Discussion Week 5: 2/23
MATH 110
GSI: Alex Zorn

1. Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be a linear transformation. If $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\gamma=\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for W :
-What is the size of $[T]_{\beta}^{\gamma}$?
-Write a formula for the j th column of $[T]_{\beta}^{\gamma}$
2. Define the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ by $T(f(x))=f^{\prime}(x)$. Let $\beta=$ $\left\{1+x, 1+x^{2}, x+x^{2}\right\}$. Find $[T]_{\beta}$ and $\left[T^{2}\right]_{\beta}$.
3. Let V, W, Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear.
(a) Prove that if $U T$ is one-to-one and T is onto, then U is one-to-one.
(b) Prove that if $U T$ is invertible and U is one-to-one, then U and T are invertible.
4. If V and W are vector spaces, what does it mean to say V is isomorphic to W ? If V and W are finite-dimensional, when are V and W isomorphic?

Solutions:

1. $[T]_{\beta}^{\gamma}$ is $m \times n$. The j th column of $[T]_{\beta}^{\gamma}$ is $\left[T\left(v_{j}\right)\right]_{\gamma}$.
2.

$$
T\left(b_{1}\right)=T(1+x)=1
$$

To find the β coordinate vector of 1 , we need to solve:

$$
1=a(1+x)+b\left(1+x^{2}\right)+c\left(x+x^{2}\right)=(a+b)+(a+c) x+(b+c) x^{2}
$$

This gives the linear system:

$$
\begin{aligned}
& 1=a+b \\
& 0=a+c \\
& 0=b+c
\end{aligned}
$$

Using your favorite method of solving linear systems (row reduction?), $a=\frac{1}{2}, b=\frac{1}{2}, c=-\frac{1}{2}$. So:

$$
\left[T\left(b_{1}\right)\right]_{\beta}=[1]_{\beta}=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right)
$$

The same method gives:

$$
\left[T\left(b_{2}\right)\right]_{\beta}=[2 x]_{\beta}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) ; \quad\left[T\left(b_{3}\right)\right]_{\beta}=[1+2 x]_{\beta}=\left(\begin{array}{c}
3 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right)
$$

So:

$$
[T]_{\beta}=\left(\begin{array}{ccc}
1 / 2 & 1 & 3 / 2 \\
1 / 2 & -1 & -1 / 2 \\
-1 / 2 & 1 & 1 / 2
\end{array}\right)
$$

We can find $\left[T^{2}\right]_{\beta}$ by matrix multiplication: $\left[T^{2}\right]_{\beta}=\left([T]_{\beta}\right)^{2}$. Or we can do the same thing as before: $T^{2}\left(b_{1}\right)=(1+x)^{\prime \prime}=0, T^{2}\left(b_{2}\right)=\left(1+x^{2}\right)^{\prime \prime}=2, T^{2}\left(b_{3}\right)=\left(x+x^{2}\right)^{\prime \prime}=2$. The answer is:

$$
\left[T^{2}\right]_{\beta}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -1 & -1
\end{array}\right)
$$

3.

(a) Let $\vec{x} \in N(U)$.

Then $U(\vec{x})=\overrightarrow{0}_{Z}$.
Since T is onto, there exists $\vec{y} \in V$ such that $T(\vec{y})=\vec{x}$.
Then $U T(\vec{y})=U(T(\vec{y}))=U(\vec{x})=\overrightarrow{0}_{Z}$.
Since $U T$ is one-to-one, $\vec{y}=\overrightarrow{0}_{V}$.
So $\vec{x}=T\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{W}$.
Therefore, $N(U)=\left\{\overrightarrow{0}_{W}\right\}$, so U is one-to-one.
(b) We need to show:
U is one-to-one. This is given.
U is onto:
Let $\vec{z} \in Z$.
Since $U T$ is onto, there exists $\vec{x} \in V$ such that $U T(\vec{x})=\vec{z}$.
Let $\vec{y}=T(\vec{x})$. Then $U(\vec{y})=U(T(\vec{x}))=U T(\vec{x})=\vec{z}$.
So $\vec{z} \in R(T)$.
Therefore, $R(T)=Z$, so U is onto.
T is one-to-one.
Let $\vec{x} \in N(T)$.
Then $T(\vec{x})=\overrightarrow{0}_{W}$.
Then $U T(\vec{x})=U(T(\vec{x}))=U\left(\overrightarrow{0}_{W}\right)=\overrightarrow{0}_{Z}$.
Since $U T$ is one-to-one, $\vec{x}=\overrightarrow{0}_{V}$.
Therefore, $N(T)=\left\{\overrightarrow{0}_{V}\right\}$, so T is one-to-one.
T is onto.
Let $\vec{y} \in W$.
Let $\vec{z}=U(\vec{y})$.
Since $U T$ is onto, there exists $\vec{x} \in V$ such that $U T(\vec{x})=\vec{z}$.
Then $U(\vec{y})=U(T(\vec{x}))=\vec{z}$.
Since U is one-to-one, $\vec{y}=T(\vec{x})$, so $\vec{y} \in R(T)$.
Therefore, $R(T)=W$, so T is onto.
4. V and W are isomorphic if there exists an isomorphism $T: V \rightarrow W$. If V and W are finite-dimensional, V and W are isomorphic if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

