After this paper was published, its algorithms were implemented by David Kohl, who found
several misprints in the original published version of the paper. The following is the slightly
revised version in which those misprints have been corrected.
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Bounded Distance + 1 Soft-Decision
Reed-Solomon Decoding

Elwyn Berlekamp, Feliow, IEEE

Abstract— We present a new Reed-Solomon decoding algo-
rithm, which embodies several refinements of an earlier algo-
rithm, Some portions of this new decoding algorithm operate on
symbols of length Igq bits; other portions operate on somewhat
longer symbols. In the worst case, the total number of calculations
required by the new decoding algorithm is proportional to nr,
where n is the code’s block length and r is its redandancy.
This worst case workload is very similar to prior algorithms.
But in many applications, average-case workload and error-
correcting performance are both much better. The input to the
new algonthm consists of » received symbols from GF(g), and

real bers, each of which is the reliability
of the cormpondmg received symbol. Any conceivable errata
pattern has a “score” equal to the sum of the reliabilities of its
locations with nonzero errata values. A max-likelihood decoder
would find the minimum score over all possible errata patterns.
Our new decoding algorithm finds the minimum score only over
a subset of these possible errata patterns. The errata within any
candidate errata pattern may be partitioned into “errors” and
“erasures,” depending on whether the corresponding reliabilities
are above or below an “erasure threshold.” Different candidate
errata patterns may have different thresholds, each chosen to
minimize its corresponding ERRATA COUNT, which is defined as

2 - (number of errors) + (number of erasures).

The new algorithm finds an errata pattern with minimum score
among all errata patterns for which

ERRATA COUNT < 7 +1

where r is the redundancy of the RS code. This is one check
symbol better than conventional RS decoding algorithms. Con-
ventional algorithms also require that the erasure threshold be
set a priori; the new algorithm obtains the best answer over ail
possible settings of the erasure threshold.

Conventional cyclic RS codes have length » = ¢ — 1, and their
locations correspond to the nonzero elements of GF (g). The new
algorithm also applies very naturally to RS codes which have
been doubly extended by the inclusion of 0 and oo as additional
locations. If the actual code length is less than ¢ + 1, then a very
minor snnpllﬁcauon can be obtained by selecting co as one of
the omil 1 , even in this case, the decoder
can improve performanoe by transforming the received word
to include the location oo before decoding, and then reversing
the transformation after the errata pattern has been found. The
new algorithm also provides a foundation from which a talented
designer can tailor the algorithm to better fit any of a wide
variety of particular system requirements. We discuss some of
these opportunities to obtain farther significant improvements
by appropriate custom engineering.
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1. HISTORICAL BACKGROUND

A. Intended Range of Code Parameters

EVERAL parameters are required to specify a particular
Reed-Solomon code. The algorithms we discuss in this
paper are intended for use in cases such as the following:

Channel

System q n ¥ Speed Date
Cinema Digital

Sound 64 63 21 4Mbfs 1988
“Hypersystolic” .

9 64 63 12 820Mb/s 1987
NASA Space

Telescope 256 240 16 1 Mb/s 1980
NASA Deep

Space 256 255 32 varied varied
Longitudinal

Mag Tape 256 34 6 68Mbis 1984

Notice that this table does not include the RS codes most
commonly used on compact-disk music players, nor on mag-
netic disk systems. Despite their extremely wide usage, most
current implementations of most such codes correct at most
one or two errors per block, and in some cases only two
erasures per block. In such degenerate cases, the relative
advantages of the algorithms presented in this paper can
disappear. Nor do we recommend the new algorithms for
extremely long RS codes, with alphabet sizes much larger than
28, As the symbol size approaches infinity, better asymptotic
algorithms are known [15].

Furthermore, as indicated by the table, our primary interest
is in Reed-Solomon codes over fields of characteristic two.
The generalization to fields of odd characteristic involves little
more than taking care to distingeish between plus and minus

signs.

B. Forney’s Early Work

In 1965, Forney [12] introduced a scheme for decod-
ing Reed-Solomon codes with soft-decision information. He
called this scheme “Generalized Minimum Distance Decod-

0018-9448/96$05.00 © 1996 IEEE
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ing.” In Forney’s model, each received symbol was accompa-
nied by a nonnegative real number, called “scorefy;],” which
measures its reliability. A symbol with higher score is more
likely to be correct than another symbol with Jower score.

We suppose the .code has length n, redundancy r, and
distance d = r + 1. To decode, Forney began by sorting to
find a list of the r least reliable received symbols. Rather
than initially erasing all received symbols whose scores were
below any fixed, preset erasure threshold, Forney iterated over
all possible values of the erasure threshold. This entailed
(d + 1)/2 separate passes through the full decoding program.
For t = 0,1,---,(d — 1)/2, on the #th such pass, Forney
began by erasing the (r — 2t) least reliable characters. A
conventional RS decoding program then decoded to find the
unique candidate errata pattern with no more than ¢ errors,
if any such pattern existed. Each candidate error patiern was
then assigned a “SCORE” equal to, the sum of the scores of
its errors and its unreadable erasures. The best candidate was
chosen by comparing these SCORE's. Finally, the candidate
errata pattern with the lowest SCORE was selected as the
winner. : .

Forpey’s performance analysis showed that this scheme
often yielded better results than could be achieved by using
any fixed preset value of the erasure threshold. But Forney’s
analysis also showed that the true, max-likelihood error pattern
often corresponds to ¢ errors and s erasures, where 2t +5 > d.
Hence, “bounded distance” decoding still falls substantially
short of optimal, because the traditional RS decoding method-
ologies work only when 2t + s < d. And the workload of the
original “bounded distance” algorithm was roughly d/2 times
as large as the workload of a conventional RS decoder with a
fixed erasure threshold. To see how we can now eliminate this
extra factor of d/2, and simultaneously achieve a significantly
lower probability of block decoding error, it is useful to review
the historical development of traditional algebraic decoding
algorithms using fixed erasure thresholds. The simplest and
most popular special case is the degenerate one in which the
erasure threshold is set so high that every received symbol’s
score is quantized to zero. This is the case of no erasures, or
“errors-only” decoding.

C. Traditional RS Decoding Algorithms

The block length and the distance of an RS code are
design parameters which can vary over a wide range, and
a similarly wide variety of decoding algorithms has been
proposed. When the code rate is sufficiently low, or the block
length is sufficiently long, then transform decoding [10] or
special asymptotic techniques [15] merit serious consideration.
But, in one range of considerable interest, including n = 255,
r=232%o0rn = 255r =16 0rn = 32, 7 = 6, the
“traditional” algebraic RS decoders are still the most popular.
They typically include the following subprograms:

1) Re-encode to find the syndromes.

2) Transform the equations to account for the erasures.
3) Find the error-locator polynomial.

4) Find the roots of the error-locator polynomial.

5) Find the error values and the erasure values.

The workload required by steps 2), 3), and 5) is easily
overbounded by a term proportional to 72, but steps 1) and 4)
entail a workload proportional to 7n. Hence, in the common
case in which the code rate is significantly greater than %
subprograms 1) and 4) entail more computation than any of
the others.

During the last three decades, there has been a series
of continual improvements in several of the subprograms
for RS decoding [4], [9], {201, [22], [23], [25], [28], [29}.
Many of the subprograms’ benefits are conspicuous in some
system environments and negligible in others. For exam-
ple, in many memory systems (including magnetic tapes for
instrumentation recording, as well as optical and magnetic
disks for computer memory systems), the very high data
reliability requirements typically drive decoders to operate in
a region of relatively “safe” raw error rates. In this region,
the actual number of emors per block, e, is usually much
less than 7/2. Even though system requirements demand that
the decoder be capable of correcting the maximum number
of errors, throughput may be limited instead by “average”
rather than “worst case” error statistics. Under such circum-
stances, the relative workload of subprogram 4) diminishes
significantly in comparison to subprogram 1). Partly, this
is due to the obvious fact that it is proportional to en
rather than to rn. Further big improvements are possible
by using special techniques to find roots of polynomials
of low degree [5]. For these reasonms, in the late 1970’s,
the costs of RS decoders for some memory systems was
dominated by subprogram 1). But then the introduction of “Bit-
Serial RS Decoders” [8] yielded such a large reduction in the
coefficient of the workload associated with this subprogram
that subprogram 3) again became the dominant term in this
system environment. Welch and Berlekamp then broke that
bottleneck by - introducing a new algorithm [22], [29] for
subprogram 3). This algorithm over finite fields has some
similarities with classical “Padé approximations” [2], [3] over
real and complex fields. The details of this algorithm for
the “errors-only” case are presented in Section I-A and
Appendix 1

D. Other Recent Work

Several years after the appearance of Welch-Berlekamp
[29], several other authors have independently derived other
decoding schemes, each of which achieves some nontrivial
proper subset of the performance advantages presented in
this paper. Kotter {18} finds a subspace containing all the
possible solutions and gives an algorithm to find the vector
with zeros in the erasure locations. It .appears to require
more than one run to achieve GMD. Sorger [27] gets a new
RS decoding algorithm with a one-run GMD decoder. This
decoding algorithm still uses power-sum symmetric functions,
on which it does Newton interpolation. Morii and Kasahara
[22] derive a different form of key equation, which, like
Welch--Berlekamp [29] avoids the computation of the power-
sum symmetric functions. Araki, Takada, and Morii [1] give
a one-run GMD errors and erasures procedure. They define &
more generalized syndrome polynomial which reduces back to
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‘Welch-Berlekamp {29] in the cases of interest in the present
paper. e

II. WELCH-BERLEKAMP DECODING

A. Origin of the Eqﬁations for Errors-Only Decoding

Re-encoding reveals one possible error pattern directly. This
is the error pattern which assumes that all message symbols
are correct and that all errors occurred in the check symbols.
The error values of this “syndrome” error pattern are denoted
by sly1}, s[y2}, - - -, s[y-]. Here y; runs only over the code’s r
check locations. Long ago, Slepian [26] observed that the dif-
ference between any two error patterns in the same coset must
be a codeword. All variations of Welch-Berlekamp decoding
concentrate on finding a codeword which will translate some
known possible error pattern into another more likely etror
pattern in the same coset. In the original, simplest case, we
have no reliability information at all. The one known error
pattern is the syndrome, and the most likely error pattern
is Slepian’s coset leader, which has minimum weight. The
Welch-Berlekamp algorithm will find the codeword which
translates the coset into an error pattern of Hamming weight
< r/2, if any such exists.

The following structural theorem provides the foundation
for the equations that the Welch-Berlekamp algorithm solves.
If f(z) is a polynomial, we denote its derivative by f’ and
its degree by |f|.

In each application of Theorem 1, the roots of .f are the
Jocations of the nonzero components NOT of the error pattern,
but of a codeword. This codeword is NOT the transmitted
codeword, but rather any of several other codewords (or the
sum of such codewords) by which the actual error pattern
differs from other more easily recognizable members of its
coset.

Theorem I (Characterization of Codewords in Shortened RS
Codes): Let F be a field, and let S be any subset of distinct

-elements of F.

Let

HOES N | [E2)
ves

a polynomial whose leading coefficient fiy is nonzero.
Let N(z) be a polynomial whose degree is |N|, where

IN| < {fj—r
Let
-N
Cloo] = {fl=r
L hn
(If |N| = |f| =, then Nig_, is the leading coefficient of N;
otherwise, Cloo] = 0).
Let
Ny) :
Clyl= 5=, forallye€s.
W= Fa) v
Then

Cloo] + Y v 'Cly] =0
yeS
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and

Y Oy =0, forj=0,1,2,---,r-2

yES
Comments: Our primary interest is the RS code over the
field F = GF(2™), with generator polynomial

r—1
= H (z-o
=0
The -distance of this code is d = r + 1. Given any set S of
| 7] locations, and any polynomial N of degree < |f| —r, the
theorem asserts that there is a codeword whose coefficients
" are given by

o {3\,]() if fy)#0
y =¢ N(y) . -
7o)’ if fy)=0.

Since the RS code is well known to be maximal-distance-
separable, the dimension of the subcode whose nonzero co-
efficients all lie in S is |{f| — 7. Every nonzero Rs codeword
must be of the specified form, for an appropriate choice of

f(z) and N(z).
Proof: Consider the rational function %%l A partial
fraction decomposition gives

ZN(@z) _ Z

= %

To obtain the value of the scalar a;, we multiply (1) by f(2),
and then set z = ¥,, to obtain

Y N@m) =Y a T Wm - )

a;
2

(&)

WES ki
=0m H (Ym — yx)
km
= G f'(ym)
whence
n= @
Substituting (2) into (1) and multiplying by z gives
FUNG) WV =
™ "4 Tu) G-w
Define the reciprocal polynomials
N(z) =zWIN(z™)
flz) =aif@)
so that, with z = z~1, (3) becomes
Ll A-INI~i=1 N (g I Ny ;
o > Fui-w) By ®
Setting z = 0 gives f(0) = fi7, N(0) = Ny, and
> v N(y:) ={9\», if +1<|f] - 1N
2 P DR #iti=1f-IN
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If r = |f| — |N], the theorem follows directly.

If r < |f| — |N|, then Njjj_r = 0, Cloc} = 0, and the
theorem again follows. |

Corollary 1: i C is a minimum-weight Reed-Solomon
codeword, whose nonzero coordinates Iie in the set S, where
8 C F, 8] = r+ 1, then, to within a scalar multiple Np, C
may- be expressed as follows:

fygs

Clyl = { I[[ -9 ityes.
£eS—-{y}

The original case of interest is errors-only decoding, with
"no erasures. In this case, it is convenient to let C be the
* codeword which is the difference between the error pattern
and the syndrome of the re-encoded received word, whose
nonzero coordinates all lie in the code’s check locations. In
this case, f(z) has two factors:

f(z) = F(2)W(2)

where W (z) is the (unknown) error-locator polynomial, whose
roots will be the error locations, and F(2) is the known
check-locator polynomial,

Fz) =1 - we)-
=1

The translating codeword is the difference of the syndromes
and the error pattern. If there are erroneous checks, F'(z) and
W (z) will have roots in common, but we anticipate that such
roots will also appear in the numerator polynomial N (z).

We require the value of the translating codeword to agree
with the syndrome at each check location which is not also
a root of W{(z) and N(z). This gives these equations, for
P ST

N(y:) = (FWY (y:)syi].

But (FW)' = FW’+WF', and since y; is a check location,
F(y;) = 0 and we have

N(w) = W(y) F'(y:)slwil

As i ranges from 1 to r, this yields r equations (5) in the
unknown coefficients of N and W. These equations (5) are
called the Welch-Berlekamp equations.

B. Lemmas Leading to the WB Algorithm

Impatient readers may prefer to skip this section and jump
ahead to the algorithm in Appendix I. However, there are a
few lemmas that we will need later that do not depend on the
algorithm. Since they provide some motivation for parts of the
algorithm, we present them now.

The problem is now specified by a set of 7 pairs of input
data points: £y,22,--+,%; and ¥, ys, - -, ¥j, all of which are
elements of a field 7. A solution is a paur of polynomials, N
and W, such that for < = 1,2,-

N (yi) = W(yi)ze-

&)

We let z denote the indeterminate, and write N for N(z), W
for W(z). We refer to a solution as “N/W” even though this
refers to the pair of polynomials, not to their quouent, which
in this paper we denote by the horizontal bar, § 37+ Suppose
that N and W have a common factor, f, so that

N nf
w wf

We call such a common factor removable if n/w is also a
solution. The reader should notice that, for example, 2 common
factor of the form (z — y;) might or might not be removable,
and the only common factors which might not be removable
are of that form. We call a solution which has no removable
common factors irreducible. An irreducible solution may have
one or more common factors of the form (2 — %;):

We define the rank of a solution N/W as

Rank (N/W) = max{2]W|, 1+ 2|N{}.

We call a solution monic if W is momc and |W| > |N|, or
if N is monic and [N| > |W|.

Lemma 1: 1 N/W is an irreducible solution and M/V is
another solution, such that

Rank (N/W) + Rank (M/V) < 2j

then M/V can be reduced to N/W by canceling removable
factors. :
Lemma 2: If N/W is an irreducible monic solution of rank

(]

. <j,andif M/V and L/U are two monic irreducible solutions

such that
Rank (L/U) = Rank (M/V) = 2j +1 ~ Rank (N/W)
then there exists a polynomial ¢ such that
L = M-gN
U = V-gW

Proofs of Lemmas 1 and 2: Let N/W and M/V be two
solutions, and consider the polynomial MW —
Its roots include y1,y2, - - -, ¥;» SO it must be a mulﬁple of

J

1 (CRE

i=1

Let
Rank(N/W) = Ry
Rank (M/V) = Rs
then
1+2N] <R
2|w| <R
1+2|M| <R
2| R,
MW = NV| < max{|MW], INV]y = 22221

Furthermore, if Ry + Ry is odd, and if N/W and M/V
are both monic, then either MW ~ NV or NV — MW must
also be monic.
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We have seen that [MW —NV| < £:£E2 In the hypothesis
of Lemma 1, we also have £1£82 < j, whence [MW —
NV| < j.Since MW — NV is a multiple of a polynomial of
degree j, it must be identically zero, and we have

MW =NV

Let d(z) be the greatest common divisor of W(z) and V(z).
Then -";i divides N, % divides M, and the two quotients are
the same polynomial which we cail h

W NV _ M

d R’d R’
We now claim that 2/d is also a solution. If not, then there
must be some y; for which d(y;) # 0 and

h{y:) # d(@:)w:-

Yet, since N(y;) = W(y;)w;, it follows that (z — y;) must
divide ¥, Similarly, since M(y;) = V(3:)w:, it also follows
that (z — y;) must divide %. But this contradicts the definition
of d as the greatest common divisor of W and V.

So h/d is also a solution, and both N/W and M/V can be
reduced to it by canceling out removable factors, if any exist.
This completes the proof of Lemma 1. a

To prove Lemma 2, we observe that the difference of two
monic solutions of the same rank is a solution of lower rank.
So Lemma 1 applies to (L — M)/(U — V) which must be
gN/gW, for some removable factor g. O

Definition: We call a pair of monic solutdons N/W and
M/V complementary if

Rank (N/W) + Rank (M/V)=2j+1
and if

j
MW - NV = £[](z-w)-
=1
Lemma3: ¥ N /W and M/V are complementafy, then W
and V are relatively prime.
Proof: Any common factor would necessarily divide

MW - NV = [](z - w)-

But if some (z — y;) divides W then W(y;) = 0, whence
N(y;) = 0. Similarly, the fact that (z —y;) divides V implies
V() = 0, whence M(y;) = 0. So if (2 — y;) is a common
factor of W and V, then (z — ;) divides MW ~ NV, a
contradiction. [}

A consequence of the lemmas is that there can never be
more than one irreducible solution of rank < j. Our algorithm
will always find such a solution, called N/W, thereby proving
that the solution is not only unique, but that it exists. Our
algorithm also calculates another pair of polynomials which
is closely related to a complementary solution. When our
algorithm was first used in the early 1980’s, the polynomials
M and V were seen only as stepping stones to obtain the
error-locator polynomial,! W = W) and the polynomial

"The reader may notice many analogies between the present W, N, V,
M, and the respective polynomials #,w, 7,y, which appeared in [4, ch. 7].
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N = N, After a subsequent subprogram finds the roots
of W, another subprogram uses IV to find the values of the
errors.

The property of this algorithin which we first found most
attractive was the fact that if there were only e errors, and
e << %, then the workload would be proportional to ed rather
than to d2. :

It was not easy to formulate an algorithm which achieves
this advantage. To do so, some computations which are neces-
sary when there are many errors must be evaded when there are
few errors. Unfortunately, at the logical time for doing these
computations, the algorithm’s knowledge is insufficient to en-
sure a correct decision about whether or not the computations
will need to be done. If these computations are done, they may
later prove unnecessary, and such unnecessary computations
can exceed the workload budget. If instead the algorithm
decides not to do the additional computation, it may later
prove impossible to get the correct answers. This dilemma is
resolved by introducing a queue, which holds the troublesome
cases. If subsequent calculations prove the existence of more
errors, then the calculations relating to the next element in the
queue are performed and the queue is shortened. However,
if subsequent data confirm that there are few errors, then the
algorithm terminates with a large queue of potential work that
never needed to be done.

Attempts to provide any more detailed explanation of the
contents of the queue have proved unproductive. The queue is
simply a convenient gimmick to store elements representing
work which can be deferred, possibly forever.

The algorithm is stated in Appendix L

C. Detailed Assertions and Sketched Proofs

This section proves properties of the algorithm stated in
Appendix 1.

Unless otherwise stated, each assertion is applicable both
at line 2 and at line 30. Some assertions are also applicable
between lines 14 and 15.

Al: Ifi < j

and y = rcheck(]

then .

NO(y) = WO (y)F'(y)sly]

and MY (y) = VO (y)F'(y)sly]

2 If gin > it > qout

and y = queueli)

then NO(y) = WO (y)F'(y)sy]

Proof of Al and A2: Also include Al at line 15 and the
assertion on line 20, and then prove all claims by a straight-
forward induction, noticing that the hypothesis of A2 forces
success of the conditional on line 15, so that if lines 10-13
were executed since the prior verification of -this assertion,
then so were lines 23-26.

A% WO < |3]
vl < 19
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Proof of A3: Use induction at line 10, or

wornsme([3} 5} - (- [

Similarly, at line 12

woansrelf - 1]

A4: [NOY| < l%lJ

M@ < [Z_gi-‘
Proof of A4: This is analogous to proof of A3.
AS: If j is even, then |W()| = B}

and |MO)| = l'J_'l-l
2
If j is odd, then [VE)| = {ﬂ

A6: If j is even, W) and M) are monic
If j is odd, N and V) are monic
Proofs of AS and A6: These are done directly by a straight-
forward induction.
Theorem 2 (N/W Solves and M[J Complements): Let
y; = rcheck[i]. Then N /W) is the unique irreducible
solution of rank < j of the equation

NO(y;) = WD () F'()slys], fori <

and M@ /V) is a complementary solution.

Theorem 3 (Solution Survives the Reordering): Let y; =
ocheckli), for i = 1,2,---,7, and let j be whatever value
- is determined by the algorithm at its completion. Then
N@ /W is the unique irreducible solution of rank < 3
of the equation

N (y) = WO (g F'(ga)slys], fori<r
Proof: The algorithm partitions
{ochecks} = {rchecks} + {yqueue}

with j = |{rchecks}] < . So if y € {ochecks}, then either
y € {rchecks} or y € {yqueue}, and in either case, we have

NG (y) = WO () F'(y)sly]- o

In the case in which there are no erasures and ¢ errors, one
can choose {ochecks} to be the r check symbols of the RS
code, and then apply the WB algorithm. Theorems 1 and 3 show
that if £ < /2, then the polynomial W{;)(z) with. which this
algorithm terminates is the error locator polynomial, whose
roots are the locations of the errors.

I APPLICATION TO FORNEY'S CHANNEL

A. The Grand Plan

One can also apply the original WB algorithm to Forney’s
channel, which provides 2 real-number reliability score with
each received symbol. The appropriate grand plan to decode
remains remarkably similar to the traditional plan mentioned
in Section 1-C. The new plan is as follows:

0) Sort the reliability scores.

1) Re-encode via bit-serial RSE.

2) Erase the least reliable r symbols, and decode using a

traditional “erasures-only” algorithm.

3) Treat the least reliable r symbols as check symbols.
Use the WB algorithm to. process them in order (most
reliable first, and least reliable last) to find the candidate
solutions, NV /w®), N@ywe, ..., N@ W,

4) For each candidate solution, find the errata pattem
corresponding to N® /W, if any, and compute the '
SCORE of that errata pattern.

5) Select the candidate errata pattern with the lowest score,
and complete the decoding.

Subprogram 0 can be accomplished by any of many known
sorting algorithms [17] which have workloads proportional to
nlogn. Unless the code raie is extremely high, this will be
dominated by the workloads of subsequent subprograms.

Subprogram 1 has a workload proportional to nr, but the
constant of proportionality is extremely small 8], [24]. Indeed,
contrary to popular folklore, RS encoders are significantly
simpler than encoders for most binary codes having the same
amount of redundancy.

Subprogram 2 has a workload proportional to r2, using any
of several traditional decoding methods [4], [28], [29], or a
refined variation we shall present in Section VI-F.

Subprogram 3 now has a workload proportional to re, where
e is the actual number of errata. This is a big improvement over
prior algorithms in two respects: First, it finds all candidate
solutions in a single pass through the data, with an amount

-of computation that is comparable to what prior aigorithms

required for only the single (worst) case in which there were
10 erasures. Second, when e is significantly less than 5, the
algorithm terminates with many symbols in the queue and with
§ << r. The workload is seen to be proportional to re rather
than to 2. ;

Subprogram 4 apparently requires a workload proportional
to ni for the ith candidate, yielding a total proportional to ne®.
In the worst case, when e is near %, this term dominates the
workload. We will improve this substantially in Section IV,
which also gives more details on Subprogram 5.

All of these subprograms were implemented in 1983-1984
[291 in a decoder that corrected almost all patterns of up to five
concurrent dropouts on a 34-track longitudinal magnetic tape
machine operating continuously at 68 Mb/s. Only six of the
34 tracks carried redundancy; the others recorded information.
The code was a shortened RS code over GF (256), with n = 34
and » = 6. The soft-decision reliability information. was
derived from monitoring the recent history of errors, and
this form. of bounded distance decoding attained.a higher
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level of performance than anyone had previously considered
feasible. In that application, the reliability scores changed
so slowly that their order was usually unchanged from one
block to the next. This meant that whatever erasure threshold
had been used on the prior block would very likely remain
optimal for the present block, so that the computation of
multiple scores by Subprogram 4 occurred so rarely that
it had no noticeable effect on the average workload. All
received data passed through a constant-length buffer which
was sufficiently long that performance was more nearly related
to average-case workloads rather than worst case workloads.
Buffer overflows were prevented by a “punting” strategy which
allowed undecoded data to pass through the system when the
decoder ran too far behind the channel. The total bit error rate
in the data delivered to the user by the decoder was better than
109, and most of it was due to undecodable error pattems
rather than to punts.

B. Scoring for Bounded-Distance Decoding

For each value of ¢, N2 /W(2) represents a potential
candidate solution to the known equations. This solution may
correspond to an errata pattern with ¢ errors, located at the #
roots of W), and s = r — 2t erasures, located in the code’s
s least reliable locations.

To compute the SCORE of this candidate errata pattern,
the algorithm in Appendix II begins with a crude initial
approximation that ignores N and W and uses only the values
of s and ¢. This initial approximation is conservative in two
respects. First, it assumes that all of the s erased symbols are
incorrect, and it accounts for that by adding up their scores.
Secondly, it assumes that all £ errors occur in locations that all
have the same high score, called “BIG.” The algorithm then
examines the candidate errata pattern at each of the code’s n
locations, and makes the appropriate adjustments in the score.
These adjustments are of two types:

Readable Erasure:

This is an erased location where the value of the errata
pattern is zero. Its score needs to be subtracted from the
errata pattern’s total SCORE.

Error:

When an error is located, its score replaces the defauit

value of “BIG” in the total SCORE.

Recall that the N/W polynomials computed by the WB algo-
rithm characterize the codeword which translates the syndrome
into the actual errata pattern. In bounded distance decoding,
the syndrome as seen by the WB algorithm is the errata pattern
which is confined to the code’s least reliable r locations.
This errata pattern was computed by some “erasures-only”
decoding algorithm. But the WB algorithm views this errata
pattern as the “syndrome,” and calls its locations the original
checks, ocheck{ 1. While computing the N’s and W’s, the
WB algorithm reorders these ochecks into the more convenient
rchecks. Theorem 3 ensures that erasing the last s rchecks
works just as well as erasing the last s ochecks.

The errata pattern found by the WB algorithm is the sum
of the syndrome and the translating -codeword. Since the
syndrome may have nonzero values at check locations but not
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at message locations, the SCORING algorithm must split the
errors into two cases to accommodate the difference between
the formula for values of check errors and the formula for
values of message errors.

This algorithm appears in Appendix IL ’
Theorem 4 (Scoring Algorithm Works; Errata Values): If
SCORE 2> BIG, then there is no errata pattern with the

following properties:
1) The number of errata locations among ocheckli] for
~ ¢ > 2t is denoted by s.

2) It contains ¢ errata among all other locations.

3 2+s<r=d-1.

If SCORE < BIG, then there is a unique errata pattern with
these properties. Its SCORE is the computed value, and its
valnes may be found as follows:

fory € {yqueue}

errataly] =
for y € {rcheck}
if (W £ 0) errataly] = 0;

else

WT*)F((—)) +sly);

for y € {message locations in GF (¢)}
if (W £ 0) errataly} = 0;
else

erratafy} =

—N@)(y)
Wi(2t) F(y) "

A candidate W () is called legitimate if it has |W| distinct
roots among the code’s unerased locations, and illegitimate
otherwise. An illegitimate W might have roots among erased
Jocations, or among elements of GF (g) which are not among
the locations of a shortened RS code, or perhaps in some larger
field, GF (g™), which is an extension of GF (g). A legitimate
W cannot have roots in any of these places, for that would
violate the theorem of algebra which states that a polynomial
can have no more roots than its degree.

The SCORING algorithm presented above emsures that
every illegitimate W polynomial will receive a score > BIG."
By selecting the value of BIG to be sufficiently large, we can .
ensure that all illegitimate W’s fail to compete successfully
with some legitimate errata patterns, such as the syndrome,
which comesponds to N = 0 and W® = 1.

So the traditional method of scoring is now quite clear: For
eacht =0,1,---,7/2, we can use the above algorithm to com-
pute a value of SCORE|2¢], corresponding to N2 /W If
this pair of polynomials represents a legitimate errata pattern,
then SCORE]2t] is correct; otherwise, SCORE[2¢] > BIG.

errt‘zta =

C. Generalization from j = 2t to Arbitrary j

For traditional RS codes, for each odd value of 7, N /w ()
does not correspond to any legitimate errata pattern, and so it
need not be scored. However, these pairs of N and W have
an interesting relationship to doubly extended RS codes, whose
locations include not only the g—1 nonzero symbols in GF (g),
but two additional Jocations: 0 and oco. The parity-check matrix
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for such a code was introduced by J. Wolf [30]. Here is Wolf’s
matrix, with columns indexed by the code’s locations:

D. Wolf’s Parity-Check Matrix

label = 1 o? o® ot 0
1 1 1 1 1 10

1 o? o el 0 0

=1 o ot of a? 00
T11 o aof a® a3 00

1 ar-l a2r—2 a3r-3 al-»'r‘ -0 1

 Herecisa primitive element of GF (g).
Any code vector may be conveniently written as

= [0[1]7 G[a]a 0[02]: Tty C[a_l}’ 0[0]7 C{OO]] 0

An examination of the 7 matrix reveals that the transpose
of such a row vector lies in the nullspace of H if and only if

> yChl=0o,

yeF

fori =0,1,2,.--,7r—2

and
0] + Z yiCh =0.

yEF

Here F = GF(q). These conditions are iuunediaiely seen to
be equivalent to the conclusion of our Theorem 1, since in that
theorem it is appropriate to take Cly] = Oforally € ¥ - S.

When j is odd, A3 and AS yield

W < [-%J = l_ NG,

_ We should view this NU) /W) as a candidate solution with
% errors, v — j erased check symbols at locations ochecki],
4 < i < r, and one erased message symbol located at co.
If iW(J)f < 1—-— then W) will necessarily have fewer than
1— roots among the unerased locations of the code, and we
shou.ld view W) as illegitimate. The erased message symbol
at location oo cannot be readable, because AS asserts that
NG is monic, and we have
~N@

i
W,
L4l
E. Modification to Algorithm of Appendix II
To score NU) /W) for arbitrary j, we need only replace
2¢ by ;7 and modify the initialization to the following:
_[*initialization*/
SCORE = [%j - BIG;
for (¢ = j;2 < 38+ +){
y = rcheck{i};
SCORE = SCORE + score[y];

Cloo] =

}
if (7 is odd)
SCORE = SCORE + score[co];

F. Addendum to Theorem 4
We must also append an additional case to the end of
Theorem 4:
for y € {message location at 0o}
if (§ is even) errata [oo] = 0;

else ”
errata [oo] = NL%J 3
T ow@”

141
IV. ALGORITHMS WITH WORST CASE WORKLOAD ~ nr

A. Global Scoring

The algorithm of Appendix III utilizes a scratchpad array of
d registers which contain real numbers. The ¢th register in this
scratchpad is nsed to accumulate the score of the candidate
errata pattern corresponding to the solution with s + 2t = ¢,
where ¢ varies from 0 to d — 1. This candidate corresponds to
the presumption that there are r — ¢ erasured check symbols,
located at rcheckll], rcheck[2], - - -, rchecklr — i). If 4 is odd,
then we also have one erased message symbol, located at
0. And we also have |£] errors located at finite unerased

'symbols. The initialization corresponds to the conservative

assumption- that all erased symbols are unreadable, and that
all error locations have the same reliability, called “BIG.”

B. Erasure Matrix

In the matrix at the top of the following page, columns
represent locations and rows represent different values of
. The matrix cntry indicates which symbols are viewed as
erasures.

The SCORING algorithm must adjust the initialized values
downward to account for readable erasures and for the actual
error locations, each of which has a score less than BIG. For
each finite unerased symbol, this entails examining W (y)
for all values of y. For each finite erased symbol, this entails
examining both W)(y) and N®(y). Since there are n
potential values of y and d = 7 + 1 potential values of i,
the scoring algorithm requires access to about nd polynomial
values. It is convenient to view the computation of these values
as beyond the responsibility of the SCORING algorithm,
which has access to the results of all such computations via

" appropriate d X n arrays, called W[i,y] and N[i,y]. When

appropriate, we also give the SCORING algorithm “access
to the results of computing V) (y) and M(y) via similar
arrays called V{i,y] and Mli,y].

In the prior subsection, we showed how to oompute
SCORE]s] for any particular value of i. Although we might
do that calculation for each value of ¢, in sequence, it is
sometimes more advantageous to reverse the order of the two
“for” loops, and to put the loop on ¢ inside of the loop on y,
as shown in Appendix IIL

C. Scoring Algorithm for s + 2t < d+1

If the true errata pattern has 8+2¢ = d, and if i = d~1-2¢,
then according to Lemma 2, the correct message-error-locator,
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W(z), must be of the form
W(z) = -VO(2) + W (2)

where c is a scalar. If the received value in the next (erased)
check location were readable, then the value of ¢ would agree
with the scalar af¢] computed by the WB algorithm. But of
course that corresponds to a degenerate case with smaller s,
such that s+ 2¢ < d — 1. In the nondegenerate case, the scalar
c¢ is unknown. But as detailed in Appendix IV, we can find all
legitimate values of ¢ by an appropriate search.

To this end, we replace our former one-dimensional array
SCORE];] by a two-dimensional array, SCORE[, c]. The index
1 runs from O through d — 1, as before, but the index ¢ runs
over all values in GF (g¢). For unshortened RS codes, n = g~1
and g = n+1. The one-dimensional SCORE array used in the
previous subsection corresponds to the value with ¢ = oco. It
also corresponds to letting i be one less and taking ¢ = o],
and so there is no loss of generality in considering only finite
choices of c. .

We initialize ail elements of the array SCOREI:, ¢j to the
same value as the initial value of our former SCORE[:]. As
before, we then adjust for readable erasures, check errors,
and message errors. Perhaps the simplest case is message
errors, which we now explain. For each message location, y,
we examine Wi, y] and V[i,y]. But now, instead of testing
whether W[z, y] = 0, we instead compute the quotient

¢ =V[i,y]/W[i,y].

This value of ¢ is used as the index to make the appropriate
.adjustment to

SCORE, d.

" For purposes of initialization, it is convenient to assume
that the field size g is a power of 2 and that the elements of
GF (g) can be represented as binary numbers as well as binary
vectors. This assumption allows us to treat the second index
of SCORE], ] as a natural integer for purposes of initialization,
even though we know that for most purposes it is an element
in a finite field. "

The compiete SCORING algorithm for s + 2t < d+ 1
appears in Appendix IV.

After all adjustments corresponding to all » values of y have
been completed, we then search the array of SCORES to find
the minimum value and the corresponding values of 3 and c.

Altogether, this SCORING algorithm splits into the follow-
ing steps, of which only the first two are detailed in Appendix
Iv.

4a) Initialize the array SCORE[:, c|.
4b) For each code location, y, make d adjustments in this
array. .
4c) Search through this array to find the winning SCORE
and the corresponding values of 5 and c.
4d) Using these values of : and ¢, determine the coefficients
of the message-~error-locator polynomial, and then find
its roofs by the old-fashioned method of exhaustive
search.
Since the computational workload of each of these steps is
overbounded by a term proportional to nd, so is the workload
of the entire SCORING algorithm.

D. Reformulated WB Decoding

Traditional algebraic decoding algorithms [4], [28], [29]
have all viewed the coefficients of the error-locator polynomial
as a primary output of a routine which solved some appropriate
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set of key equations. However, the scoring or searching
algorithms which follow this key equation solver need access
to the values of the error-locator polynomial rather than to
its coefficients. When there are many candidate etror-locator
polynomials, as is the case for bounded distance decoding,
then the values of these polynomials at any particular point y
must satisfy the same iterative relations that the polynomials
satisfy when represented as power series in an indeterminate.
We are thus led to view these iterative relations, represented
by the scalar sequence of a’s, as the primary output of the WB
algorithm. Although the polynomials W, N, V, and M are
still present, we can eradicate their coefficients entirely, and
reformulate all computations in terms of their values Wi, y},
Nii,y), Vi, 9}, and M[i,y], where y ranges over the erased
checks. This reformulated algorithm can then be followed with
additional computations which calculate W1i,y] and Vi, 3]
for all other values of ¢ and y.

The algorithm which resuits from such a reformulation is
given in Appendix V. For comparison, we have retained the
same line numbers that appeared in Appendix L.

The worst case computational workload for this refor-
mulated algorithm is proportional to nd. This same bound
also applies to all ‘other subprograms, except possibly the
sorting program whose workload is proportional to nlogn
rather than to nd. But if d is as small as logn, then the
sorting program can be replaced by a series of d searches
to find the minimum score, then the next-to minimum score,
etc. So there is a uniform worst case upper bound on the
computational workioad of the “Bounded Distance -+ 17 RS
Decoding algorithm which is proportional to nd.

Traditionally, the SCORING subprogram would follow this
reformulated WB algorithm. ’

However, many other variations are possible, and the best
choice may depend on other system considerations. We shall
explore some of these possibilities in Section VI.

V. PERFORMANCE AND TRICKS TO IMPROVE IT

A. A High-Level View of SCORE’s

There are some interesting bounds on the SCORE’s of the
candidate errata patterns which are independent of the values
of the received symbols. These bounds depend only on the
distribution of the scores.

Just as we SCORE errata patterns, we can also assign
SCORE’s to codewords. Indeed, it is conceivable that the
actual errata pattern is a codeword, such as the all-zero
"codeword, and in that case the set of all possible errata patterns
is the set of all possible codewords. Since there is a set of
(g~ 1) minimum weight RS codewords having nonzero values
in any specified set of d = r + 1 locations, it is clear that the
minimum nonzero SCORE of all codewords may be found by
summing the 7 + 1 smallest scores. Let us call this parameter
CMINSCORE. Let us also define some other terms, as follows:

CMINSCORE=Minimum SCORE among ail codewords
ASCORE=SCORE of the actual errata pattern

EMINSCORE=Minimum SCORE among all errata patterns
in the same coset as the received word
B-MINSCORE=Minimum SCORE among all errata patterns
in some specified subset, B
The appropriate choice of B is whatever set of errata patterns
our decoding algorithm investigates. In the traditional case,
this is all patterns which can be partitioned into ¢ errors and s
erasures including readable erasures, such that the ¢ erasures
are the s least reliable locations and for which

2t+s<d.

In Section IV-C, we have seen how our algorithm can
weaken this condition to

A+s<d+1
Either of these choices of B must contain at least one candi-

" date errata pattern whose SCORE is better than CMINSCORE,

namely, the unique “erasures-only” errata patten whose only
nonzero-values occur among the r symbols with lowest scores.
In the pessimistic case, this SCORE might be as large as
T . CMINSCORE.
+1
So we have the following general bound:

EMINSCORE < B-MINSCORE < ﬁi . CMINSCORE.

Furthermore,
If any candidate errata pattern has a
- SCORE < CMIN;CORE

then its SCORE is EMINSCORE.
For, if there were two ‘such errata pattems, then their

difference would have to be a codeword whose SCORE was

less than CMINSCORE.

It is also clear, in general, that a theoretical maximum-
likelihood decoding algorithm is one which finds an errata
pattern with EMINSCORE. The max-likelihood decoder fails
if

ASCORE > EMINSCORE

and only if
ASCORE > EMINSCORE.

B. The Parameters SCORE] and SCORE2

More detailed results depend heavily on the particular
parameters of the specific code and the channel [7], [21].-For
the remainder of this section, I'll offer a generic summary of
some of the relevant facts for some vaguely defined set of
channels that I regard as typical.

One can specify parameters SCORE! and SCORE2 such
that

1< SCORE1 p SCORE2 T
2 = CMINSCORE ~ CMINSCORE ~r+1

and

The probability that EMINSCORE > SCORE2 is negligibly
small.
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and

The probability that there are two errata patterns in the same

coset with SCORE’s < SCORE] is negligibly small.

By “negligibly small,” I mean comparable to the probability.
of max-likelihood decoding error.

One can estimate reasonable values for SCORE1 and
SCORE2 by studying the distribution of SCORE’s under
the assumption that although the distribution of scores follows
some appropriate model, the received symbols are distributed
uniformly and independently at random, ignoring the
constraints of the RS code. Then, with very high probability,
there will be many candidates with SCORE < SCORE2, and
no incorrect candidates with SCORE < SCOREL.

To fix ideas, we might imagine that SCORE1
CMINSCORE and SCORE2 = 80% CMINSCORE.

These results have several implications for our decoding
algorithm.

First, in most situations, we should not accept any answer
with SCORE > SCORE2. Ever if SCORE corresponds to
the best candidate in the set B, it is extremely likely to be
incorrect. It is generally wiser to declare decoding failure than
to accept such a weak candidate.

This observation does not necessarily disqualify the “all
erasures” candidate. Rather, it imposes on that candidate, like
others, the higher standard of a better-than-obvious SCORE.
The “all erasures” candidate may have enough readable era-
sures to meet this standard.

Many of the winning low-score candidates which the max-
likelihood decoder could find have many readable erasures,
especially among the erased positions with highest scores, and
many errors, especially among the unerased positions with
lowest scores. If there is no big gap between consecutive
ordered values of the scores of the received symbols, then
the error rate among the unerased symbols with the lowest
scores should be almost as high as the errata rate among the
erased symbols with lowest scores. Among these positions
with scores near the erasure threshold, one might plausibly
argue that the fraction of readable erasures [6] and the fraction
of errors, respectively, should each be nearly 50%. Most of the
candidates in the set 13, however, have only about 1/¢ or their
erasures readable, and only about ¢/(n — 2t) of their unerased
positions with low scores are in error.

In accordance with these results, it is reasonable for the
portion of our algorithm which searches for the minimum
SCORE among the errata in' B to maintain at least
two thresholds: SCORE1 and SCORE2. Each new SCORE
is compared with SCORE2, and the candidate is rejected
unless SCORE < SCORE?2, in which case the algorithm resets
SCORE2 = SCORE and compares SCORE with SCOREI. If
SCORE < SCOREL, the current candidate may be preemp-
tively accepted as the winner, and the search can be terminated
without examining any further candidates. If SCOREl <
SCORE < SCORE2, then the search continues with the
reduced threshold of acceptability.

C. Using Location oo

In Section INI-C, we saw that two additional information
symbols can be appended to RS codes to increase the length of

70%
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the traditional cyclic code from ¢ — 1 to ¢ + 1, and that these
additional locations are naturally associated with the symbols
0 and co. Although this has been known since the late 1960°s
[30], I am unaware of any application where it has ever been
used.,

Some code-preserving transformations have long been
known [16], [19]. The canonical parity-check matrix of Section
I-D is invariant under the affine group of permutations on
GF (2™). The generic permutation in this group is of the form

r—ar+b

where z is the code location to be permuted, b is an arbitrary
element of GF (2™), and ¢ is 2 nonzero element in GF (2™).
All such permutations have a fixed point at infinity. The
subgroup of ROTATIONS, for which b = 0, also has a second
fixed point at 0. The rotations are the well-known “cyclic
.shiﬁs'”

There is another interesting type of transformation which
converts one RS code into another by multiplying each code
symbol by an appropriate nonzero scalar. The symbols at
locations oo, zero; and ome are multiplied by one, which
leaves them invariant. The symbols at all other locations
are multiplied by the {52th powers of their locations. This
converts the canonical RS parity-check matrix into the parity-
check matrix for a noncanonical RS code which is reversible.
If the symbols at 0 and ‘oo are ignored, this code is cyclic
and the reciprocal of every root of the generator polynomial is
also a root of the generator polynomial. This property implies
that the generator polynomial is a palindrome. This symmetry
facilitates reductions of portions of the encoding hardware by
much more than a factor of 2 [8]. Reversible RS codes are
so attractive for encoding that they have been adopted ‘as
NASA standards, along with particular choices of bases to
represent GF (2™) over GF (2) in an especially advantageous
manner [24]. The reversible form has also been used in many
commercial applications.

‘When locations 0 and oo are included, the reversible RS
code is readily seen to be invariant under the permutation
called INVERSION. This permutation has a single fixed point
at location “1.” It swaps the symbols at locations 0 and oo,
and swaps every other location with its multiplicative inverse.

Of course, these transformations can be combined. We may
start with the canonical code of Section II-D, transform
it to reversible form, use the inversion permutation, and
then transform the code back to the form of Section II-D.
Combining these operations with the affine group described
above, we conclude that the RS is invariant under a set of
transformations, which inciudes all permutations in the linear
fractional group

- ax — b
) cx—d
where the determinant
a b 4
c dl—ad—bc

is a nonzero scalar in GF (g). Each of these permutations must
be accompanied by appropriate scalar multiplications of the
permuted code symbols.
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Since. the linear fractional group is triply transitive, we
might choose any ordered triplet of code locations and move
them into any other. These symmetries imply that locations 0
and oo are as “natural” as any others.

In order to retain the advantages of the standard encoders,
the form of the RS code appearing on the channel should be
reversible. In order to use the decoding algorithms in Sections
HI-A and 1V, the decoder should begin by transforming the
received word to the canonical form of the RS code. After the
canonical code has been decoded, it can be transformed back
to the reversible code.

Even if symbols 0 and co are absent from the code as it
appears on the channel, it is advantageous to use them in the
canonical form, and to exclude some other symbols instead.
One interesting possibility is to pick the symbol with the r/2th
least reliable score, and transform that symbol to location
infinity. This then spreads the “erasures” over the least reliable
7+ 1 symbols rather than only the least reliable r symbois.
A review of the erasure matrix of Section IV-B reveals that
all of the errata patterns meeting the former criteria are still
considered, as well as many more. In the sense of Section V-A,

the transformation to include oo as a “somewhat unreliable”

location has doubled the size of B, the candidate set of errata
patterns. Many of the new candidates are plausible contenders.

D. Repeated Trials

If extra time is available, the decoder can attain further
performance improvements by multiple passes through the WB
algorithm. Each pass corresponds to a different ordering of the
code’s least reliable locations.

We have already discussed the most promising ordering,
which corresponds to the classic recommeridations of Forney
[12]. One way to define additional ordérings is as follows:
For some given positive real value of ¢, partition the lowest
scores into some disjoint sets such that within any set, the
maximum and minimum values differ by no more than e. (This
partition needs not be unique.) Then order the locations in the
way which proceeds consecutively through each set in reverse
order of scores, but proceeds from each set to the next in the
usual increasing order.

The new orderings find many new candidate errata patterns
that failed to make the first ordering by at most a small muitiple
of ¢. The new orderings also again find some of the same
candidates as the original ordering.

VL CusToM ENGINEERING TO MEET DESIGN GOALS

A. Minimizing Memory Requirements

It is possible to eliminate a considerable number of store-
and-fetch instructions by integrating the WB algorithm and the
scoring algorithm into a single entity. Most of the entries in
the W, N, V, and M arrays are then used only immediately
after their values are computed. In many architectures, these
values can be stored only in fast temporary registers, and most
of the memory requiremerits of these arrays can be eliminated.

However, we shall see that this decision may entail tradeoffs
against other design goals.

B. Average-Case Workloads

Many communication or computer memory systems require
continuous throughput, but a latency of several RS code blocks
is often acceptable. In such circumstances, the received code
blocks can be fed into a buffer, or quene. The successive
codewords are extracted from this queue and processed by the
decoder on a first-in, first-out basis. Even though the decoder
must keep up with the channel, it may be permitted to fall
behind occasionally as long as buffer overflow is a very rare
and recoverable event. If the average speed of the decoder is
considerably faster than the channel, and if the distribution of
its running times is sufficiently good, then the probability of
buffer overflow may be even smaller than the probability of
max-likelihood decoding error.

Similar strategies were used by sequential decoders in the
early 1960°s [11], [31]. They fell into disfavor because the
distribution of decoding times for sequential decoders had
Paretian tails {14]. Some of the moments of such distributions
are infinite. Although the probability of decoding error was
very small, the probability of overflowing even a very large
buffer tumed out to be unacceptably large. )

On the other hand, the decoding times for Reed—Solomon
codes typically have distributions with tails that approach
zero very rapidly. In some interesting situations, the buffered
approach can gain more than an order of magnitude in speed,
while perhaps increasing the probability of decoding error
from 102 10 only 2 x 10~*2. Furthermore, in some disk-
memory applications, there need be no degradation in decoded
data integrity at all, and the speedup can be accomplished with
a buffer of only 4 or 5 code blocks. This is because it may
be possibie to replace the “buffer overflows” by “pauses,”
or “slipped revolutions” during which no data is read. A
“pause” rate of 1% is generally considered to be very high;
it is an easy design target which can often be achieved by
relatively rudimentary considerations. Yet a 1% pause rate
is far preferable to an additional 1% redundancy. The 1%
redundancy affects borh throughput and total storage capacity.
The 1% pause rate has no effect on total storage capacity, and
its effect on throughput is even. less than 1%, because some
of the pauses -are hidden by latency which occurs when the
reading jumps between different sectors.

So it is often desirable to reduce the average decoding time.
Only a slightly different, more sophisticated software design
goal is to reduce the tilted average [13], [14] decoding time,
where the tilt is chosen so the result closely approximates the
goal of minimizing the probability of buffer overflow.

C. Replace Buffer Overflows by Punts

One way to ensure that the buffer never overflows is to
allow the decoder to punt whenever it is sufficiently far behind.
The “punt” allows one or more blocks to leave the buffer
undecoded. The “punt” feature can be embedded in carefully
written software, or in special-purpose hardware.

D. Replace Initializations with Finalizations

In some conventional software programs, not necessarily
concerned with decoding, initializations consume an unduly
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large fraction of the average workload. This situation can be
improved by adopting the strategy used at fire stations: “Don’t
initialize, finalize!” When a task has just been completed, it is
still evident what has been used and what has not. Only those
things which have been used need be restored before work
on the next task can begin. Finalization avoids unnecessary
reinitializations of many things which were not used.

E. Best Case Performance: The Optimist’s View

An important strategy to minimize average decoding time
is called best case optimization. This means that the software
designer’s first goal is to minimize the decoding time when
there are no errata. After that has been accomplished, he then
pursues the secondary goal of minimizing the decoding time
when there is only one erratum. He then minimizes the decod-
ing time when there are only two errata, etc. Heuristically, the
reason this works so well is that RS codes are often designed to
yield very high reliability, with undecodable rates, per block,
of only 10™12 or better. If the code can correct up to e ermata,
and the probability of more than e errata is that small, then the
probability of exactly e errata is likely to be only one or two
‘orders of magnitude larger, and the probability of e — 1 errata
may be only one or two orders of magnitude Jarger than that,
etc. Not surprisingly, the probability of no errata in the entire
block is often significant, sometimes even greater than 50%.

Philosophically, a best case decoder is analogous to a small
child who continually asks, “Are we almost there now?”
This question may occur at many places in a long decoding
program. But, in'a high-reliability application, the odds are
quite favorable that any time the question is asked, the answer
is likely to be “YES.”

F. Erasures Only

In the highest level of the bounded distance decoding
algorithm featured in this paper, best case optimization should
begin within the “erasures-only” décoding routine, which
begins with the original errata pattern in which all of the
errata are located at the r check locations specified by the
hardware of the re-encoder. The erasures-only algorithm ends
with the syndrome s[y;], all of whose errata are located at
the r locations with the least reliable scores. A best case
erasures-only decoding algorithm will migrate between these
two syndromes via an iteration that proceeds one location at a
time. The 4th step is to find an errata pattern which is confined
to the re-encoding hardware’s.i least reliable message locations
and its (7 — i) least reliable check locations. The difference
between the syndromes corresponding to any two consecutive
values of 4 is an RS codeword of minimuin weight d = r + 1.
Except for a single scalar Ny, the values of the coefficients of

this codeword are given by Theorem 1, and the value of this

scalar must be chosen to ensure that the next syndrome has
zero errata value in the location that is forbidden at the next
level of the iteration. While the best case-optimized erasures-
only algorithm computes the syndrome corresponding to the
next value of %, it also computes its score. It then repeats the
question: “Is this score sufficiently small?” Section V-B offers
a quantitative notion of “sufficiently small,” namely, SCORE1
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and SCORE2. If all of the errata are confined to the code’s
least reliable 4 positions, then many of the errata values in the
newly computed syndrome will be zero, and the answer will
be “YES.”

This erasures-only decoding algorithm based on the best
case optimization gives a worst case running time which is
essentially as good as any other known erasures-only decoding
algorithm. So, in some sense, it costs virtually nothing to
incorporate the best case philosophy into an erasures-only
decoding algorithm.

G. WB and SCORING

If some errata occur within the code’s » — r most reliable
locations, then the erasures-only decoding algorithm runs to
completion without ever obtaining an affirmative answer to
its “Are we almost done now?” question. The WE algorithm
then begins. Each time the value of j is incremented, a
dogmatically best case optimized algorithm will proceed in
the way that minimizes the ing -workload under the
presumption that the current value of 7 corresponds to some
errata pattern with very low score. This algorithm would
complete the computations of SCORE[j, ¢} for all values of
¢ before incrementing the next value of 7. If any of these
values is sufficiently low, then it can be declared the winner
and both WB and SCORING may be terminated.

There is also an important best case suboptimization within
the portion of the algorithm which calculates those portions
of the SCORE’s corresponding to message errors. It is best to
process the message locations in order of increasing reliability.
The locations with lower scores are more likely to correspond
to errors, and there is some chance that the program may be
able to find the roots of W and then terminate the search
because SCORE < SCOREL. )

Incorporating the best case philosophy into the WB and
SCORING algorithms may entail some nontrivial costs. The
values of W{j,3] and V{j,y] must be stored for all values
of y. This entails not only the use of 2¢ additional memory
locations, it also consumes time spent on additional store-
and-fetch instructions. For this reason; on some architectures,
the variation of the integrated wB and SCORING algorithms
which embody the best case philosophy may have worst case
workloads which are degraded by nearly a factor of two from
workloads of algorithms which eschew best case optimization.

H. The Pessiniist’s View

The pessimist believes that the decoder will fail to find
the correct answer. In particular, he expects every SCORE
to remain above SCORE2. Like the evil landlord of the
classic melodrama, he is forever looking for reasons to declare
default. If the decoder is indeed destined to fail, then the
sophisticated - pessimist may be able to save considerable
time by finding a convincing proof of the inevitable failure
much faster than by the simple-minded completion of the
search. More importantly, by terminating doomed portions of
the search more quickly, the pessimistic approach may also
expedite the completion of successful searches.
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There are several ways in which the pessimistic philosophy
can be used to speed up SCORING. ’

High-rate codes have many more information symbols than

. check symbols, and so the SCORING. program’s primary
workload involves searching for roots of candidate W’s. We
now assume that W[j,y] (and/or the comparable expression
~Vj,yl+cW/[j,y]) is SCOREM via an outer loop in which y
runs over the message locations in order of increasing score,
and an inner loop in which j runs from 0 to jmax.

The SCORING algorithm can create and maintain a value
of SCORE3, the best partial SCORE it has actually yet seen,
even if that value exceeds SCORE2. It can also maintain the
next-to-best score yet seen, SCORE4. And it can maintain
similar values for each row, SCORE3[j] and SCORE4[j]. At
strategic breakpoints in the search, the program can examine
SCORE3{j]. The pessimist hopes that this value is so big
that even if the needed roots are all found consecutively

and immediately, the resulting score will still be higher than -

SCORE?. If this pessimistic conclusion is true, then the value
of jmax can be decreased, and the workload savings may be
substantial.

" L Optimism and Pessimism Combined!

Whenever SCORE3 or SCORE3[j] is decreased, the opti-
mist may seek to interrupt the proceedings to force a detailed
investigation of the relevant candidate. The coefficients of the
candidate polynomial, W, can be computed, and all linear
factors corresponding to roots that have already been found
can be factored out. Then, if the residual W polynomial
has sufficiently small degree, its roots can be found by
algebraic methods [4], [5]. These methods are much faster than
exhaustive search, especially in the trivial case when {W| =1
and in the quadratic in which [W| = 2. The quartic case
|W| < 4 is also attractive in some hardware implementations,
and evén larger degrees become competitive if the code length
is sufficiently large. If, as the pessimist expects, the residual
polynomial has fewer roots than its degree, these methods will
yield that answer.

There are circumstances in which the optimist and the
pessimist are both eager to interrupt the general searching
procedure of the SCORING algorithm in order to pursue a
detailed investigation of a particular candidate. The optimist
will favor this action for every candidate that reduces its
SCORE3[j]. One set of conditions sufficient for the pessimist
to concur is when SCORE4(j], SCORE3[; — 1], and perhaps
SCORE3[; - 2] are all much larger than SCORES3([;], and when
y is among the first message locations to be examined. In those
circumstances, rejection of the current candidate would enable
a big reduction of jmax, which will yield a large reduction in
the remaining workload. - :

J. Tradeoffs Between Speed and Performance

The pessimist we have been considering is an ideologi-
cal purist. He seeks a complete and rigorous proof that all
SCORE’s > SCOREZ2. .

We can expedite his workload substantially by weakening
his goal, and requiring him only to investigate the SCORE’s of

the following:

n

candidates that meet some additional criteria. This necessarily
entails some loss of performance, because there is some chance
that one of ‘the disqualified candidates might have been a
winner. But in many cases it is possible to select criteria such
that this performance loss is much less than the performance
gained by searching to d + 1 instead of only to d.

As expounded elsewhere [7], genuine errata patterns tend
to conform to the statistics of the channel noise-environment,
whereas spurious errata patterns tend instead to conform to the
rather different statistics imposed by attifacts of the code and
its decoding algorithm. In the case of the present paper, the
channel noise environment is represented by the raw symbol
scores, scorely]. The artifacts of the decoding algorithm arise
from the partition of each set of emrata into s erasures and
t errors. Only % of the erasures.of spurious emrata patterns
are readable [6], and this. fraction is significantly less than
the number of readable erasures of genuine errata pattern.
Similarly, errors in genuine errata patterns are heavily biased
toward locations with low scores; errors in spurious errata
patterns are distributed uniformly.

As a specific example, let the code be one. of the NASA
standards, with n = 255, 7 = 16 or 32. As a baseline to inspire
further work, we propose a specific ad hoc criterion. The reader
is invited not only to tinker with our ad hoc parameter values,
but to devise other criteria that might be more effective than

Define a set of ten “transitional” locations as follows:

For j > r — 5, the ten transitional locations are the ten least

reliable received symbols. )

For j < r— 5, the ten transitional locations are the five most -

reliable erased symbols and the five least reliable unerased

symbols.

Define an erased location to be “confirming” if it satisfies

the equations for a readable erasure.

Define an unerased: location to"be’ “confirming” if it is a

root of W(z).

Then impose the primary criterion that disqualifies any
errata pattern unless either (2t 4+ s < d) or the candidate has
at least three confirming locations among its ten transitional
locations.

‘We also impose the secondary criteria that, for all ¢ < 11,
a candidate have no more than 7 + 3 errors among the most
reliable 204 locations. ’

Most genuine candidates satisfy these criteria, but most
spurious ones are eliminated. The criteria also reduce com-
putational workload. The reduction is often significantly more
than a factor of 2 in speed, but it is probabilistic. We might
set a limit on the total decoding time, and declare a decoding
error whenever the limit is not met. This imposes an additional
potential cause of decoding error, calied “timeout.” Ideally, the
“timeout” would be monitored as an average figure computed
over several consecutive blocks. If appropriate to the system
requirements, one could also compute averages on a very strict
single-block basis.

Although this workload is measured in an average sense,
this average is different from the optimistic averages dis-
cussed in Sections VI-B and VI-E. Those averages depended
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on “typical” channel behavior, which implied a very high
probability of errata patterns significantly less severe than
the algebraic capabilities of the code. The present averaging
is needed primarily to get over the ensemble of spurious
errata patterns. It should yield acceptable timeouts even under
channel conditions which are so severely degraded that the
probability of decoding error remains abnormally high over a
long sequence of consecutive blocks.
By considering only candidates which meet the specified
criteria, we can reduce the total time limit, from its “worst
case” value proportional to 7, to a lower value more nearly
proportional to 72, while the degradations due to timeouts
remain inconsequential.
To achieve this goal, we must eliminate ali arrays of
_ sizes proportional to nr, including SCORE[j, ¢|. To this end,
for each j, we simply list and sort the ten values of ¢
corresponding to the transitional locations. The listed ¢’s are
then sorted and compared to find replications. Candidates with
insufficient replications are disqualified. In the unlikely event
that there is more than one surviving candidate, the current

preliminary SCORE’s are compared and used to eliminate all -

but perhaps the top two contenders, which are then examined
sequentially. The candidate with the lower value of j is
examined first. Using its value of ¢, the coefficients of its
error-Jocator polynomial is determined, and a search for roots
begins. If roots fail to appear sufficiently quickly to meet the
secondary criteria, then the search can be aborted. So the
probability of spending much time on spurious candidates
is quite small. A significant fraction of the computational
workload is consumed on the final stages of scoring the
genuine winning candidate, which is nearly always unique.

Philosophically, error-pattern searches have much in com-
mon with executive searches. .

APPENDIX I
“ERRORS-ONLY” WELCH-BERLEKAMP
ALGORITHM, WITH QUEUE
Input Declarations:
r is the redundancy of the code, 2 constant integer.
F(z) is a monic polynomial of degree = over GF(qg). Its
roots are the check locations.
F'(z) is the formal derivative of F(z).
sf} is an array of dimension r. Its yth element is the
difference between the received vaiue of a check and the
value of that check obtained by re-encoding the received
_message symbols. These are elements in GF(g).
ocheckf] is an array of dimension r. Iis elements are the
check locations, in their original order. They are
elements in GF(g).
Other Declarations:
rcheck[] is an array of dimension r. The algorithm will
reorder the check locations and write the reordered
check locations into this array.
yqueue[] is another initially empty array, of maximum
dimension r.
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af] is an aray of dimension r + 1 over GF(g), whose
elements we call ag, @1, a2, -
7, k,qgin,qour are natural integers used as indices.
NG, MG, vE), W) are all polynomials in z, with
: coefficients in GF (g).
Initializations:
NO = 0; MO = VO = WO = 1;
j = gqin = qout =k = 0;

Lfork=0k<rk++)
Z ASSERTIONS;
3:  y = ochecklk];
4 b= NU(y) - WO F (y)sly);
5:  if (b == O)yqueue[+ + qin] = y;
6: else {
7: ¢ = M9 (y) - VOG)F (y)slyl;
8: aj = g;
9: rcheck {71=y:
*10: Wi+ = —y0) 4 o, W),
*11: NGHD) = M) 4 q; NU);
*12: VO = (2 ~ y)WO);
*13: MG = (5 - y)NO);
14: + +43
15: if (gin > gout){
16: y = yqueue+ + qgout);
17: b= NO(y) —~ WO (y)F'(y)sy);
18: assert (b # 0);
19: e = MD(y) - VO@)F (y)sly);
20: assert (¢ == 0);
21 a; = 0;
22: reheck[j] = y;
*23: Wi = _yU);
*24: NG+ = @)
*25: VE+H) = (z - )W),
*26: MUY = (z — )N,
27: ++ 7
28: }
29: }
30: ASSERTIONS;
}
APPENDIX I
SCORE N2 /W (2
T*declaration*/
BIG

is a constant large positive real number, which exceeds
any acceptable final value of SCORE.
*initialization®/ ‘
SCORE = [W®)| . BIG;.
for (i = 2t;4 < ri+ +){
y = rcheck[i};
SCORE = SCORE + score[y];
}
/*computation*/
/*readable erasures*/
for (4 = 24 < ryi + +)
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y = rcheck[i};
if (N (y) == WO (y)F'(y)s[y))
SCORE = SCORE — scorefy]; -
}
*erroneous checks*/
for (i = 2t — 154 > 0;4 — —){
"y = rcheckli};
if (WE(y) == 0)
SCORE = SCORE + score[y] — BIG;
} .
/*erroneous messages*/
for (¢ = 0;i < n =173+ +){
y = message [i];
if (WC9(y) == 0)

SCORE = SCORE + scorely] — BIG;

APPENDIX IH
GLOBAL SCORING FOR s + 2t < d
/*initialization, assuming r is even*/

SCORE[r} = Z - BIG
for(l=r—2020i=17-2){

SCORE[i+1] = SCORE[i+2] + score[rcheck[i]] +

scorefoo] — BIG

SCORE[i] =

score[oo]

for (k = Lk < rjk+ +){
y = rcheck(k];
Fp = F'(y);
for(z=01<kz++)
/* readable erasure */
if (N[iy] == Wli,y] - Fp- sly])
SCORE{z] = SCORE[3] — score[y];
for (i = k;i < myi 4+ +)
/* error at check location*/
if (Wli,y] == 0)
SCORE([i] = SCORE[:] + score[y] — BIG;
for (k = 1k <=n~rjk++){
y = message [&l;
for (i = 0;i < rji+ +)
/* error at message location*/
if (W[i,y] == 0)

SCORE[i] = SCORE[:] + scorely] ~ BIG;

APPENDIX IV
GLOBAL SCORING FOR 8+ 2t < d + 1
/* initialization */
for (¢ = Oie < g+ +)
SCORE]r, c] =09

SCORE[i+1] + score[rchecki}] — .

for

t=r—-1%i>0;i—-)
for (¢ = Gi¢ < g+ +) :
SCORE[:, ¢] = SCORE[i+1, ¢] + score. [rcheck iZ3 1R8]

for (¢ = ;2 < 38 = 1 + 2){

for (c = 0jc < g;e+ +)
SCORE[:, ¢] = SCORE[i+1, c] + score{co};

for (i = 03¢ < myi+ +){

for (c=0;c < ge++) ;
SCORE[;,c] = SCORE[;, c] + BIG - - [5]

}
/* SCORING */

for

(k= Lk <rk++){
y =rcheckfk-1];

Fp = F'(y); g

for (i = 0;¢ < k;i + +){

/* readable erasure */

¢ = (Mliyl-V liy}- Fp- SLVJ)

(N 1yl - Wliy] - Fp +slv])
'SCORE(:, c]- = SCORE[:, ¢] — scorely];
3

for (i = kyi << i+ +){

/¥ error at check location*/

}‘;

for

_ Vi
Wi,y .
SCORE[:, ¢] = SCORE[3, ¢] + score[y] — BIG;
}
k=LE<n-rk++){

y = message [k];
for (i = 0;i < ryi+ +){

/* error at message location*/

_ Vg
Wli, y]

SCORE[;, ¢} = SCORE[;, ] + score[y] - BIG ;

APPENDIX V
REFORMULATED WELCH-BERLEKAMP
ALGORITHM, T0 COMPUTE N{i,y] AND Wi, y]

DECLARATIONS;
j=gqin=gqgout =k =0

1:
3

for (k=0,k <m k++)
y = ocheck[k];
N[0, y] = 0; M{0,y] = V[0,5] = W[0, 9] = 1;
for (¢ = 0;i < jii+ +){
Wi+ 1,3} = -V[i, 9] + e Wi, o;
Nli +1,4] = —Mi, 4] + a: N[5, g
Vi + 1,y] = (y — rcheck[i))W1i, y];
Mli+ 1,y] = (y — rcheckls])N[i, y];



720

} . .
4 b= N[y ~ Wi,y (y)slyl:
5 if (b == 0){yqueue[+ + gin] = y; jqueue|gin] =
i} :
6: else {
7: e = Mlj,y] = VIj, y}F'(v)slyl;
8: a; = z;
9: rcheck [j1=v:
14: ++ 7 1=y
15: if (gin > gout){
16: y = yqueue[+ + gout;
for (i = jqueuelgout];i < j;i + +){
Wi+ 1y} = -V[i,y] + a;W[i,g};
Nii+1,y) = —Mli, 9] + aiN[i, y];
Vi +1L,y] = (y — rcheck[i)) Wi, y];
Mli+ 1,y] = (y — rcheck[i]) N1, y];
21 a; = 0; :
22: rcheck(j] =
278 ++ 7
28:
290}

/* Complete Evaluations of W and M for Queued Check

Locations */

for (k = gout;k < gink + +){
Y = quenelkl: . pohock

T G0 < i gy
Wi+ 1,9] = =V[i,y] + a.W[i, 9}
N[i+1,y = —Mi,y] + a:N[i, y;
V[i+1,9] = (y — rcheckli)WT[i,
Mli+1,y] = (y — rcheckls])N[i, y);

}
/* Evaluate W for Message Locations Among {rchecks} */
for (k = 0;k < jik+ +){ 5
y = rcheck[k];
for (i = kji < 734+ +){
Wli+1,9] = ~V[i,y] + a: Wi, y};
Vii+ 1,y] = (y — rcheck[i)) Wi, y);
}
I3

/* Evaluate W for All Other Message Locations */
for (k =0k < n—rk++){
y = messagel[k];
Vio,yl = W0,9] = L;
for (i = 054 < j3i+ +){
Wi+ 1L,y) = ~V[i,¢] + a: Wi, y);
VIi+ 1,y = (y — reheckli) Wi, y);
}

*Next line is necessary only to set up
rcheck for scoring algorithm.
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