1. Is the set $\left\{x^{3}+x, x^{2}+1,2 x^{3}-x^{2}+2 x\right\}$ a linearly independent or linearly dependent subset of $P_{3}(\mathbb{R})$? Prove your answer.
2. If $\{u, v, w\}$ is linearly independent, show $\{u-v, v-w, u+w\}$ is linearly independent.
3. Prove Theorem 1.6 and its corollary (section 1.5, page 39)
4. Find a basis for the vector space $W=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$. What is its dimension?
5. Challenge: Find a basis for the set of $m \times n$ matrices such that the sum of the entries in any column equals the sum of the entries in any other column. What is its dimension?

Solutions:

1.

Suppose we have $a\left(x^{3}+x\right)+b\left(x^{2}+1\right)+c\left(2 x^{3}-x^{2}+2 x\right)=0$. This simplifies to $(a+2 c) x^{3}+(b-$ c) $x^{2}+(a+2 c) x+b=0$. So we have:

$$
\begin{gathered}
a+2 c=0 \\
b-c=0 \\
a+2 c=0 \\
b=0
\end{gathered}
$$

Solving this linear system gives $a=b=c=0$, so the set is linearly independent.
2.

Suppose we have $a(u-v)+b(v-w)+c(u+w)=0$. This simplifies to $(a+c) u+(-a+b) v+(-b+c) w=$ 0 . Since $\{u, v, w\}$ is linearly independent, we have:

$$
\begin{gathered}
a+c=0 \\
-a+b=0 \\
-b+c=0
\end{gathered}
$$

Solving this linear system gives $a=b=c=0$, so the set is linearly independent.
3.

If S_{1} is linearly dependent, there exist distinct vectors $v_{1}, \ldots, v_{n} \in S_{1}$ and scalars $a_{1}, \ldots, a_{n} \in \mathbb{R}$, not all zero, such that $a_{1} v_{1}+\cdots+a_{n} v_{n}=0$. Since $S_{1} \subseteq S_{2}, v_{1}, \ldots, v_{n} \in S_{2}$. So S_{2} is also linearly dependent.

For the converse, assume S_{2} is linearly independent. If S_{1} were linearly dependent, this would contradict Theorem 1.6, so S_{1} is linearly independent.
4.

If $x \in W, x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{1}+\cdots+x_{n}=0$. Then $x_{1}=-x_{2}-x_{3}-\cdots-x_{n}$. So (using column vector notation):

$$
x=\left(\begin{array}{c}
-x_{2}-x_{3} \cdots-x_{n} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
-1 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Challenge.

The dimension is $m n-(n-1)$. As a hint, introduce the variable S to denote the common sum of all the columns.

