Grothendieck-Riemann-Roch

Abstract The Chern character does not commute with proper pushforward. In other
words, let f : X — Y be a proper morphism of nonsingular varieties. Then the square

K(X) —L— K(¥)
o

AX)®zQ —— A(Y)®zQ

doesn’t commute, where A(X) denotes the Chow ring and ch is the Chern character.
The Grothendieck-Riemann-Roch theorem states that

ch(fia) -td(Ty) = fi(ch() - td(Tx)),

where td denotes Todd genus. We describe the proof when f is a projective mor-
phism.

1 Statement of the theorem

Fix a field k. In this document the word ‘scheme’ will mean ‘k-scheme of finite
type.” Let X be a scheme. K°(X) denotes the Grothendieck group of vector bundles
on X. K,(X) denotes the Grothendieck group of coherent sheaves on X. If X is
quasiprojective nonsingular, the canonical homomorphism

K°(X) = K. (X)

is an isomorphism. This is because the local rings of X are regular, and hence of
global dimension equal to their finite Krull dimension, which is bounded above by
the dimension of X. Therefore any coherent sheaf . on X admits a finite locally
free resolution



2 Statement of the theorem
0—-E,—E;1— - —E —-Ey—F —0,

yielding an inverse of the above homomorphism which takes [F] to Y/, (—1)[E;].
So, when we are studying a nonsingular variety X, we can write K(X) with no
ambiguity. The notation H'(X,.% ) denotes the ith right derived functor of the global
sections functor I' on X with coefficients in the sheaf .%.

Let X,Y be schemes. For any morphism f: Y — X there is an induced homomor-
phism

ffiK°X = K°Y,

taking a vector bundle [E] to [f*E] where f*E =Y Xy E is the pullback bundle. For
any proper morphism of schemes f : X — Y there is a homomorphism

fo i Ko X — KY

which takes [#] to ¥;5o(—1)/[R'f..Z], where R'f,.% denotes ith higher direct im-
age. For the remainder of this document, X will denote a smooth quasiprojective
algebraic variety.

We consider for the moment the situation when X is moreover a complex variety.
Then, we have the usual resolution of the constant sheaf Z by the complex of sin-
gular cochains, and characteristic classes of vector bundles on X lying in H*(X,Z).
The Chern character ch(E) of a vector bundle E on X is defined by the formula

ch(E) = i}exp(ai).

Here o; are Chern roots for E. When E has a filtration with line bundle quotients L;,
then o; = ¢ (L;) € H*(X,Z). The Todd class td(E) of a vector bundle E is defined
by the formula

T l—ex

td(E) = IrIQ(oz,-)7 where Q(x) = X
i=1

Since Chern roots are additive on exact sequences of bundles, td is multiplicative and
ch additive. Moreover, if E and E’ are vector bundles, ch(E ® E') = ch(E) - ch(E").
Therefore, ch descends to a homomorphism

ch:K(X) = H*(X,Z)® Q= H*(X,Q).

Note that the image of ch is contained in even cohomology.
Let f: X — Y be a proper morphism of smooth quasiprojective complex varieties.
Then the Grothendieck-Riemann-Roch theorem states that for o € K(X),

ch(fia) - td(Ty) = fi(ch(a) - td(Tx))

in the ring H*(Y,Q). The map f; on cohomology can be described in the following
way. The class ch(a) - td(Tx) € H*(X,Q) can be represented by an algebraic cycle
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W on X. This cycle admits a locally finite triangulation, i.e. such that a compact
subset of X intersects only finitely many simplices. This triangulation defines the
class of W in Borel-Moore homology of X, which is by definition the homology
of the complex of locally finite singular chains. The functoriality of these chains
for a proper map f : X — Y is evident, since if C C Y is compact, f~!C is also,
and hence only finitely many (singular) simplices have image in Y intersecting C.
By assumption, X and Y are smooth quasiprojective complex varieties. Poincaré
duality extends to give an isomorphism
H(X,Z) = H3M,(X,Z),

where X has algebraic dimension n and H2™ denotes Borel-Moore homology (like-
wise for Y). This defines the map f.

By taking the theorem in the special case of f: X — {-}, one recovers the theorem
of Hirzebruch-Riemann-Roch (HRR), which in our case says, for E a vector bundle
on a nonsingular complex projective variety X,

X(X.E) = /Xch(E) 4d(Ty).
Here, the notation [, means to take the cohomology in the highest degree, repre-
sent it as a linear combination of points via Poincaré duality, and count these points
with multiplicity. Let us recover from this the statement of classical Riemann-Roch,
which applies when X is a complete nonsingular curve of genus g. The geomet-
ric genus of a curve is by definition dimy H°(X, wy), the dimension of the global
sections of the canonical sheaf wx = £y /; (our remarks so far restrict us in what
follows to the case k = C). The arithmetic genus of a curve is dimy H' (X, Ox). Tt
happens that wy is a dualizing sheaf on X, and by Serre duality the vector spaces
H°(X,wx) and H'(X, Ox) are dual to one another. Their dimension can be taken
as the definition of the genus of a (complete nonsingular) curve. In any event, since
HO(X,Ox) = k, this, together with HRR and the computation of the first two terms
of the Todd class of a line bundle

X 1 - _ Bk
.l )k 2%
e Tt LD g

reveals that |
1-g=2(X.00) = 5 [ e1(Ty).
Jx

If E is a vector bundle of rank e on X, then since ch is additive on short exact
sequences and ¢ (E) is simply the sum of the Chern roots of E, ch(E) = e+ ¢ (E),
and we have

AXE) = [ er(E)+e(1—g).

In particular, when E = &'(D) is a line bundle,
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X(X,0(D)) =deg(D) +1—g.

The Chow ring Let X be a smooth scheme. The Chow group Ay (X), resp. A*(X) de-
notes the group of algebraic cycles of dimension, resp. codimension, k£ on X modulo
rational equivalence. We denote algebraic cycles of dimension (resp. codimension)
k on X by ZX, resp. Z¥X. Since X is smooth, the intersection product gives A*(X)
the structure of commutative, graded ring with unit [X]. The notation A(X ) denotes
AX)®zQ.

Characteristic classes can be defined very easily as operators on the Chow ring.
When L is a line bundle on X, find D a Cartier divisor on X with (D) = L. Then
c1(L) ~ o= [D]- o for a € A*(X); i.e. the action of ¢; (L) on the Chow ring of X
is simply intersection with D. The first Chern class of a bundle E of rank r can be
defined simply in terms of determinants, as ¢; (E) = ¢1(A"E). To define the higher
classes, we mention the splitting construction.

Given a finite collection of vector bundles . of vector bundles on a scheme
X, there is a flat morphism f : X’ — X such that

1. f*:A(X)— A(X') is injective, and
2. for each E in .#, f*FE has a filtration by subbundles

ffE=E,DE,_1D---DE DEy=0

with line bundle quotients L; = E; /E;_;.

The flag varieties of vector bundles provide the desired X'.

Now, with f as in the splitting construction, f*F is filtered with line bundle
quotients L;. Define the Chern polynomial

r

a(fE) =T +er(ag).

i=1

Then ¢;(f*E) is simply the coefficient of ¢ in ¢;(f*E). By insisting that the c;(E)
are natural under flat pullback, we determine the ¢;(E) completely.

We then define Chern character ch and Todd class td identically to as before. De-
fined algebraically in this way, the Chern character actually induces an isomorphism

Ch:K(X)Q —)A(X)Q

of Q-algebras. To see this, one passes to associated graded groups, giving A. X its
natural filtration and K, X its topological filtration defined by letting F; K, X be the
subgroup generated by coherent sheaves whose support has dimension at most k.
There is a surjection Ay X — Gry K, X, which, composed with ch, gives the natural
inclusion of A, X in A,Xq. Since, after tensoring with Q, ch determines an isomor-
phisms on associated graded groups, the same must hold on the original groups.
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The Grothendieck-Riemann-Roch theorem remains true if you replace ordinary
cohomology with the Chow ring. Namely, for @ € K(X), f: X — ¥ a projective
morphism of nonsingular schemes (over any field),

ch(f.a)-wd(Ty) = fi(ch(@) - td(Tx))

in the ring A*(Y). Here f. is the proper pushforward of algebraic cycles.

2 Proof of the theorem

Let X be a nonsingular scheme. The proof of the theorem is organized in the follow-
ing way. First we consider the toy case of the zero-section imbedding of X in a vector
bundle on it. After turning briefly to discuss the K-theory of a projective bundle on
X, we discuss the deformation to the normal cone of a closed imbedding. In the final
subsection, we use the results for the K-theory of a projective bundle to prove the
main theorem in the case of a projection, and the deformation to the normal cone to
prove the theorem in the case of a closed imbedding. Together, these constitute the
proof of Grothendieck-Riemann-Roch in the case of a projective morphism.

2.1 The toy case

Let us first consider the special case of a closed imbedding f : X — Y where ¥ =
P(N @ 1) for N an arbitrary vector bundle of rank d on X in particular, f is the zero
section imbedding of X in N, followed by the canonical open imbedding of N in
P(N®1). Let p denote bundle projection ¥ — X, and let Q be the universal quotient
bundle, of rank d, on Y. Let s denote the section of Q determined by the projection
of the trivial factor in p*(N @ 1) to Q. Then s is a regular section, and

f(ff o) = ca(Q) - . €))

Additionally, the Koszul complex

-V
0 A0V = ... 5 A20V -0V 5 Oy — f,0x — 0

is a resolution of the sheaf f, Ox. For any vector bundle E on X, we therefore have
the explicit resolution of £

0 NQ'QpE—...—Q"@p'E = p'E — f.E = 0.

Hence,
d

chf.[E] =Y (—=1)”ch(APQY) - ch(p*E). )

p=0
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Chern character ch and Todd class td are related by the formula
d
Y (=1)Pch(A?QY) = cq(Q) -td(Q) . (3)
p=0
Combining (1), (2), and (3), we write
chf.E =cq(Q)Wd(Q)™" -ch(p"E) = £.(f*1d(Q) ™" f*ch(p"E)).
Since f*Q = N and f*p*E = E, this can be rewritten as
chf.E = f.(d(N)~" - ch(E)). )

By the multiplicativity of td and the exact sequence of vector bundles arising from
a regular imbedding of a nonsingular subvariety in a nonsingular variety

0—Tx — [Ty — NxY — 0,

we find
td(N) ! = ftd(Ty) ! - td(Tx).

The right side of (4) is therefore
Ff(ftd(Ty) " -td(Tx) - chE) = td(Ty) "' - £.(td(Tx) - chE),
and (4) can be rewritten as

ch(f.E)-W(Ty) = £.(ch(E) -td(Tx)). 5)

2.2 K(P)

Theorem 1. Let X be a nonsingular scheme, E a vector bundle on X of rank n+ 1,
q:P=P(E) — X the projection. Then, K(P) is a free K(X)-module generated by
the classes of 0(—i), i=0,...,n.

Proof (of Theorem). There are two steps: first, showing that the classes of &'(—i),
i =0,...,n generate a free submodule of K(P) over K(X); second, showing that
these classes generate K(P) as a module over K(X). The below commutative dia-
gram establishes notation.



Ry
[

)
1
P P
q
q
X

For the first step, it suffices to write down projection maps K (P) — K(X). For
i=0,1,...,n,
a i . R ﬁx ifa=i= ]
RUq. (2 (j—i)) = {

0 otherwise.

Therefore, if H = QII,/X(I), and ¢; : K(P) — K(X) is given by

ei(?) = (~1)'q.(?@ N'H),

then e; assumes the value [Ox] on [0(—i)] and 0 on [O(—)] for 0 < j #i < n.
Hence the classes of &'(—i), i =0,...,n generate a free module over K(X).

For the second step, we must show that every coherent sheaf on projective space
is equal to a linear combination of the &'(—i), i =0,...,n, in K(P). The Koszul
complex

0= O(—n)RA"H — - = O(=2)XAN’H — O(1)KH — Opyxp — Oy — 0

is in fact a resolution of the diagonal &4 = A.0p C P xx P for projective space.
Therefore, for a coherent sheaf ? on P,

?=p1.(Oa@p5(?))

=Pl (an(—l)i(ﬁ(—i) XAH) ®P§(?)>

i=0
= Pl (_Xn:(—l)iﬁ(—i)®(/\iH®?)>
= f (—1)"O(—i) @6y R/ q.(P,NHR?)

ij=0

in K(P), where we have written simply ?, etc. for the class [?] in K(P), and the last
equality is by Kiinneth. This proves step 2, and the theorem.
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2.3 Deformation to the normal cone

Let X be a closed subscheme of Y. The claim is that there is a scheme M = MxY, a
closed imbedding X x P! < M, and a flat morphism p : M — P! so that

XxPl— s M

N/

commutes, and such that

1. Over P! — {eo} = A!, p~!(A!) =¥ x A! and the imbedding is the trivial one
XxAl -y xAl

2. Over o, the divisor M., = p~! () is the sum of two effective divisors
Mo=P(C®1)+Y

where Y is the blowup of Y along X. The imbedding of X = X x {co} in M.. is the
zero-section imbedding of X in C followed by the canonical open imbedding of
Cin P(C®1). The divisors P(C® 1) and ¥ intersect in the scheme P(C), which
is imbedded as the hyperplane at infinity in P(C @ 1), and as the exceptional
divisor in Y. In particular, the image of X in M., is disjoint from Y. Letting
M° = M3Y be the complement of ¥ in M, one has a family of imbeddings of X:

XxPl — 5 M°

po
Pl

which deforms the given imbedding of X in Y to the zero-section imbedding of
XinC.

Such an M is found by blowing up ¥ x P! along X x {co}.

2.4 Proof of Riemann-Roch for a projective morphism

Theorem 2. Let f : X — Y be a projective morphism of nonsingular varieties. Then
Sforall o € K(X),

ch(f,a)-1d(Ty) = f. (ch(at) - d(Tx))
in A(Y)Q.

Let



T K(X) = A(X)g

be defined by
Tx(a) =ch(a)-td(Tx).

Then the theorem can be reformulated as ‘T commutes with pushforward under a
projective morphism’; i.e. f, o Ty = Ty o f,. It follows that If the theorem is valid for
a closed imbedding g : X — Y x P" and for the projection p : Y x P" — Y, then it
is valid for the projective morphism g o p.

Riemann-Roch for closed imbeddings The name of the game is to reduce the case
of f: X — Y aclosed imbedding to the toy case. Let N denote the normal bundle to
X in Y. We shall use the deformation to the normal bundle to deform the imbedding
f into the imbedding f : X — P(N @ 1) discussed at the beginning of this section.
We have a diagram

x PINo1l)+ ¥ =M. > {}
N
X x P! F M p!
L
X Y =My~ {0}

where M is the blowup of ¥ x P! along X x {c}. We may assume a = [E], with
E a vector bundle on X. Let E = p*E, where p is the projection from X x P! to X.
Choose a resolution G. of F,(E) on M:

0—G,— Gy —...—Gy— F.(E) — 0. ()

Since X x P! and M are both flat over P!, the restrictions of the sequence (*) to
the fibers M and M., remains exact. Therefore jjG. resolves j(F.(E)) and j%G.
resolves j& (F.(E)). Since jiF.E = fii}E = f.(E),

@) j3G. resolves fi.(E)onY = M.

Similarly, j%G. resolves f,(E) on M... But, f(X) is disjoint from ¥. Therefore
(ii) k*G. resolves f.(E) on P(N@® 1), and
(iii) I*G. is acyclic.

For a complex F. of vector bundles, we write ch(F.) for the alternating sum
Y.(—1)'ch(F;). We compute the image of ch(f.E) in A(M)q (writing ch(f.E) in
lieu of ch(f,E) - [Y]):

=ch(G.)" jo,[Y] (projection formula for Chern classes)
=ch(G.) - (kJ]P(ND1)] + L.[V]
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(by the basic fact that [My] — [M..] = [divp] =0in A(M)q)

= ki (ch(k*G.)) + L. (ch(I"G.)) (projection formula)
— k. (ch(F.E)) +0 by (i) and (iii).

The morphism f was precisely the object of study at the beginning of this section.
Equation (4) of that section allows us to write

(iv) Jjoxch(f.E)) = ko(f.(d(N)~" - ch(E))) in A(M)q-

Let g : M — Y be the composite of the blowdown M — ¥ x P! followed by the
projection. By construction of M, go jo =idy, and goko f = f. Applying g to (iv),
we find

ch(f.E) = £.(1d(N) " -ch(E)).

The theorem now follows from the same manipulations as were used to pass from (4)
to (5) in the toy case.

Riemann-Roch for the projection Consider first more generally the projection f :
Y X Z — Y, with Z nonsingular. There is a commutative diagram

Ty Tz

KY)®K(Z) —= A(Y)Q®A(Z)q

[ I
K(Y xZ) —2Z 5 A(Y x Z)q.
Since the Todd class is multiplicative, td(Ty xz) = td(Ty) x td(Tz). If Z =P™, the left
vertical map is surjective, and K (P™) is generated by [€(—i)],i =0,1,...,m, both

statements following from Theorem 1. It suffices therefore to verify the theorem for
the projection from P to a point and @ = [&'(—i)]; i.e. to verify the formula

[, eh(@(=0)-(Tpm) = (B, (=)

Here, if p : P™ — Speck is the projection, the notation [p. denotes the extension of
the proper pushforward p, : Ag(P™) — Ao(Speck) by zero to the whole Chow ring
A(P™). As both ch and y are homomorphisms of rings, in particular it suffices to
verify the formula after flipping sign

/ ch(6(n)) - td(Tpn) = £ (P", 6(n)),

n=0,1,...,m.
Now, td(Tpn) = (x/1 —e™*)"*!, where x = ¢1(Opn (1)), and compute

nx_m+1 —x\m+1 n+m
1-— = .
/I;rrle * /( ¢ ) ( n >
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To see this, note that the integrand is a power series in x, for which we want the
coefficient of x™. Dividing the integrand by x”*!, this is the same as computing
the residue of ¢ /(1 —e~*)"*+!. Changing variables y = 1 — ¢~* this is the same
as asking for the residue of (1 —y)™"~!y™=1 or the coefficient of the term of
degree min (1—y) ™! = (1+y-+y*+---)""1, whichis ("™). On the other hand,
the sheaves & (n) for n =0,1,...,m are generated by global sections and have no
higher cohomology; hence

x(P",6(n)) = dimy Sym" "1 = (" + ’") .
m
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