
Grothendieck-Riemann-Roch

Abstract The Chern character does not commute with proper pushforward. In other
words, let f : X→Y be a proper morphism of nonsingular varieties. Then the square

K(X) K(Y )

A(X)⊗Z Q A(Y )⊗Z Q

f∗

chX chY

f∗

doesn’t commute, where A(X) denotes the Chow ring and ch is the Chern character.
The Grothendieck-Riemann-Roch theorem states that

ch( f∗α) · td(TY ) = f∗(ch(α) · td(TX )),

where td denotes Todd genus. We describe the proof when f is a projective mor-
phism.

1 Statement of the theorem

Fix a field k. In this document the word ‘scheme’ will mean ‘k-scheme of finite
type.’ Let X be a scheme. K◦(X) denotes the Grothendieck group of vector bundles
on X . K◦(X) denotes the Grothendieck group of coherent sheaves on X . If X is
quasiprojective nonsingular, the canonical homomorphism

K◦(X)→ K◦(X)

is an isomorphism. This is because the local rings of X are regular, and hence of
global dimension equal to their finite Krull dimension, which is bounded above by
the dimension of X . Therefore any coherent sheaf F on X admits a finite locally
free resolution
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2 Statement of the theorem

0→ En→ En−1→ ··· → E1→ E0→F → 0,

yielding an inverse of the above homomorphism which takes [F ] to ∑
n
i=0(−1)i[Ei].

So, when we are studying a nonsingular variety X , we can write K(X) with no
ambiguity. The notation H i(X ,F ) denotes the ith right derived functor of the global
sections functor Γ on X with coefficients in the sheaf F .

Let X ,Y be schemes. For any morphism f : Y → X there is an induced homomor-
phism

f ∗ : K◦X → K◦Y,

taking a vector bundle [E] to [ f ∗E] where f ∗E =Y ×X E is the pullback bundle. For
any proper morphism of schemes f : X → Y there is a homomorphism

f∗ : K◦X → K◦Y

which takes [F ] to ∑i≥0(−1)i[Ri f∗F ], where Ri f∗F denotes ith higher direct im-
age. For the remainder of this document, X will denote a smooth quasiprojective
algebraic variety.

We consider for the moment the situation when X is moreover a complex variety.
Then, we have the usual resolution of the constant sheaf Z by the complex of sin-
gular cochains, and characteristic classes of vector bundles on X lying in H∗(X ,Z).
The Chern character ch(E) of a vector bundle E on X is defined by the formula

ch(E) =
r

∑
i=1

exp(αi).

Here αi are Chern roots for E. When E has a filtration with line bundle quotients Li,
then αi = c1(Li) ∈ H2(X ,Z). The Todd class td(E) of a vector bundle E is defined
by the formula

td(E) =
r

∏
i=1

Q(αi), where Q(x) =
x

1− e−x .

Since Chern roots are additive on exact sequences of bundles, td is multiplicative and
ch additive. Moreover, if E and E ′ are vector bundles, ch(E⊗E ′) = ch(E) · ch(E ′).
Therefore, ch descends to a homomorphism

ch : K(X)→ H∗(X ,Z)⊗Q∼= H∗(X ,Q).

Note that the image of ch is contained in even cohomology.
Let f : X→Y be a proper morphism of smooth quasiprojective complex varieties.

Then the Grothendieck-Riemann-Roch theorem states that for α ∈ K(X),

ch( f∗α) · td(TY ) = f∗(ch(α) · td(TX ))

in the ring H∗(Y,Q). The map f∗ on cohomology can be described in the following
way. The class ch(α) · td(TX ) ∈ H∗(X ,Q) can be represented by an algebraic cycle
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W on X . This cycle admits a locally finite triangulation, i.e. such that a compact
subset of X intersects only finitely many simplices. This triangulation defines the
class of W in Borel-Moore homology of X , which is by definition the homology
of the complex of locally finite singular chains. The functoriality of these chains
for a proper map f : X → Y is evident, since if C ⊂ Y is compact, f−1C is also,
and hence only finitely many (singular) simplices have image in Y intersecting C.
By assumption, X and Y are smooth quasiprojective complex varieties. Poincaré
duality extends to give an isomorphism

H i(X ,Z)∼= HBM
2n−i(X ,Z),

where X has algebraic dimension n and HBM
∗ denotes Borel-Moore homology (like-

wise for Y ). This defines the map f∗.
By taking the theorem in the special case of f : X→{·}, one recovers the theorem

of Hirzebruch-Riemann-Roch (HRR), which in our case says, for E a vector bundle
on a nonsingular complex projective variety X ,

χ(X ,E) =
∫

X
ch(E) · td(TX ).

Here, the notation
∫

X means to take the cohomology in the highest degree, repre-
sent it as a linear combination of points via Poincaré duality, and count these points
with multiplicity. Let us recover from this the statement of classical Riemann-Roch,
which applies when X is a complete nonsingular curve of genus g. The geomet-
ric genus of a curve is by definition dimk H0(X ,ωX ), the dimension of the global
sections of the canonical sheaf ωX = ΩX/k (our remarks so far restrict us in what
follows to the case k = C). The arithmetic genus of a curve is dimk H1(X ,OX ). It
happens that ωX is a dualizing sheaf on X , and by Serre duality the vector spaces
H0(X ,ωX ) and H1(X ,OX ) are dual to one another. Their dimension can be taken
as the definition of the genus of a (complete nonsingular) curve. In any event, since
H0(X ,OX ) = k, this, together with HRR and the computation of the first two terms
of the Todd class of a line bundle

x
1− e−x = 1+

1
2

x+
∞

∑
k=1

(−1)k−1 Bk

(2k)!
x2k,

reveals that
1−g = χ(X ,OX ) =

1
2

∫
X

c1(TX ).

If E is a vector bundle of rank e on X , then since ch is additive on short exact
sequences and c1(E) is simply the sum of the Chern roots of E, ch(E) = e+ c1(E),
and we have

χ(X ,E) =
∫

X
c1(E)+ e(1−g).

In particular, when E = O(D) is a line bundle,
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χ(X ,O(D)) = deg(D)+1−g.

The Chow ring Let X be a smooth scheme. The Chow group Ak(X), resp. Ak(X) de-
notes the group of algebraic cycles of dimension, resp. codimension, k on X modulo
rational equivalence. We denote algebraic cycles of dimension (resp. codimension)
k on X by ZkX , resp. ZkX . Since X is smooth, the intersection product gives A∗(X)
the structure of commutative, graded ring with unit [X ]. The notation A(X)Q denotes
A(X)⊗Z Q.

Characteristic classes can be defined very easily as operators on the Chow ring.
When L is a line bundle on X , find D a Cartier divisor on X with O(D) ∼= L. Then
c1(L) a α = [D] ·α for α ∈ A∗(X); i.e. the action of c1(L) on the Chow ring of X
is simply intersection with D. The first Chern class of a bundle E of rank r can be
defined simply in terms of determinants, as c1(E) = c1(∧rE). To define the higher
classes, we mention the splitting construction.

Given a finite collection of vector bundles S of vector bundles on a scheme
X , there is a flat morphism f : X ′→ X such that

1. f ∗ : A(X)→ A(X ′) is injective, and
2. for each E in S , f ∗E has a filtration by subbundles

f ∗E = Er ⊃ Er−1 ⊃ ·· · ⊃ E1 ⊃ E0 = 0

with line bundle quotients Li = Ei/Ei−1.

The flag varieties of vector bundles provide the desired X ′.

Now, with f as in the splitting construction, f ∗E is filtered with line bundle
quotients Li. Define the Chern polynomial

ct( f ∗E) =
r

∏
i=1

(1+ c1(Li)t).

Then ci( f ∗E) is simply the coefficient of t i in ct( f ∗E). By insisting that the ci(E)
are natural under flat pullback, we determine the ci(E) completely.

We then define Chern character ch and Todd class td identically to as before. De-
fined algebraically in this way, the Chern character actually induces an isomorphism

ch : K(X)Q→ A(X)Q

of Q-algebras. To see this, one passes to associated graded groups, giving A∗X its
natural filtration and K◦X its topological filtration defined by letting FkK◦X be the
subgroup generated by coherent sheaves whose support has dimension at most k.
There is a surjection AkX → Grk K◦X , which, composed with ch, gives the natural
inclusion of A∗X in A∗XQ. Since, after tensoring with Q, ch determines an isomor-
phisms on associated graded groups, the same must hold on the original groups.
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The Grothendieck-Riemann-Roch theorem remains true if you replace ordinary
cohomology with the Chow ring. Namely, for α ∈ K(X), f : X → Y a projective
morphism of nonsingular schemes (over any field),

ch( f∗α) · td(TY ) = f∗(ch(α) · td(TX ))

in the ring A∗(Y ). Here f∗ is the proper pushforward of algebraic cycles.

2 Proof of the theorem

Let X be a nonsingular scheme. The proof of the theorem is organized in the follow-
ing way. First we consider the toy case of the zero-section imbedding of X in a vector
bundle on it. After turning briefly to discuss the K-theory of a projective bundle on
X , we discuss the deformation to the normal cone of a closed imbedding. In the final
subsection, we use the results for the K-theory of a projective bundle to prove the
main theorem in the case of a projection, and the deformation to the normal cone to
prove the theorem in the case of a closed imbedding. Together, these constitute the
proof of Grothendieck-Riemann-Roch in the case of a projective morphism.

2.1 The toy case

Let us first consider the special case of a closed imbedding f : X → Y where Y =
P(N⊕1) for N an arbitrary vector bundle of rank d on X ; in particular, f is the zero
section imbedding of X in N, followed by the canonical open imbedding of N in
P(N⊕1). Let p denote bundle projection Y → X , and let Q be the universal quotient
bundle, of rank d, on Y . Let s denote the section of Q determined by the projection
of the trivial factor in p∗(N⊕1) to Q. Then s is a regular section, and

f∗( f ∗α) = cd(Q) ·α. (1)

Additionally, the Koszul complex

0→∧dQ∨→ . . .→∧2Q∨→ Q∨ s∨−→ OY → f∗OX → 0

is a resolution of the sheaf f∗OX . For any vector bundle E on X , we therefore have
the explicit resolution of E

0→∧dQ∨⊗ p∗E→ . . .→ Q∨⊗ p∗E→ p∗E→ f∗E→ 0.

Hence,

ch f∗[E] =
d

∑
p=0

(−1)p ch(∧pQ∨) · ch(p∗E). (2)
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Chern character ch and Todd class td are related by the formula

d

∑
p=0

(−1)p ch(∧dQ∨) = cd(Q) · td(Q)−1. (3)

Combining (1), (2), and (3), we write

ch f∗E = cd(Q) td(Q)−1 · ch(p∗E) = f∗( f ∗ td(Q)−1 · f ∗ ch(p∗E)).

Since f ∗Q = N and f ∗p∗E = E, this can be rewritten as

ch f∗E = f∗(td(N)−1 · ch(E)). (4)

By the multiplicativity of td and the exact sequence of vector bundles arising from
a regular imbedding of a nonsingular subvariety in a nonsingular variety

0→ TX → f ∗TY → NXY → 0,

we find
td(N)−1 = f ∗ td(TY )

−1 · td(TX ).

The right side of (4) is therefore

f∗( f ∗ td(TY )
−1 · td(TX ) · chE) = td(TY )

−1 · f∗(td(TX ) · chE),

and (4) can be rewritten as

ch( f∗E) · td(TY ) = f∗(ch(E) · td(TX )). (5)

2.2 K(P)

Theorem 1. Let X be a nonsingular scheme, E a vector bundle on X of rank n+1,
q : P = P(E)→ X the projection. Then, K(P) is a free K(X)-module generated by
the classes of O(−i), i = 0, . . . ,n.

Proof (of Theorem). There are two steps: first, showing that the classes of O(−i),
i = 0, . . . ,n generate a free submodule of K(P) over K(X); second, showing that
these classes generate K(P) as a module over K(X). The below commutative dia-
gram establishes notation.
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P

P×X P

P P

X

∆

id
id

p1

p2

q
q

For the first step, it suffices to write down projection maps K(P)→ K(X). For
i = 0,1, . . . ,n,

Raq∗(Ω
j

P/X ( j− i)) =

{
OX if a = i = j
0 otherwise.

Therefore, if H = Ω 1
P/X (1), and ei : K(P)→ K(X) is given by

ei(?) = (−1)iq∗(?⊗∧iH),

then ei assumes the value [OX ] on [O(−i)] and 0 on [O(− j)] for 0 ≤ j 6= i ≤ n.
Hence the classes of O(−i), i = 0, . . . ,n generate a free module over K(X).

For the second step, we must show that every coherent sheaf on projective space
is equal to a linear combination of the O(−i), i = 0, . . . ,n, in K(P). The Koszul
complex

0→ O(−n)�∧nH→ ··· → O(−2)�∧2H→ O(1)�H→ OP×P→ O∆ → 0

is in fact a resolution of the diagonal O∆ = ∆∗OP ⊂ P×X P for projective space.
Therefore, for a coherent sheaf ? on P,

? = p1∗(O∆ ⊗ p∗2(?))

= p1∗

(
n

∑
i=0

(−1)i(O(−i)�∧iH)⊗ p∗2(?)

)

= p1∗

(
n

∑
i=0

(−1)iO(−i)� (∧iH⊗?)

)

=
n

∑
i, j=0

(−1)i+ jO(−i)⊗OX R jq∗(P,∧iH⊗?)

in K(P), where we have written simply ?, etc. for the class [?] in K(P), and the last
equality is by Künneth. This proves step 2, and the theorem.
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2.3 Deformation to the normal cone

Let X be a closed subscheme of Y . The claim is that there is a scheme M = MXY , a
closed imbedding X×P1 ↪→M, and a flat morphism ρ : M→ P1 so that

X×P1 M

P1

pr
ρ

commutes, and such that

1. Over P1−{∞}= A1, ρ−1(A1) = Y ×A1 and the imbedding is the trivial one

X×A1 ↪→ Y ×A1.

2. Over ∞, the divisor M∞ = ρ−1(∞) is the sum of two effective divisors

M∞ = P(C⊕1)+ Ỹ

where Ỹ is the blowup of Y along X . The imbedding of X =X×{∞} in M∞ is the
zero-section imbedding of X in C followed by the canonical open imbedding of
C in P(C⊕1). The divisors P(C⊕1) and Ỹ intersect in the scheme P(C), which
is imbedded as the hyperplane at infinity in P(C⊕ 1), and as the exceptional
divisor in Ỹ . In particular, the image of X in M∞ is disjoint from Ỹ . Letting
M◦ = M◦XY be the complement of Ỹ in M, one has a family of imbeddings of X :

X×P1 M◦

P1

pr

ρ◦

which deforms the given imbedding of X in Y to the zero-section imbedding of
X in C.

Such an M is found by blowing up Y ×P1 along X×{∞}.

2.4 Proof of Riemann-Roch for a projective morphism

Theorem 2. Let f : X →Y be a projective morphism of nonsingular varieties. Then
for all α ∈ K(X),

ch( f∗α) · td(TY ) = f∗(ch(α) · td(TX ))

in A(Y )Q.

Let
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τX : K(X)→ A(X)Q

be defined by
τX (α) = ch(α) · td(TX ).

Then the theorem can be reformulated as ‘τ commutes with pushforward under a
projective morphism’; i.e. f∗ ◦τX = τY ◦ f∗. It follows that If the theorem is valid for
a closed imbedding g : X → Y ×Pm and for the projection p : Y ×Pm→ Y , then it
is valid for the projective morphism g◦ p.

Riemann-Roch for closed imbeddings The name of the game is to reduce the case
of f : X →Y a closed imbedding to the toy case. Let N denote the normal bundle to
X in Y . We shall use the deformation to the normal bundle to deform the imbedding
f into the imbedding f̃ : X → P(N⊕ 1) discussed at the beginning of this section.
We have a diagram

X P(N⊕1)+ Ỹ = M∞ {∞}

X×P1 M P1

X Y = M0 {0}

i∞

f

k l
j∞

F

i0
f

j0

where M is the blowup of Y ×P1 along X ×{∞}. We may assume α = [E], with
E a vector bundle on X . Let Ẽ = p∗E, where p is the projection from X ×P1 to X .
Choose a resolution G • of F∗(Ẽ) on M:

0→ Gn→ Gn−1→ . . .→ G0→ F∗(Ẽ)→ 0. (*)

Since X ×P1 and M are both flat over P1, the restrictions of the sequence (*) to
the fibers M0 and M∞ remains exact. Therefore j∗0G • resolves j∗0(F∗(Ẽ)) and j∗∞G •

resolves j∗∞(F∗(Ẽ)). Since j∗0F∗Ẽ = f∗i∗0Ẽ = f∗(E),

(i) j∗0G • resolves f∗(E) on Y = M0.

Similarly, j∗∞G • resolves f ∗(E) on M∞. But, f̃ (X) is disjoint from Ỹ . Therefore

(ii) k∗G • resolves f̃∗(E) on P(N⊕1), and
(iii) l∗G • is acyclic.

For a complex F• of vector bundles, we write ch(F•) for the alternating sum
∑(−1)i ch(Fi). We compute the image of ch( f∗E) in A(M)Q (writing ch( f∗E) in
lieu of ch( f∗E) · [Y ]):

j0∗(ch( f∗E)) = j0∗(ch( j∗0G •)) by (i)
= ch(G •) · j0∗[Y ] (projection formula for Chern classes)
= ch(G •) · (k∗[P(N⊕1)]+ l∗[Ỹ ]
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(by the basic fact that [M0]− [M∞] = [divρ] = 0 in A(M)Q)

= k∗(ch(k∗G •))+ l∗(ch(l∗G •)) (projection formula)

= k∗(ch( f ∗E))+0 by (ii) and (iii).

The morphism f was precisely the object of study at the beginning of this section.
Equation (4) of that section allows us to write

(iv) j0 ∗ ch( f ∗E)) = k∗( f ∗(td(N)−1 · ch(E))) in A(M)Q.

Let q : M → Y be the composite of the blowdown M → Y ×P1 followed by the
projection. By construction of M, q◦ j0 = idY , and q◦k◦ f = f . Applying q∗ to (iv),
we find

ch( f∗E) = f∗(td(N)−1 · ch(E)).

The theorem now follows from the same manipulations as were used to pass from (4)
to (5) in the toy case.

Riemann-Roch for the projection Consider first more generally the projection f :
Y ×Z→ Y , with Z nonsingular. There is a commutative diagram

K(Y )⊗K(Z) A(Y )Q⊗A(Z)Q

K(Y ×Z) A(Y ×Z)Q.

τY⊗τZ

× ×
τY×Z

Since the Todd class is multiplicative, td(TY×Z) = td(TY )× td(TZ). If Z =Pm, the left
vertical map is surjective, and K(Pm) is generated by [O(−i)], i = 0,1, . . . ,m, both
statements following from Theorem 1. It suffices therefore to verify the theorem for
the projection from Pm to a point and α = [O(−i)]; i.e. to verify the formula∫

Pm
ch(O(−i)) · td(TPm) = χ(Pm,O(−i)).

Here, if p : Pm→ Speck is the projection, the notation
∫

Pm denotes the extension of
the proper pushforward p∗ : A0(Pm)→ A0(Speck) by zero to the whole Chow ring
A(Pm). As both ch and χ are homomorphisms of rings, in particular it suffices to
verify the formula after flipping sign∫

Pm
ch(O(n)) · td(TPm) = χ(Pm,O(n)),

n = 0,1, . . . ,m.
Now, td(TPm) = (x/1− e−x)m+1, where x = c1(OPm(1)), and compute∫

Pm
enxxm+1/(1− e−x)m+1 =

(
n+m

n

)
.
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To see this, note that the integrand is a power series in x, for which we want the
coefficient of xm. Dividing the integrand by xm+1, this is the same as computing
the residue of enx/(1− e−x)m+1. Changing variables y = 1− e−x this is the same
as asking for the residue of (1− y)−n−1y−m−1, or the coefficient of the term of
degree m in (1−y)−n−1 = (1+y+y2 + · · ·)n+1, which is

(n+m
n

)
. On the other hand,

the sheaves O(n) for n = 0,1, . . . ,m are generated by global sections and have no
higher cohomology; hence

χ(Pm,O(n)) = dimk Symn km+1 =

(
n+m

m

)
.
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