k = 2. Before studying this region, we will enlarge
it!

RENAMING TOP OF A1+ as FE

Many types of infinity appear in ONAG and WW, the largest of which is so
big that subtracting one from it leaves it unchanged. It is called ON = {ON|}.
If k = ON, then the values are everywhere identical to those with k = −2,
except for the large subset of Region A+ with y > 0. The Region A1−, formerly
located only along the top of A−, where v = (y + 2)/2, now extends all the
way down to just above the hot row y = 1. Within this larger A1+, if x ≥ 6,
from all rows with y ≥ 4, king SW is an orthodox move. For y ≥ 6, we now
propose to to rename the region consisting of the top three rows of A1 as FE .
To this end, we assume that the players alternate moves, with White playing
to integers and Black reversing back to half-integers. Then from each of the
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top three rows in any fixed column of A, the southwestward-trekking White
king will be at y = 2, 3, or 4 when Black’s move reduces the horizontal distance
between them from 7 to 6. White then brings in the rook to one move shy of
a confrontation. Black’s next two moves confront and kick, but White’s king
continues his SW trek to arrive just in time to protect the rook, ending with
y = 2, 1, or 0 accordingly as he began on the top, next-to-top, or third row
from the top of A1.

Notice that F’s top 3-row land-grab cannot be extended to the fourth row,
because that would require a king move in a direction E rather than SE. Ob-
serve also that White could have played his rook move earlier, although its
destination needs to be in exactly the same place.

SURVEYING THE NORTHEAST, FAR AND NEAR, WHEN k IS LARGE
BUT FINITE

As shown in Figure 12, when k is large and finite, the region that was
formerly F2 is now split into two parts: a western subregion FWN where the
rook’s horizontal move must be westward, and an eastern region FEN , where
the rook’s horizontal move must be eastward. For values of y significantly
bigger than k, somewhere between FWN and FEN lies a new region, FN , where
no horizontal rook move is needed. We will now examine this more precisely in
Figures 22 and 23. Appropriate translations relocate the origin in both of these
figures to make its values independent of k. With respect to this origin, the
rook is located at [−k,−k]; the Black king at [−2k,−k − 1], and the v-origin
at [−k−1,−k−1]. If the Black king treks eastward while the White king treks
SW from [0, 0], White will arrive just in time to protect his unmoved rook.

In Figure 22, we show the dotted diagonal line running northeast from the
rook through [0, 0]. The portion of Region F on or south of this diagonal in
Figure 22 is identical to what it was when k = ON. Its southernmost portion
is the Region FE , which was stolen from A1. Above FE is the subregion FEn,
wherein every game has some canonical lines of play which require a vertical
rook move and others which don’t. Above that is the subregion F2, which we
now write as FEN .

The purpose of our creation of FE from the top three rows of A1 will now
be revealed. When the rook is kicked, the values on the entire map are sym-
metric with respect to reflection through the diagonal containing the rook and
the Black king. So, we can reflect FwN into FEn, and FE into FN , thereby
explaining all of Figure 22 except for [0, 1], [1, 1], and [1, 0].

A RELATIONSHIP ALONG THE DIAGONALS
White’s best move in Figure 22 is always king SW. Black’s best move is to

advance his king. This reduces k, yielding this relationship along each diagonal:

v[x, y] = {−1 + v′[x+ 1, y + 1]|1 + v[x− 1, y − 1]},

where v′ has a decremented value of k. For large enough k (k > 10 is am-
ply sufficient), v is independent of k, so v′ = v. (Although we are logically
dependent on how this diagonal relationship evolves when k is sufficiently
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Fig. 22 Values in F1 and the far Northeast.

decremented that v′ differs from v, we defer examination of that until later
in this section.) When k = ON, for large x and y and solution to the di-
agonal relationship, working southwest from any integer i is observed to be
i = (i+1)λ0, iλ1, (i−1)λ2, (i−2)λ3, . . . until the diagonal encounters another
integer. This requires that the value be consistent with the next encountered
integer, which happens when the magnitude of the difference between any pair
of adjacent values along the diagonal is less than 1.

This observation generates solutions to the missing values at [0, 1] and [1, 0].
In particular, since we know from our discussion of stops that v[6, 5] = 5 = 6λ0,
we find v[5, 4] = 5λ1; v[4, 3] = 4λ2; v[3, 2] = 3λ3; v[2, 1] = 2λ4; v[1, 0] = 1λ5 =
31/32. Similarly, from v[3, 1] = 2 = 3λ0, we find v[2, 0] = 2λ1 = 1 1/2, and
v[1,−1] = 1λ2 = 3/4. These values all reflect across the diagonal to the row
y = 1.

The southwestern-most integer point on the shared diagonal with x = y is
v[4, 4] = 4 = 5λ0, from which we verify that v[3, 3] = 4λ1, and v[2, 2] = 3λ2. If
our prior line of argument were continued, it would lead to the assertion that
v[1, 1] = 1 7/8?? But unlike all the prior results that we obtained by working
down the diagonal, this fails to check out because v[0, 0] is so extraordinarily
favorable to White. In fact, v[1, 1] is the unique point in the region F2|F0. Its
value is

v[1, 1] = {−1 + v[2, 2]|1 + v[0, 0]} = 1 3/4|1.

Its temperature is +3/8. Unlike all other values in F, it is hot.
We conclude our discussion of Figure 22 by observing that the western
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boundary of FN is shared with the western portion of FEN . From the points
on that boundary, White has two different strategies, which both yield the
same value.

REGION Fw IN THE NEAR SOUTHWEST
Figure 23 shows the details of the region Fw, where x ranges from −1 down

to −4. The five points just above this region lie in F0 because from any of these
points, no rook move is required. White’s king descends SW until he reaches
y = 3 when k = 2 (in the region which is then E0), from which he can defend
the kicked rook by a single move whose direction has a southern component.

Fig. 23 values in F0 and Fw.

As in Figure 22, values propagate southwest from F0, until the diagonals
collide with Region A1, which dominates because its strategy gives White bet-
ter values there. The points on the western boundary, namely [−4, 0], [−5,−1],
[−6,−2], [−7,−3], and [−8,−4], are shared with the adjacent region FWN .

Just as FN splits apart FWN and FEN , so Fw and F0 split apart FWn and
FEn.

17 The descent of k

Let us return to Figure 12, with the origin at the Black king, and view the
northern half-plane as seen locally from there. We consider a sequence of many
different starting positions, with the rook coming in closer and closer from the
far East. If k is odd, the southernmost point of EwN is [k − 5, k − 3]. If k is
even, they are [k − 5, k − 2] and [k − 4, k − 2]. These are the points at which
EwN encroaches into EWN from the north northeast. From the east northeast,
encroachment into FwN and FWN comes from Fw, whose lowest unique point
is at [2k − 7, k − 2]. So we may distinguish between “low” rows, in which in E
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and F are unchanged by such encroachment(s), and “high” rows, which are. In
particular, the top row of Figure 15, with y = 10, is “low” if k ≥ 14, but “high”
if k ≤ 13. So if k ≥ 14 and x ≥ −3, the values shown on this row remain valid,
even if the tabulation were extended rightward until just before x = 21. That
point lies in Region A, where it becomes effected by the difference between A0

for negative k and A1 for positive k.
However, when k = 13, EwN encroaches into E2 at [6, 10], changing 6m10

to 6λ11.
We view the descents of EwN and Fw as the beachheads of bigger inva-

sions, which continue regularly as k decreases down through 9. At k = 8,
the southwestern-most point of Fw comes into view, invading F′ and changing
v[8, 5] from 4λ5 to 4λ4. This spearhead point of Fw, at [2k−8, k−3], continues
to lead the invasion through F′ into EW at k = 7 and k = 6. But as seen in
Figure 24, at k = 5, it encounters a newly important diagonal line running
northwestward from the rook. If the White king starts south of that line, he
cannot reach the rook by trekking southwestward, southward, or southeast-
ward. However, from points on or above that line, he can. So south of that
line, EW prevails. On and above that line, as seen in Figure 25, when k ≤ 4,
parts of EW and EWN are converted into new regions, E0 and Ew, which are
uncompetitive for k ≥ 5. However, Fw does remain competitive on and above
the diagonal running northwestward from the rook. In particular, when k = 3,
it correctly yields v[2, 2] = 3/4.

Fig. 24 Nearby values with Black king at [0, 0], rook at [5, 1].

Meanwhile, in Region E, decreasing k yields transitions from m to λ. We
have noted in Figure 15 that the non-integer part of v[6, 10] dropped from m10

to λ11 as k decremented from 14 to 13, corresponding to the change from E2

to EwN . More generally, in Figure 12, for x ≤ 0, every column of EWN = E2

contains 2k−7 points, and for y ≥ k−3, every row of E2 contains k−3 points
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Fig. 25 Nearby values with Black king at [0, 0], rook at [4, 1].

if y is even or k − 4 points if y is odd. The non-integer terms in the values on
every high row of E2 range from m0 to at most mk−2. This maximum value of
k in E2 can also be viewed from our prior discussion of Figure 16. A term of
value mk−1 would reduce to m0 after k − 1 moves, which cannot occur if the
rook is then already being kicked.

So if the White king’s starting position is fixed at [x, y] in Region E, there
is a sense in which a closer rook is advantageous to White. That is because if
he is able to wait long enough, he may be able to avoid the horizontal rook
move.

However, we shall now see that if the White king’s starting position is fixed
at [x, y] in the more distant Regions FEN or FeN , the closer rook may be more
advantageous to Black. This is because the kicked rook’s preferred destination
depends on the location of his king. So in some positions, White can do better
if he can defer the kick until later.

More specifically, a term of canonical value λn will become an integer after
n successive Left moves. This is feasible if k ≥ n + 2. But if k ≤ n + 1, then
the kick will occur too soon, so the term’s value will be converted from λj to
mj , where j = k − 2.

Other regions are also effected by the descent of k. As exemplified in Fig-
ure 12, if y ≥ k + 3, the width of FWN depends only on the parity of y. If
the point shared with FN is excluded, the width of a high row with even y is
⌊3(k− 4)/2⌋, and the width of a high row with an odd y is ⌊3(k− 5)/2⌋. So as
k descends through 5 to 4, FWN gets squeezed out of existence as FN begins
its acquisition of F′.

When k < 4, traditional regional borders become blurred.
When k = 3, the border Region D|E2 merges into E2. In this particular

case, CwS vanishes and C1 directly abuts D. Finally, as seen in Figure 26, when
k = 2, the row C1 vanishes and diagonal symmetry between y and x−1 prevails
at all points more than two king moves away from the origin.

When k = 2, the even rows of FN merge with E (!). Yet the influence of
the odd rows of the former F′ are still evident in Figure 26, and their diagonal
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reflections help explain the otherwise puzzling incursions of infinitesimals into
the top of Region A, whose interior numerical stronghold is strong enough to
prevail in its reflection in E.

Evidently, if we had been clairvoyant, at the top of Region A1 in Figure 22,
instead of stating the values as 1 1

2 , 2
1
2 , 3

1
2 and 4 1

2 , we might instead have given
them as 2λ1, 3λ1, 4λ1 and 5λ1. That naming would foretell the conversion of
λ1 to m0, when k = 2.

The transitions from λ to m in Region F as k declines from 7 to 2 merits
further discussion. In Figure 26, Black’s next move will kick the rook. Before

Fig. 26 Global Values with k = 2. Values with Black king at [0, 0] and rook at [2, 1]. If
the temperature of the position is less than or equal to 1, its chilled value is shown. If the
temperature is greater than 1, then its mean, followed by its temperature in parentheses, is
shown.

the kick, both half-integers and minies can have vR = integer. The distinc-
tion between them is that half-integers require that after the kick and flight,
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v = half-integer. If y >> x ∈ F, the rook does best to flee eastward to create
a new position in Eastern FN , where half-integers have 3k = 2x + 3 − y, and
integers have 3k = 2x + 2 − y, or 3k = 2x + 4 − y. The half-integer formula
can be restated as 3(k + y − 1)/2 = x + y. So to be able to reach a good
half-integer value post-kick, the pre-kick value of x+ y must be congruent to
1, modulo 3. This is satisfied by the locations of the half-integer values in F2

for large k. But, mod 3, the locations of F2 where x+ y is congruent to 2 are
only quarter-integers for large k. But in k = 2, on the next Black move they
get kicked, and then White can do no better than return them to integers. So
evidently, locations in F2 whose chilled values had formal fractional terms of
λ2 when k ≥ 3, now all increase to the miny m0 when k = 2.

This same phenomena occurs earlier. When k ≤ n, the fraction λn in-
creases to a negative infinitesimal of a form we call m. The question of how
long White can play elsewhere until the value becomes an integer now reverts
to the question of how long White can play elsewhere until his indefensible
rook gets kicked. Assuming k > 1, the answer is evidently j = k− 2. Thus, for
example, when k changes from 6 to 5, λ5 becomes m3. This is consistent with
the diagonal relationship described earlier.

If we had computed values by induction, incrementing k upwards from
k = 1, we would find apparent chaos for small k before the asymptotic pattern
emerges when k reaches the large single digits. By describing the results work-
ing backwards from infinity, we believe we have been able to provide a much
better understanding of what would otherwise have appeared unduly complex.

18 Greater accuracy

We say a game is barely frozen when it is cooled by its Temperature. The
game’s primary infinitesimal is the difference between its barely frozen result
and its mean. The shape at the top of the thermograph reveals only the sign
of this primary infinitesimal, which can be either positive, negative, or fuzzy.
The most common fuzzy infinitesimal, by far, is ∗, called STAR. The most
common positive infinitesimals are tinies; the most common negative infinites-
imals are minies. All of these very common primary infinitesimals have zero
atomic weight. But in this paper, we encounter many primary infinitesimals
which are negative and have negative atomic weights. These include mn and
Mn. The former can be viewed as the latter, cooled by one.

Nearly all of the values we’ve presented are ultra-orthodox approxima-
tions to the canonical. They all have the correct means, and their primary
infinitesimals have the correct atomic weights. Since every Λ and λ with posi-
tive subscript has STAR as its primary infinitesimal, for them the distinction
between orthodox and ultra-orthodox is trivially satisfied. When k ≥ 7, in Re-
gion A and in all of F excepting the lone point at F2|F0, the temperatures are
negative. Such games are dyadic rationals. Their orthodox forms are unique,
and identical to the canonical forms. This also holds for Region EwN . In the re-
mainder of Region E, the temperatures are zero, but the values we have found



Entrepreneurial Chess 39

there for the primary infinitesimals also turn out to be canonical. In Region
B, the values we have found are ultra-orthodox, but not necessarily canonical.
Here, there may be canonical options of less desirable atomic weights, which
are excluded from the simpler and more tractable orthodox forms, mn.

In Region D, the temperature is 1+λi, where i = k−3. If White confronts,
after the rook kick and flight, the temperature drops to zero, and the atomic
weight is 2−y. Hence, in Region D, we can obtain a better-than-ultra-orthodox
approximation to the canonical value by adding m2−y as another term.

When k > 3, temperatures in D are positive, and D abuts CwS . But when
k = 3, Region CsW vanishes. Region D then abuts Region C1. In both C1 and
D, the temperature is 0. The ultra-orthodox value is the sum of an integer,
2 − x and an infinitesimal, my−1. From White’s perspective, this has atomic
weight one better than my−2, which occurs more commonly in descendants of
positions in Region D. The reason is that, unlike Region D when k is larger,
Black’s move which decreases the translated k from 3 to 2 now costs only
one point, while leaving the temperature unchanged. So there is a sense in
which the temperature of Λi could be viewed as t = 1− 2−i(1 +m1), which is
infinitesimally cooler than its real-valued temperature.

19 The hottest finite temperature

We conjecture that the hottest finite temperature in Echess is 5 5
8 . Figure 27

shows an example of such a position and its thermograph. We challenge the
interested reader to compose a hotter example.

Fig. 27 An Echess position with temperature 5 5
8

.
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