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1993 Shannon Lecture

Elwyn Beriekamp

While preparing for this Shannon lecture, I tried
to prepare a list of all the people in the IT Group
to whom I feel indebted. That list soon grew so
long that I could find no reasonable way to cut it
off. At various times in the past 30 years, I've had
the pleasure of getting to know and work with
quite a few of you, and it's really been an awful
lot of fun. We're all fortunate to be part of a
dynamic intellectual community which has been
able to formulate and solve a large number of
interesting problems, and to support ourselves
while doing so.

I eventually decided to dedicate this talk to the
person who first introduced me to serious re-
search, to information theory, and coding, and to
game theory. He was my first boss and mentor at
Bell Labs, when I began work there as an under-
graduate. His name was John L. Kelly, Jr. After
getting a PhD in mathematical physics from the
University of Texas, John worked at Bell Labs for
the rest of his life. He died of a heart attack in 1965
at the age of 41.

Today, I've decided to skim the surface of 4 dif-
ferent topics, all of which were of interest to John
Kelly. I'm hoping that this will maximize the
chance that I'll touch at least one topic of interest
to each of you.

Portfolio Theory

The paper for which John Kelly is most remem-
bered today is better known in financial circles
than in engineering ones. Although Kelly often
chatted about this paper, much of what he said

was well over my head at the time, and I never
actually tried to READ this paper until after his
death. Kelly originally entitled the paper INFOR-
MATION THEORY AND GAMBLING. Butsome
AT&T executives expressed concern that the
press might misconstrue such a title as evidence
that Bell Labs might be doing work on behalf of
illegal bookies who were big customers of AT&T.
So the paper appeared under the less colorful
title. But Kelly fervently believed that gambling
and investment differed only in one minus sign:
Opportunities that offer FAVORABLE odds are
called INVESTMENTS, but deals that involve un-
favorable odds are called GAMBLING. Part of the
problem is thatitisn’talways so easy to tell which
is which.

Kelly’s investment model included inside infor-
mation and several probability distributions.
There was an ensemble of possible future scenar-
ios, occurring with various TRUE odds, which
were known to the investor. There were also
betting odds, as determined by the stocks and
futures marketplaces. For this model, Kelly
found the optimum investment portfolios, which
yielded the maximum long-term rate of return
that could be attained with probability approach-
ing one. This rate of return could be interpreted
as the capacity of the channel over which the
investor received his noisy inside information.

Kelly’s paper has attracted more attention in re-
cent years than it did when it was first published.

continued on page 3




From the Editor

The “Reflections” of Meir Feder,
Neri Merhav and Michael Gutman,
that appeared in the March 1994
issue, elicited a number of compli-
ments from our readers. The style
and content of the article were very
well received. More kudos to the
authors. The article on the deriva-
tion of the mini-max criterion by
Pyati and Joseph generated addi-
tional contributions on the topic.
Budgetary and other constraints
compel us to focus our resources on
news and other society develop-
ments that are of the widest interest
to our members. Along these lines,
the primary articles in this issue are
Elwyn Berlekamp’s Shannon Lec-
ture and Richard Olshen’s Plenary
Lecture from the 1993 IT Sympo-
sium.
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1993 Shannon Lecture
continued from front cover

Some of the recent work it has inspired among economists
is controversial, or even just plain wrong, and I believe that
a large fraction about what is known and correct and rele-
vant may be found in Kelly’s original paper. I urge you to
read it for yourselves. L have nothing more to add to it today.

Erasure-Burst-Correcting Convolutional Codes

While I was working for John Kelly, I published my first
paper. It didn’t attract much attention then, nor at any time
since. But some of the questions I began to address in that
paper have retained my interest ever since.

Just as one can learn a great deal about a function by study-
ing its singularities, so can the study of simplified models
sometimes yield important insights into more general ver-
sions of the same problem. John Kelly encouraged me to
begin my work in information theory by studying the sim-
plest nontrivial channel we could imagine. This is the Bl-
NARY ERASURE-BURST CHANNEL, and more generally,
the Q-ARY ERASURE-BURST CHANNEL. This channel
makes no errors, only erasures. And the erasures occur only
in bursts. The only things that are unpredicatable are when
a burst starts and how long it lasts. In hopes of finding a
solution that might be useful against most plausible distri-
butions of erasure-burst-lengths, I selected the goal of cor-
recting every erasure burst AS SOON AS POSSIBLE. This
was intended to minimize the risk that another erasure burst
might begin before the decoder had received enough correct
channel symbols to correct the prior erasure burst.

It is not hard to show that the best solution to this problem
is a convolutional code whose generator polynomial must
be chosen to make certain critical matrices nonsingular. The
relevant array of parity check equations lie in a semi-infinite
plane, whose upper left border is a quantized straight line of
positive slope in the x, i plane. If the code rate is R, border
has slope (1 — R)/R. The crucial matrices are those whose
upper left corners lie on the border. It is convenient to
generalize the problem by allowing arbitrary monotonic
boundaries, and to restrict it by requiring that the critical
matrices all have determinant 1. Any solution to this prob-
lem is called a UNITARY ARRAY. It is convenient to study
the problem in which the channel symbols and the coeffi-
cients of the generator polynomial can be any natural inte-
gers. Optimal solutions for a Q-ary channel can then be
obtained by reducing everything modulo Q. Unitary arrays
have many interesting properties. Pascal’s triangle is one
unitary array, although it is bounded by a vertical line to its
left and a horizontal line across its top rather than by a single
quantized straight line of slope (1 — R)/R. However, Pascal’s
triangle satisfies a simple well-known local recurrence, and
an analogous property also holds for all unitary arrays.
Many of the properties of unitary arrays that I discovered in
the mid 1960s were independently discovered by Carlitz,
Roselle and Scoville [1971].

Several questions about these codes remain open to this day.
Even in the binary case, there are some code rates, including
2/5, for which we have formulas for only some, but not all,
of the coefficients of the generator polynomial for the opti-
mum erasure-burst-correcting convolutional code. But the
more important problem is that the only decoding algorithm
known for these codes is algebraic in only a relatively rudi-
mentary sense: it inverts binary matrices. Although these
codes have the capability to correct some isolated errors in
addition to long erasure bursts, no one has yet devised any
good decoding algorithm to do that. I'm hoping that some
of you will now read my 1963 paper and and the paper by
Carlitz, Roselle and Scoville, and perhaps come up with
some new ideas.

Reed-Solomon Decoding Algorithm

My next topic is “(yet another) REED-SOLOMON DECOD-
ING ALGORITHM” I'm continually surprised at how few
people appreciate the richness and variety of Reed-Solomon
codes. Many folks would like to identify some small part of
the decoder as critical, and then identify some particular
algorithm as the best, and then make that algorithm into the
basis of a commodity product which would beat all contend-
ers decisively in all respects. My experience led me to a
diametrically opposite point of view. I've participated in
over a dozen major RS decoding projects, and in almost
every case, we were able to design a customized decoder that
attained significant extra benefits by exploiting certain fea-
tures that were peculiar to that problem.

The art of RS decoding now has a 32-year history of continual
evolutionary improvements. I've listed some of the more
significant such advances in the references. I'm pleased to
have this opportunity today to announce yet-another evolu-
tionary step forward.
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Here is the block diagram of a conventional RS Decoder.
In 1966 Forney showed that performance could be im-
proved by integrating the hard limiter and the traditional
RS Decoder. Instead of declaring erasures before attempt-
ing to decode, Forney’s expanded decoder considers all
possible thresholds for the hard limiter. With high prob-



ability, it decodes successfully if ANY such threshold
yields s erasures and t errors and if 2t+s < d, the minimum
distance of the RS code.

Work at Cyclotomics in the 1980s yielded a variety of im-
provements in both speed and performance, including the
capability to decode most patterns for which 2{+s = d. These
improvements are summarized in the following table:

Soon after I received the invitation to give this Shannon
lecture, I began writing up these results. Unfortunately, the
details were too technical to be suitable for inclusion in this
lecture, so I'm putting them into a technical paper which I
hope soon to complete and submit for publication. I hope
that what I've said today will encourage you to read the
paper, to find ways to extract soft decision symbol informa-
tion out of the channels on which RS codes are used, and to
find more ways to decode more errata patterns more quickly
and more economically.

Jan 1993
BOUNDED DISTANCE+1 SOFT DECISION
REED-SOLOMON DECODING
Conventional New
Finds min SCORE 2t+s<d 2t+s<d+1
among errata
patterns for which
Max Code length n<q-1 nsqg+1
Worst Case ~nd’ ~nd
Running Time
Running Time if ~nd? ~nw
2t+s=w<<d
Average Running even better
Time
Probability of adjustable along
decoding error vs improved frontier
probability of
decoding failure

Elwyn Berlekamp was born in
Dover, Ohio, on September 6,
1940. He received his BS, MS, and
PhD degrees in EE from MIT in
1962, 1962, and 1964. After two
years at UC Berkeley and 5 years
at Bell Telephone Laboratories,
he became Professor of Mathe-
matics and of Electrical Engineer-
ing/Computer Science at UC
Berkeley in 1971. He was Eta
Kappa Nu's “Outstanding Young
Electrical Engineer” in 1971. He was President of the IEEE
Information Theory Group in 1973. He was associate chair-
man of EECS for computer science at UC Berkeley in 1975-
1977, and in 1977 he was elected to the National Academy of
Engineering. In 1984, Dr. Berlekamp received an IEEE Cen-
tennial Medal, and in 1990, he received the IEEE Koji Ko-
bayashi Computers and Communications Award.

In 1982 Prof. Berlekamp reduced his faculty appointment to
part-time to pursue industrial research and engineering at
Cyclotomics, a company which he founded and led as presi-
dent until 1989. Cyclotomics became a subsidiary of Eastman
Kodak in 1985, and in 1990 their name was changed to
“Kodak Berkeley Research”. Under Dr. Berlekamp’s leader-
ship, Cyclotomics designed and developed a variety of inno-
vative electronic subsystems and full-customer integrated
circuits which implement novel algorithms for error-correct-
ing codes, deskewing, and synch acquisition for aerospace
and commercial applications. In 1984, Cyclotomics” “Bit-Se-
rial” Reed-Solomon encoders were formally adopted as the
NASA standard for deep space communications. On the
commercial side, “Cinema Digital Sound”, which was intro-
duced in the movie film industry in 1990, is based on a
prototype designed and developed under Dr. Berlekamp’s
leadership at Cyclotomics.

From 1967 through the late 1980s, Dr. Berlekamp and his

colleagues introduced a series of major improvements in
algorithms for decoding sophisticated algebraic codes, espe-
cially Reed-Solomon codes. NASA’s Voyager communica-
tion system, for example, which reached Neptune in August
1989, uses a Reed-Solomon code with Berlekamp decoding,
All compact disc players use RS codes with the earlier Ber-
lekamp decoding algorithms, and some optical disk storage
systems, including Kodak’s, using the later refinements as
well. The world’s most advanced Reed-Solomon decoder,
built by Cyclotomics in 1987, employed a radically new
“hypersystolic” architecture to realize a one-board device
which decodes the 5-character error-correcting (63,53) RS
code continuously at 830 Megabits per second.

Prof. Berlekamp has supervised graduate student research in
a wide range of topics in electrical engineering, computer
science, and mathematics. His first graduate student was Ken
Thompson (1966), who received the 1990 IEEE Hamming
Award for his design of the Unix Operating System.

Dr. Berlekamp has 11 patented inventions and over 75 pub-
lications. He is author of “Algebraic Coding Theory”
[McGraw-Hill 1968 and Aegean Park Press 1984], which
received the IEEE Information Theory Group’s “best re-
search paper award” for 1968. He is also author of “Key
Papers in Coding Theory” [IEEE Press 1973] and a coauthor
of “Winning Ways” [Academic press 1982], a popular two-
volume treatise on the combinatorial theory of two person
perfect-information games. His two current principal techni-
cal interests are recent extensions of game theory which
provide precise analyses of certain difficult endgame prob-
lems in the Oriental board game of “Go”, and the use of
statistical information theory to forecast stock and commod-
ity prices. In 1990 he was president of a Commodity Trading
Advisor firm, all of whose clients’ accounts gained 55% in
that calendar year.

He and his wife, Jennifer, have three children: Persis, 25,
Bronwen, 21; and David, 11. He has enjoyed juggling since
the age of 10.




Games

The next topic I'd like to talk about today is GAMES. Games
DO relate to information theory in many ways. But I think
that the intersection of information theory and game theory
only scratches the surface of each subject. In addition to its
applications, COMBINATORIAL GAME THEORY is a fas-
cinating subject in its own right, and I'd now like to give you
a quick introduction into this large and rapidly growing
branch of mathematics.

I'd like to begin by volunteering Jim Massey to come up to
the podium and help me demonstrate a game called DOMI-
NEERING. This game can be played on a checkerboard of
any size or shape. Each player has a bountiful supply of
dominoes, each of which can cover two adjacent squares of
theboard. The players alternate placing dominoes onto pairs
of adjacent unoccupied squares. But one player, called LEFT,
must always play a domino vertically; the other player,
called RIGHT, must always play a domino horizontally. The
game ends when a player, at his turn, is unable to move. The
game then ends and he loses.

As a Domineering game approaches its conclusion, the
available playing areas typically split up into several small

pieces such as the following;:
b
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As a demonstration, let’s play the endgame B+ C+ D + D
+F + G + G. Each player can make any available move in any
piece of the game, and the game ends when a player cannot
move anywhere.

Working back from the end of the game, it is not hard to find
a position in which EVERY available piece looks like either
A or B. In such a position, it is easy to determine the winner
by counting the “score”, using these equations:

A=+1
B=-1
If the value is positive, then LEFT can win.

If the value is negative, then RIGHT can win.

If the value is zero, then the SECOND PLAYER to move can
win.

Games such as A + B and 3A + 3B have sum equal to zero.
Intuitively, the first player cannot win such a game because
he will exhaust his supply of available moves before his
opponent exhausts hers. The fact is actually more general:

A GAME HAS VALUE ZERO IFF EITHER PLAYER, GO-
ING SECOND, CAN WIN.

This leads to some provocative results. For example, by
examining all lines of play, it is not difficult to show that the
second player can win the game C + C + A. Therefore,

C+C+A=0

and since A =1, it is reasonable to suspect that C = -1/2. This
turns out to be true. It can be similarly verified that D = 3/4,
in the sense that D+D+D+D - 3 = 0. Itis not hard to show that
adding a game Z, of value 0, to another game X, has no affect
on the outcome of X. Whoever can win X can also win X +
Z, and he can accomplish that by playing his winning strat-
egy on X and his second-player strategy on Z. The winner
moves on Z only immediately after his opponent has played
there.

In particular, the demonstration example B+ C+D + D + F
+ G + G contains the subgame

B+C+D+D=-1-1/2+3/4+3/4=0,
s0 we have
B+C+D+D+F+G+G=0+F+G+G=F+G+0.

Evidently, whoever canwin F + G+ G canalsowinB + C + D
+D +F+ G+ G.Games E, F, and G also have values, but the
values of these games are more complicated than numbers.
For example, E satisfies the equation

E+E=0

Yet E is NOT 0, for when played all by itself, the game E is
won by the FIRST player. Evidently, E belongs to a fourth
outcome class, called fuzzy: If the value is FUZZY, then the
FIRST PLAYER to move can win. Games can be compared
by playing them against each other. A short search shows
that Left can win B + C + E, so that

B+C+E>0
or
-1/2+3/4+E>0
whence
E>-1/4
Similarly, since Right can win —B —C + E, we conclude that
E<1/4

More generally, after defining games of values 1/8, 1/16,
1/32,... it can be shown that, for all values of 7,

1/2">E>-1/2"

Thus, even though E is not zero, it is less than all positive
numbers and greater than all negative numbers. E is an
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INFINITESIMAL. It has a special name, “*”, and is called
“STAR”. STAR is one example of a fuzzy infinitesimal.

The value of the game F turns out to be a POSITIVE INFINI-
TESIMAL, called UP, and denoted by “/”. Position G is a 2x4
rectangle. The value of G turns out to be a negative infini-
tesimal, called “Miny-2". -G is a positive infinitesimal, of
higher order than UP, in the sense that for any positive
integer n, the sum of n copies of G and one copy of F is still
positive. Thus, the example is seen to be a win for LEFT, no
matter who goes first. Jim Massey lost the demonstration
game when he elected to play RIGHT instead of LEFT.

I hope that this talk has unveiled a tiny portion of the
beautiful theory of combinatorial games. Combinatorial
game theory now has a great deal to say about the endgame
of almost any game in which the board tends to decompose
into disjoint regions. That includes such traditional chil-
dren’s games as Dots and Boxes. Everything about Domi-
neering in my talk today is part of the theory of PARTISAN
games, which was discovered by John Conway in the 1970s.
The objects which occur in this theory, including numbers,
ups, stars, and many more fascinating values, are universal
in the sense that they apply not only to a few positions in
Domineering, but to many positions in many different
games. The basic theory is presented in Conway [1975];
some additional theory, as well as the solutions of scores and
scores of games appear in Berlekamp, Conway, and Guy
[1982]. Some further results on Domineering appear in Ber-
lekamp [1987] and Wolfe [1992]. For the past several years,
David Wolfe and I have been working the applications of
combinatorial game theory to the classic Asian board game
called “Go”.

I believe that research in combinatorial game theory holds
promise of shedding light on some very important engineer-
ing questions:

“Where are the boundaries between subsystems?”
“What sort of interactions are there between subsystems?”

This same issue of modularity occurs frequently in Go
endgames, and in that context it is possible to formulate and
prove a variety of conditions that imply or refute “modularity”.

Notes added in February 1994:

The book, “Mathematical Go” by Berlekamp and Wolfe was
published in January 1994. The Mathematical Sciences Re-
search Institute at Berkeley is sponsoring a workshop on
Combinatorial Games on July 12-22, 1994. T hope that some
of you will be able to attend.
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