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Abstract

This work began as an attempt to find and catalog the mean values and temperatures of a well-
defined set of relatively simple common Go positions, extending a similar but smaller catalog in Table
E.10, Appendix E of the book, "Mathematical Go”.

The major surprises of our present work include the following

e A position of chilled value *2 (previously unknown in Mathematical Go).

o A surprisingly "warm” position, whose temperature is routinely underestimated even by very
strong Go players.

e More insights into decompositions. Some positions decompose as a beginner might naively hope;
others don’t. One set of those which don’t provides a basis for an extension of the "multiple
invasions” theorem in the Mathematical Go book. This appears in our Section 5. In the new set
of positions, like the old, a potential future shortage of liberties of the invading group results in
a surprisingly hot temperature at one well-defined but far-from-obvious point along the invading
group’s frontier.

It is hoped that these results may someday provide the basis for further new insights and gener-
alizations.

1 Introduction

Appendix E of the book "Mathematical Go” contains a collection of small, relatively cool Go positions
and their chilled values. Among the highlights of this Appendix is Figure E.10 and its surroundings
(pages 196-201 in the English edition; pages 199-204 in the Japanese translation), which is an extensive
tabulation of simple corridors located along an edge of the board. This paper extends those results. Our
preliminary long-range goal was to evaluate all positions in which:

e All nodes on the first row are initially empty except for the endpoints, each of which may be
occupied by an immortal stone of either color

e All nodes on the second row are either empty or occupied by immortal stones,

e Every empty node on the second row (a "gap”) lies between 2nd-row nodes occupied by stones of
different colors.

The present paper investigates all such positions with only one gap, as well as many (but not all)
cases with two gaps. For each such position, we obtain the mean value and a temperature. For games
of temperature one, we also obtain the value of the infinitesimal to which the game chills. Our analysis
includes not only these initial positions, but all of their orthodox descendants as well as some plausible
unorthodox descendants.
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1.1 Definition

We define the following terms for Go positions used in this article.

corridor All the stones on the second row are alive. There are two types of corridors. A blocked corridor
is closed at one side of the first row with the stone of the same color as the corridor. The opponent
may invade from the other side. An wunblocked corridor is open to invasion on both sides. The
left position of Figure 1 is the blocked corridor of length i and the right position is the unblocked
corridor of length i. The short lines coming out of the stones on the second row denote these stones
are alive.
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Figure 1: Example of Corridors

socket We define the two types of sockets. We call the point “a” of the left positions of Figure 2 a full
socket (or just socket) and the point “b” of the right positions of Figure 2 a half socket.
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Figure 2: Tow types of sockets

dame An empty point which doesn’t belong to the territory of either player. Dames are eventually filled
at the end of the game.

2 Two Adjacent Corridors without Gaps

2.1 Blocked on Both Sides

The following two tables show the mean value, temperature, ish-type, Black’s play and White’s play for
each i, j and k of two adjacent blocked corridors without gaps. The rows of the tables are sorted in
lexicographic order of (j,1, k).



—— ——
def
a b
———’
k
‘ i ‘ j ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
0|>0|>1|j—2+2"7 | 1217 b b
1 1
1 0 1 3 3 a a
1 0 2 1 1 J a a
1| 0|>3 k—1% | k—1% a a
2 0 >1 k-1 k * a a
>3] 0| 1 —i+ 2 1% a a
>3 0| >2 k—i+1 k a a
>1 11>1 —i+1 0
1]>2 1 j—1% 2 b b
11>2 2 j—1 1| U= b b
11>2|2>3 j—1 1| — b b
>2(>2|>1 j—1 1 — b b
Table 1: a; j : Blocked on Both Sides
Table 2 is in the case of £ = 0 and we assume ¢ < j without loss of generality.
i J
def A A
ai,j0 =
E ; ab 8
‘ i ‘ j ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
0| >0|0]|j—2+2"79 | 1217 b b
1 110 0 0
1| 20 3 3 b b
>21>2|0 j—1 1 * a b
11>3|0 j—13 2 b b

Table 2: a; ;o : Blocked on Both Sides



2.2 Blocked on Offensive Side and Unblocked on Defensive Side

—_— J
b =
a b c
N —r
k
‘ i ‘ J ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘

>0 0] >1 —1 0
0] >1]>1 j—4+237 | 1-2%7 b,c bc
L R 3 3 b(=c) | b(=c)
1] 1]23 0 1| — [ b(=c) | b(=c)
Gl = L] 1 [b(=q) | b(=9)
>2 11>2 —i+1 1| — | b(=c) | b(=c)
>3 1 1 —i+1 1| — | b(=c) | b(=c)

1 21 >1 0 0
>2(>2|>1||j—i—-2+2277 | 1-2>7 b c
1 3 1 % % b c
11>23]2>2 j—3+2%79 | 12277 b ¢

. 1 2%4=7 2%=37
1 Z 4 1 J]— 3§ + 3 1- 3 I c

Table 3: b; ;1 : Blocked on Offensive Side and Unblocked on Defensive Side

’
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bi,j,O déf
ab c
‘ i ‘ J ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
>0 0|0 —3 0
0|>1]0 j—4+2%7 | 1—237 b,c bc
>0 110 —i4+1—-2"%| 1-27¢ b(=c) | b(=c)
1 210 0 0
>2(>2|0|j—i—2+3-2v7 | 1-217 a a,b
1 310 0 0
. a1—7 4—7
112410 j-33+4 | 1-4 c c

Table 4: b; ;0 : Blocked on Offensive Side and Unblocked on Defensive Side



2.3 Unblocked on Offensive Side and Blocked on Defensive Side
i i
—— ——
def
Cijk =
a b c
——
k
‘ i ‘ j ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
0|>0|>1 i+ 2k 0
1>0|>1 k+j—1+279 | k+1-27 a(=b) | a(=b)
2 0| 1 2 2 b b
> 2 0| >2| k—i+3—-3-21¢ k—2tt b b
3| o] 1 1 31« b b
. 1 11 —1 7 5 —1
24 0 1 —7/+4:§—?211' 6_5211 b b
2 1|1 >1 0 0
>3 1|1 >1 —i+3—22"¢ 1—22-¢ a a
- 1 5
2| >2 1 J— 1§ 3 c C
>2(>2|>2 j—i+2-—227¢ 1] — c c
. 5 7
. 13 47
4| >2 1 Jj— 24_§ I8 c c
>5|>2| 1 j—i+2— 22 1] — ¢ ¢

Table 5: ¢;,j,x : Unblocked on Offensive Side and Blocked on Defensive Side

We omit the table of c; ; ¢, since c; ;o is —bj ;0 obvious from the definition.



2.4 Unblocked on Both Sides

—— ——
di,j,k déf
a b c d
N —
k
| i | ] | k || Mean | Temp ish | Black | White |
>0 i|>1 0 0
>1 0|>1 —i 42— 2" 1—2'¢ a a
>3 | >i|>2 || j—i4229 22 1—2279 c d
0 1(>1 k k c(=d) | c(=d)
2 1] >1 0 0
>3 1|>1 —i+3— 227" 1-—2%¢ c(=d) | c(=d)s
0| >2 1 j 1| L +5.(1%) d d
0|>2]>2 2k+5—2 1] 072+ d d
1 2| >1 k k a(=b) | a(=b)
>3 2| >1 —i4 3227 1—2%t a a
>j | >3 | >2 | j—i+227 22 1-—2" c a
1>3|>1 k+j—3+2%77 k+1-—2>7 a(=b) | a(=b)
2 3(>1 1 1 ¢ | b(,c,d)
2 (>3 |>2 j—3+2%79 1—2279 c d
4 3 1 —% % a,c a
>5|>3 1| j—i+2>7 -2 | maz{l—2>77,1-2%"%} c| aord
2 4 1 13 2 c d
3 4 1 s 3 c b,d
2| >5]| 1 j—3k 427 1- 27 d d
3 5 1 11 1 d b,d
4| 5 1 z z c b,d
3(>6 1 j—3% 42279 1—2%79 d d
4 6 1 13 o c d
4| 7| 1 237 2 c d
4] >8 1 j—45+2°7 1—2% c d

Table 6: d; ;1 : Unblocked on Both Sides

In table 7, we assume ¢ < j without loss of generality.



> .

dijo =
a b c d

‘ i ‘ J ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White

>0 i|0 0 0
>2 | >i | 0| j—5—3-217142277 | 1 -227J c d
0| >1]0 j—2+217 | 1214 d d

1 210 0 0
1(>210 j—3+2%277 | 1227 a(=b),d | a(=b),d

2 3|10 0 0
2(>410 j—3i 4229 | 12270 d d

Table 7: d; jo : Unblocked on Both Sides

3 Two Adjacent Corridors with Gaps
3.1 Blocked on Both Sides

—_— —_
b
——
k
| i | j | k || Mean | Temp | ish | Black | White |
0[>0|>1 | j—242"7|1-21-J b b
1 0 1 —3 2 a a
1 0 2 1—1 1 J * a a
1 0|>3 1—1 1 — a a
2 0 1 1—14 1 d a a
2 0>2 1—14 1 — a a
>3 0>1 1-3 1 — a a
>1| 1[>1 —i+3 5 a a
>1 2 >1 1—14 0 a,b b
1]>3] 1 j—2; : a,b b
1{>3 2 j—2 1 Y a,b b
11>3|2>3 j—2 1| —]10 a,b b
2| >3 1 j—3 1 U * a,b b
>2 |1 >3 |>2 j—i—1 1| —]10 a,b b
21 >3|>2 j—3 1| —10 a,b b
>3 >3 | >1 j—i—1 1| —10 a,b b

Table 8: A; j : Blocked on Both Sides



def
Aijo =

i J
a
bec

‘ i ‘ ] ‘k H Mean ‘ Temp ‘ ish ‘Black ‘ White‘
0]>0]0|j—2+2"7 |12 b b
<1|<1]|0 0 0
EEI) EFEEET N e
11220 i1y : b b
2 210 0 1 *2 a,b a,b
23] 210 2—i 1 1 [0, * b| ab
21230 j—2 1 0,x|/ 4| ab b
23230 j—i 10+ —]0 b b

Table 9: A; ;o : Blocked on Both Sides

In table 9, we assume i < j without loss of generality.
We found the new positions whose ish-types are previously unknown as Go positions. They are %2,
{0,%| | x}, {f %|0,*} and {0| || — |0} listed at the bottom four rows of Table 9. The posision of %2 is

shown below.

3.2 Blocked on Offensive Side and Unblocked on Defensive Side

i J
——tN— ———N—
def
Bijk = a
pb—L1L1le
——
k
‘ i ‘ j ‘ k H Mean ‘ Temp ‘ish ‘ Black ‘ White‘
>1|<1|>1 —i 0
>1| 2|>1 —i+3 3 a a
0|1 <3| >1 0 0
1 2
1 3 1 —3 3
11>3]>2 j—4+3-2177 1—21-3
>2 | >3 |>1||j—-i—3+3-217 1—217
0|>4|>1 j—4+2%7 1—2377 b, b,
1 3
1 4 1 i I a a
1] 5| 1 1 2
41 1 .94 1.94—j

Table 10: B; ;i : Blocked on Offensive Side and Unblocked on Defensive Side



def

‘ i ‘ j ‘ k Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
>0 0]0 —j—2717t | 1 —2-1¢ a a
>0 10| —i+1-—27¢ 1—27¢ a,c b
013>j>110 0 0
0 210 0 0

>1 210 —i4+1 0

>3 30 —i+13 : a,b a
0 >4 |0 j—334227| 1-2>7

Table 11: B;,j,0 : Blocked on Offensive Side and Unblocked on Defensive Side

3.3 Unblocked on Offensive Side and Blocked on Defensive Side

i j
—_— —_
def
Cijr = b
a c
~———
k
i[5 ]k ] Mean [ Temp | ish | Black | White |
22| 0)2>1 —i+3-227% | 1922 b b
>2 1>1 —i+21 91 1_9l—i a a
12 >1]>1 i_242td | 1-217 c c
>3 21>1 —i+3—9ol-i 1_ gl a a
>2 | >3 | >1||j—i4+142%47227%| 1287 . .

Table 12: Cj ;% : Unblocked on Offensive Side and Blocked on Defensive Side

A conjectured generalization of the last line of this table appears in Section 5.
We omit the table of C} j o, since Cj ;o is —Bj ;0 obvious from the definition.



i J
w7 ~ - ~
Cijo = b
a c

i ‘ j ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
0/>0]0 j+27td | 1-271d b b
1/>01]0 j—14277 1—277 a,b c

3>i>1 00 0 0
>4 00| —i+3%—22¢ 1—922-i a a

21>110 ji—1 0
3/>3]0 j—1% : c c

Table 13: C; ;0 : Unblocked on Offensive Side and Blocked on Defensive Side

3.4 TUnblocked on Both Sides

—_—— ——
Diju ¥ b
a c d
N——
k
‘ i ‘ j ‘ k H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘

<2 <2 0 0 0
>1 <i|>2| j—i—1+3.2179 21— | 129l a a
>1 i|>2 j—i—142%7_-9227% | 1237 a,b,c a,b
>1 i+1|>2 j—i—142%"7 227 | 1 _23-J b,c b
>1 i+2|>2 j—i—142%7_-227% 1237 b,c b,d
>1|>i+3|>2 j—i—1423"7 227 | 1_237J b,c b

Table 14: D; jj : Unblocked on Both Sides
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4 Three Adjacent Corridors with Gaps

4.1 Blocked on Both Outer Corridors

def
,]klm -

‘ i ‘ j ‘ k ‘ | ‘ m H Mean ‘ Temp ‘ ish ‘ Black ‘ White ‘
0 0 1 1] 2 -3 2 b,c b,c
0 0|>2 1] 2 -3 3 c b,c
1| 0|>1| 1|2 -3 z c c
2| 0|>1] 1|2 —3 u c c
3 o 1] 1] 2 37 2 a a

>3 0>2 1] 2 i—2k 427171271 a a
>4 0] 1| 1| 2 i—2% 5 a a
0| 1| 1]>1] 2 -3 z b b
0 1|>2|>1] 2 -3 1 b b
1 1|>1|>1| 2 -1 0
2 1|>1|>1] 2 -1 : c c
>3 1 1({>1| 2 i—22 B a a
>3 1]>2|>1] 2 i—21 1 a a
0 2| >2 1| 2 0 1 a a
1| 2|>2| 1|2 —3 3 b b
2 2| >2 1| 2 0 0
2 2 >2|>2] 2 0 0
>3 2| >2 1| 2 i—2 1 a a
0[>3]>2 1] 2 j—2% z d d
1|>3|>2| 1] 2 j—25% o d d
2| >3|>2| 1|2 j—2%% o d d
>3 | >3] >2 1| 2||i+j—434+27271 | 1-272 a a
>3 |1 >23|>2|>2]| 2 i+j—4 1 a,b,c,d a,d

Table 15: X; j xi,m : Three Adjacent Corridors with Gap. Blocked on Both Outer Corridors

11



i m J
——N— ——N— - N ~
def
Xi,j,k,O,m = b W c
a d
N—_——
k

i[5 [k [1]m] Mean | Temp [ ish [ Black | White |
0| o 0[0] 2 0 0

>1 0[>1|0| 2 i—242070 | 1211 a a
0[<1|>1|0] 2 0 0

>1|<1 0/0| 2 i—1 0
1| 1|>1]0]| 2 -1 2 d d
2| 1|>1|0] 2 : 3 d d
>3 1|>1]0] 2 i—24271 | 1-271 a a
>j | >2 0/0] 2 i+j—23 3 a a
0|>2 10| 2 ji—13 2 d d
0|>2|>2|0]| 2 j—13% 3 d d
1|{>2|>1|0] 2 j—12 z d d
2 2 00| 2 13 3 a,d a,d
2|1 >2 (11,20 2 i—13 z d d
2 2>3|0| 2 1 1 d d
3[>2|>2(0] 2 -1 z d d
3,4 | >2 10} 2 i+j—38 8 a a
>4 | >2>2|0| 2| i+j—3t+271| 1-27¢ a a
>5|2>2 10| 2 i+j—33 u a a
2| >3|>3|0] 2 i—1% 135 d d

Table 16: X jx0,m : Three Adjacent Corridors with Gap. Blocked on Both Outer Corridors

In the bottom row of Table 16 we can find the temperature is greater than one. The figure below is
an example of this position. It seems to be an ordinary position like any other, but its temperature is
14,

32
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i m J
— —— ——
def
Xijktim = b ¢
a d
N—— ————
k !

| i |j| k| 1 |m]| Mean [ Temp | ish | Black | White |
0|0 1(>1] 3 -1 1 1 b,c
0(0|>2]|>2]| 3 -1 1 — | borc| borc
1/0|>1|>1] 3 -11 1 — c c
2/10[>1|>1| 3 -1 1 — c c
1(1|>1|>1] 3 -2 0
2(1]>1|>11| 3 -13 : c c
1(2|>1|>1] 3 -11 1

>3 |1 |(>1|>1] 3| i-33 1| —|o
212 (>1|>1| 3 -1 0

>3 (2| >1|>1] 3 i—3 1| —]10 a a

Table 17: X; jr1,m : (continued)

5 Bicolored Multiple Corridors

We begin with the reference diagram on Page 27 of Berlekamp-Wolfe. It shows a position along the
western edge of the board. We change the bottom three rows to the new kind of socket of half socket.
The figure below is rotated 90 degrees counter-clockwise from the original one to save spaces.

The values (all marked and chilled) of b;, u;, and s are as on page 27.
As in the book, s is the shortest unblocked corridor, of length log, %
The new socket contains a node called 3, whose value is taken as

1 if B is occupied by White
0 if B is occupied by Black
1/2 if B is empty

Below the half socket is a (new) white corridor, whose value is taken as o, a negative number. The
length of this corridor, measured by counting the sequence of empty nodes along the first column, is

log, 12
Here is the conjectured value of the entire position, v:

Case 1: IF 4 > b; > 1, then
v=—14+F+>bi+o+> ui+s

13



Case 2: IF 8+ > b; <1, and 2|o| < s/2, then
v=>Yui+o+s/20+8+>b)

Case 3: IF B+ > b; <1, and 2|o| > s/2, then
v=2uit+s+o|(=3+2(8+ b))

Case 4: IF 8+ ) b; <1, and there is no s (and therefore no u;) and 8 = 0 (full socket) then
v=0"+

COMMENTS: All this may be easier to understand if stated in terms of a rather different general-
ization of page 27, in which the bottom four rows are instead replaced with a sequence of & liberty-free
sockets. Here is a bottom when k& = 3:

Begin by considering the simplest case, in which each b; = 0 or 1. Then Y b; is the number of
liberties enjoyed by the portion of the white string adjacent to the b’s. Any liberties the white string
has adjacent to the u’s are ephemeral; they will disappear at a higher temperature. If each u; is locally
played canonically, then Black, if he is the first to move on that corridor, will play on the left side and
take that liberty away. On the other hand, if White is the first to play on the corridor, then a black move
at either ends reverses the value, so w.l.0.g, we can assume that as soon as White plays on any u;, Black
responds locally immediately to reverse the local u; value and to take away that White liberty.

If there are k sockets, and if > b; > k, then every u; can be played canonically. However, if > b; < &,
(and each b; = 0 or 1, and there are plenty of u;’s), then only the longest u;’s will decouple, each to its
independent value, u;. But Black will be able to play each of the (k— )" b;) shortest u;’s in sente. When
Black plays on one of them, say , changing its value to u/2, White must respond immediately by filling
a socket. So each of the shortest (k — >_ b;) u;’s has an effective value of u;/2, while each of the longer
u;’s has an effective value of u;.

The more interesting case, of course, is when the b;’s are arbitrary. If ) b; is an integer, then by
canonical play within the b;, we have mia, so that in the final result the > b; will be unchanged. The
White string will then enjoy > b; liberties. And, as we have seen before, this implies that the requisite
number of the shortest u’s will have their values divided by 2, because when a canonical Black eventually
plays there, White will be compelled to respond by filling a socket. But when a canonical Black plays
first on a longer u;, a canonical White will respond on the opposite end of the same corridor.

Finally, if )" b; lies between two integers, then there is an issue of whether the play will round it up
or down. The number of u;’s whose values need to be halved depends on the outcome. There will then
be one critical u;, called s. The values of longer u;’s will be unaffected, and the values of all shorter u;’s
will be halved. The values of the b;’s interact with the value of the critical u;, resulting in a term

8/2((3 b; — greatest integer in Y b;) + 1)

The play of the b;’s will determine whether this term becomes s or s/2.

All of this is proved in the book in the special case in which & = 1. I think the case of multiple k’s was
evaded because further complications arise if there are corridors emanating from the portions of White
strings between different sockets. A typical Go player will consider such generalizations to be increasingly
remote from anything he has directly encountered over the board.

If the white corridor at the bottom is the critical corridor, then the question to be resolved by playing
the b’s is whether its value is ¢ or 20. When both this white corridor and unblocked black corridors
exist, then the white corridor must compete with the unblocked black corridors to determine which is
the critical one. The conjecture stated above asserts that which corridor is critical is determined by a

14



comparison of lengths. I don’t yet have a plausible intuitive explanation for this; before examining the
evidence of several specific cases, I might have been inclined to compare the values of the white and black
corridors rather than their lengths.

The half socket appears in earlier sections of this paper. Such positions look very realistic. They
readily include the new o plus one other corridor. When there is an empty space (3) on the second
column, someone may play on the first column opposite it. In some circumstances, this yields the last
line of Table 12, which is a special case of our conjecture.

In most respects, the new 3 behaves like a blocked corridor of length two. But when —log, |o]| is
large, the half-point black mark associated with (8 belongs superimposed on a white mark immediately
to its southwest. It is easiest to assume that 3 is not played until every other b; has become 0 or 1. That
turns out to be one canonical line. When there is exactly one other b; = 1/2, and no u’s or s, but o
is present, the position has value ¢. If Black makes two consecutive plays, on b; and on 3, and White
then fills, the new value is 20, which is the same as Black could have obtained by extending the bottom
invasion instead of attacking White prematurely. But if Black does attack, the strictly dominant order
in which to play them is to begin by playing the b; to 0 rather than by playing the 8 to 0.

We have found many real pro endgames in which two adjacent regions are not-quite independent. The
most common reason is that there is some potential pressure against the group which separates these
two regions. Although each move will fall into one region or the other, plays which affect eyes or liberties
of the potentially-pressured group may have a higher temperature than they would if the regions were
truly independent. THIS SITUATION IS VERY COMMON. We now entertain visions of ”Federation”
software to help analyze it. I also think there is real hope of more theory to be discovered that might
prove relevant to this problem.

I see our historical work on ”multiple corridors”, and the extension(s) discussed above, as a significant
stepping stone in this direction. Although its direct applicability is too rare to excite very many Go
players, I continue to be somewhat awed by its precision. It will certainly serve as a benchmark against
which we can test any new theory or heuristics for evaluating a federation of two regions.
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